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ABSTRACT 

This work presents a method for drawing Virtual 

Reality panoramas by ruler and compass 

operations. VR panoramas are immersive 

anamorphoses rendered from equirectangular 

spherical perspective data. This data is usually 

photographic, but some artists are creating hand-

drawn equirectangular perspectives to be visualized 

in VR. This practice, that lies interestingly at the 

interface between analog and digital drawing, is 

hindered by a lack of method, as these drawings are 

usually done by trial-and-error, with ad-hoc 

measurements and interpolation of pre-computed 

grids, a process with considerable artistic limitations. 

I develop here the analytic tools for plotting all great 

circles, line images and their vanishing points, and 

then show how to achieve these constructions 

through descriptive geometry diagrams that can be 

executed using only ruler, compass, and protractor.   

Approximations of line images by circular arcs and 

sinusoids are shown to have acceptable errors for 

low values of angular elevation. The symmetries of 

the perspective are studied and their uses for 

improving gridding methods are discussed. 
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1 | INTRODUCTION 

1.1 PREVIOUS WORK 

This work intends to settle equirectangular spherical 

perspective as a proper perspective, by providing 

clear and complete rules to solve all lines and 

vanishing points, and a method for drawing them 

with simple tools. It aims to bridge the gap between 

traditional and digital drawing, in the creation of 

immersive VR panoramas. This is a revision and 

expansion of previous results I presented in a recent 

conference paper (Araújo, 2017).  

1.2 MOTIVATION 

Artists are subverting Virtual Reality panoramas. VR 

panoramas have been integrated into social 

networking platforms mostly to accommodate 

photographic pieces generated by 360-degree 

cameras. Such cameras create equirectangular 

spherical perspective pictures and the VR software 

provides an immersive experience, by monitoring 

the viewpoint of the user’s mobile phone or headset 

and rendering at each instant a plane perspective of 

a certain field of view from within the total picture. 

Facebook, Google, and Flickr all provide simple 

ways for the user to upload these pictures and share 

them as VR, and specialized services keep popping 

up, such as Kuula, offering new variations and 

features for their display. But as this integration 

grew, some artists started tentatively hand drawing – 

rather than shooting - they own panoramas. Once 

uploaded, these drawings will “look right” as VR 

panoramas if they follow the rules of equirectangular 

perspective. There’s an interesting collection of such 

drawings appearing at Flickr’s artistic panorama 

group (Art Panorama Group, 2017). See also the 

whimsical examples by David Anderson (Anderson, 
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n.d.) and the virtuoso on-location drawing by Gérard 

Michel (Michel, 2007; 2017). 

This interest in drawing VR panoramas is part of a 

trend. Illustrators and urban sketchers (the present 

author hails from both tribes) seem of late rather 

keen on curvilinear perspectives and 

anamorphoses. Such waves of enthusiasm arise 

whenever anamorphosis finds a new technological 

expression. The current VR experience rehashes 

that of once popular 19th century panoramas, for the 

display of which large rotundas were built (Huhtamo, 

2013), or the immersive spectacle of illusionary 

church ceilings. These large scale immersive 

anamorphoses were drawn out in plan and elevation 

as if to build real architecture (and sometimes in 

replacement of such, as in the case of Andrea 

Pozzo’s famous dome at Sant’Ignazzio’s (Kemp, 

1990), and then painted as a 2D simulacrum of the 

imagined object. VR panorama drawings work much 

the same way. Here too the artist starts with a flat 

perspective drawing and aims at an immersive 

experience. The obvious difference is in the 

technology. A further, crucial difference, concerns us 

here: When Andrea Pozzo did his illusionary work in 

the late 1600s, he was firmly grounded in the 

knowledge of linear perspective, as his treatise 

attests (Pozzo, 1700); crudely put, he knew what he 

was doing.  By contrast, our VR panorama makers 

have no handy equirectangular perspective manual 

they can rely upon. What is available addresses 

computer rendering, not human drawing. Artists do 

without it in their usual fashion, being notorious 

hackers of ad-hoc perspective, classical or 

otherwise, who will - quite rightly! - cheat and fake it 

if they must, by sheer trial-and-error, by drawing 

over pre-computed grids or on top of photographs. 

But it is lamentable to have to settle for such crude 

methods. It can be argued that technology tends to 

generate ignorance of the very processes it 

streamlines (Stiegler, 2010), and this is true in 

particular of the naive use of digital tools in art 

(Rodriguez, 2016). That you can click a menu and 

get a perspective grid does not enhance your 

knowledge of perspective. It hinders it, by making it 

unnecessary. That knowledge gets expressed in the 

machine’s primitive operations rather than the 

human’s (brute force plots rather than judicious ruler 

and compass operations) and then black-boxed out 

of view through abstraction and encapsulation, 

which itself limits one’s modes of thought and 

expression (Papert & Turkle, 1991); instead of 

learning perspective you learn to turn knobs on a 

black box whose interface delimits the scope of your 

imagination. There is a knowledge of space and 

form that you only get from drawing with your hands 

and computing with your brain. That you can get a 

perspective at the click of a button only makes it 

more urgent that you know how to get one through 

your mind and hands.  

I argued, in a recent paper (Araújo, 2017b), for a 

“deliberate rudimentarization” or “cardboarding” in 

teaching the concepts behind digital tools - exposing 

the conceptual gears of digital black boxes by 

reducing them to their most basic physical 

expression. The aim is to translate between the 

human and the machine-executable, creating digital-

analog feedback loops that enhance the 

understanding of both realms, and create spots for 

artistic intervention upon the tools themselves. The 

connection between anamorphoses, descriptive 

geometry (DG) and Mixed Reality (MR) is one such 

example of feedback loop. Through analog DG 

techniques (Araújo, 2017a), the student can build 

illusory objects that can be shared through digital 

photography (the camera being the perfect cycloptic 

eye of perspective), in a way that both motivates the 

learning of DG techniques and illuminates the 

operations behind MR tools. VR panoramas can 

expand on this approach since they enable the 

sharing in social networks not only of the static 

photograph of the resulting anamorphosis, but the 

actual immersive experience of the imagined 

object’s visual presence. Note that curvilinear 

perspectives are intimately related to 

anamorphoses. A perspective can be seen as an 

entailment of two maps - a conical anamorphosis 

followed by a flattening (Araújo, 2015). Usually the 

anamorphosis remains merely conceptual - although 

some artists, notably Dick Termes (Termes, n.a.) 

have explored it explicitly - as the artist works 

directly on the perspective due to the convenience of 

drawing on a plane. The VR display reverses the 

entailment, allowing for an analog spherical 

perspective, drawn by hand, to acquire its 

anamorphic (mimetic) character. As a didactic tool 

this allows the student to check the correctness of 

his perspective construction in the most direct 

manner. A curvilinear perspective drawing can be 

hard to interpret, but an anamorphosis is judged by 

eye: a line, planned out in spherical perspective, 

either looks straight in VR or it doesn’t - allowing for 
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an experiential confirmation of the successful 

perspective drawing. This specific type of 

visualization will in turn feed back into the drawing 

process, nor merely as a verification tool but as a 

motivator of specific aesthetics (the VR display is a 

reading mode and there is no such thing as a 

passive reading mode) and therefore of the need to 

solve geometric problems that derive from these 

aesthetic goals.  

But if the VR panorama is to have such didactic 

applications, a clear method is required to plot the 

perspectives by hand, not only within precomputed 

grids (which are just another black box), but for all 

general line projections. That is, one must solve the 

perspective. This is what I propose here, in two 

parts: First I develop the analytic and computational 

tools for the systematic plotting of great circles, 

straight line images and their vanishing points. Next, 

I provide diagrammatic methods to achieve these 

constructions without a computer, so as to draw 

general equirectangular projections, from 

observation or orthographic plans, using only ruler, 

compass, and protractor. 

2 | SOLVING EQUIRECTANGULAR 

PERSPECTIVE 

A spherical perspective can be defined as a conical 

anamorphosis onto a sphere followed by a flattening 

of the sphere onto a plane (Araújo, 2015). The 

anamorphosis is just the central projection map 𝑃 ↦

𝑂𝑃⃗⃗⃗⃗  ⃗/|𝑂𝑃| where O is the center of the sphere, 

representing the viewpoint. It is the same for any 

spherical perspective, and turns spatial lines into 

meridians with exactly two antipodal vanishing 

points. Hence it is the choice of the flattening map 

that distinguishes between spherical perspectives. 

These flattenings are usually cartographic maps, 

chosen for some useful property. For instance, the 

most well-known example of a spherical perspective, 

and the first to be solved by elementary means 

(Barre & Flocon, 1964), was defined by choosing the 

azimuthal equidistant map projection for its 

flattening. In the anterior hemisphere, this flattening 

shows low deformations and turns meridians into 

(approximate) circular arcs (Barre, Flocon, & 

Bouligand, 1964); in the posterior hemisphere, it 

turns meridians into curves that are constructible 

from circular arcs by simple ruler and compass 

operations (Araújo, 2015). The simplicity of these 

line projections makes it a strong choice for a hand-

drawn perspective. In contrast, equirectangular line 

projections (meridians) are clearly not as simple as 

arcs of circle, as can be seen in a comparison of the 

two projections in Figure 1. Equirectangular 

perspective has, however, some important 

advantages: it is the standard input for VR 

panorama rendering engines, so it skips a 

conversion step that tends to generate troublesome 

artefacts; its coordinates correspond to the natural 

angles that one measures in surveying; it renders 

onto a rectangle rather than a disc, which accords 

well both with image files and with the usual shape 

of drawing pads, sketchbooks and picture frames; 

and, as we shall see, it has many of the useful 

features of cylindrical perspective with the 

advantage of covering the whole field of view.  For 

all these reasons, it would be useful to solve this 

perspective. To solve a perspective means to give a 

classification of all lines and of their vanishing 

points, and a method to plot them in practice. It also 

implies a specification of means. Equirectangular 

perspective is trivially plotted point-by-point by a 

computer, but we want it to be solvable with simple 

 
Figure 1 | Equirectangular panorama of a cubical room seen from its center (left), compared with azimuthal equidistant perspective of 
the same (right). Drawings by the author. The VR panorama rendering is available at the author’s website (Araújo, 2017c). 
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tools. The usual candidates are ruler and compass. 

To tackle equirectangular perspective we need to 

add to these a protractor.  

2.1 THE EQUIRECTANGULAR MAP PROJECTION AND 

ITS PERSPECTIVE 

Let us define the equirectangular perspective image 

of a point 𝑃. As discussed above, it is a two-step 

process. 𝑃 is first projected radially onto the sphere 

surface. Then that image point 𝑃’ is flattened onto 

the plane by the equirectangular map projection. 

This cartographic projection maps a point of the 

sphere onto its longitude (λ) and latitude (φ) 

coordinate pair, (λ, φ) (Snyder, 1987). It maps the 

sphere onto the 2 × 1 rectangle ] − 180∘, 180∘[×] −

90∘, 90∘[  and turns parallels and (north-south) 

meridians into horizontal and vertical straight lines, 

respectively (Figure 2). Note that we will mostly 

measure angles in degrees rather than radians 

(asking the reader to mind the trigonometric 

conversions assumed) since degrees are so 

convenient for drawing (an A3 sheet will nicely fit a 

360x180[mm] drawing rectangle, with longitudes in 

the interval [-180mm,180mm] and latitudes in [-

90mm,90mm]. We choose a right-handed 

orthonormal referential (𝑢𝑥⃗⃗⃗⃗ , 𝑢𝑦⃗⃗ ⃗⃗  , 𝑢𝑧⃗⃗⃗⃗ )  at the center of 

the sphere O, such that (x, y) is the equatorial plane, 

𝑢𝑧⃗⃗⃗⃗  points at the north pole, and 𝑂 + 𝑢𝑥⃗⃗⃗⃗  has zero 

longitude. Then by simple trigonometry applied to 

Figure 2, we see that φ = arcsin(𝑧/√𝑥2 + 𝑦2 + 𝑧2) . 

As for 𝜆, it equals arctan(𝑦/𝑥) when 𝑥 > 0. For 𝑥 ≤

0 we must add or subtract 180º to this, for 𝑦 ≥ 0 or 

𝑦 < 0 , respectively, and settle the 𝑥 = 0  case by 

continuity. The case 𝑥 = 𝑦 = 0 is undefined. This is 

neatly summed up by the function  𝑎𝑡𝑎𝑛2(𝑦, 𝑥) =

𝐴𝑟𝑔(𝑥 + 𝑖𝑦) , the so-called four-quadrant inverse 

tangent, that verifies 𝑎𝑡𝑎𝑛2(cos(𝜃) , sin(𝜃)) = 𝜃  for 

𝜃 ∈] − 180∘, 180∘]    . Hence the equirectangular 

perspective is given by the ℝ3 → ℝ2map  

(𝜆, 𝜑) = (atan2(𝑦, 𝑥) , arcsin (
𝑧

√𝑥2+𝑦2+𝑧2
)).   

This verifies the technical conditions for a curvilinear 

perspective specified by (Araújo, 2015), namely: the 

flattening is a homeomorphism in a dense open 

subset of the sphere, and its inverse can be 

extended to a continuous map between compact 

sets. In fact, the flattening is one-to-one outside of 

the north-south meridian 𝑚  that goes through 

(−1,0,0) , and its inverse can be extended by 

continuity to map the closed 2 × 1 rectangle to the 

whole sphere, by the continuous map 

(𝜆, 𝜑) ↦ (cos(𝜑) cos(𝜆) , cos(𝜑) sin(𝜆) , sin (𝜑)) 

that sends the top and bottom edges of the 

rectangle to the north and south poles respectively, 

and sends both vertical edges to the meridian 𝑚 

(Figure 2).    

2.2 ON LINES AND VANISHING POINTS 

Solving a perspective requires a classification of 

spatial lines and their vanishing points. How you 

classify spatial lines depends on what you can 

measure. An architect, drawing from plan and 

elevation, can measure lengths. An astronomer 

measures angles from a fixed point. The 

draughtsman finds himself in the latter’s position 

when drawing from life. I will now define what for 

such a draughtsman may be a natural set of 

variables to classify spatial lines.  

Given a spatial line 𝑙, it is often possible to identify 

the direction of the vertical plane H where it lies. 

Suppose the viewer rotates (to a given longitude 𝜆0) 

to face this plane. Then 𝑙 will extend 90 degrees to 

his left and right, going to its vanishing points. The 

 
Figure 2 | Equirectangular perspective and flattening. 𝑃 maps to 
𝑃′  on the sphere by central projection and onto 𝑃′′  on the 
rectangle of the perspective drawing. 
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viewer can measure the incline of 𝑙 (the angle 𝜃 that 

𝑙 makes with the horizontal through H) by tilting a 

pencil on a plane parallel to H while visually 

superimposing it on 𝑙  (the angle is preserved by 

triangle similarity). Finally, he can measure the 

angular elevation 𝜑0  at which 𝑙  passes in front of 

him. We thus get coordinates (𝜆0, 𝜑0, 𝜃)  that fully 

specify line 𝑙.  

Now we’d like to know how to plot such a line. If 𝑙 is 

contained on a vertical plane through 𝑂(𝑂 ∉ 𝑙), then 

it’s trivial: 𝑙  projects onto a vertical line (if 𝑙  is 

vertical) or onto two antipodal vertical line segments 

differing by 180º in longitude. 

Let us consider then the non-trivial case: Let 𝑙 be a 

spatial line such that 𝑂 ∉ 𝑙 and 𝑙 is not on a vertical 

plane through 𝑂. We start by defining our three line 

parameters more carefully: Let 𝑙′ be the orthogonal 

projection of 𝑙 onto the equatorial plane. There is a 

point 𝑄0  such that 𝑂𝑄0  and 𝑙′  define a right angle 

(Figure 3). Let 𝜆0 be the longitude of 𝑄0 . Let 𝑃0  be 

the point of 𝑙 lying on the vertical plane through 𝑂𝑄0. 

Let 𝜑0 be the latitude of 𝑃0. Let 𝜃 to be the incline of 

𝑙 , i.e., the angle between 𝑙  and 𝑙′  on the vertical 

plane through 𝑙. We wish to plot a generic point 𝑃 on 

the line 𝑙  of coordinates (𝜆0, 𝜑0, 𝜃) . We will 

determine an expression 𝜑(𝜆) = 𝑓(𝜆|𝜆0, 𝜑0, 𝜃)  for 

the latitude 𝜑  of 𝑃 in terms of its longitude 𝜆. Let 𝑄 

be the orthogonal projection of 𝑃 onto the equatorial 

plane. Let Δ𝑥 = |𝑄0𝑄|, 𝑑0 = |𝑂𝑄0|, ℎ0 = |𝑄0𝑃0|. Then 

𝜑(𝑃) = arctan (
|𝑃𝑄|

|𝑄𝑂|
) = arctan (

ℎ0 + tan(𝜃)Δ𝑥

√𝑑0
2 + Δ𝑥2 

 ) 

= arctan (
ℎ0/𝑑0 + tan(𝜃)Δ𝑥/𝑑0

√1 + (Δ𝑥/𝑑0)
2  

 ) 

= arctan (
tan(𝜑0) + tan(𝜃)tan (𝜆 − 𝜆0 )

√1 + tan2(𝜆 − 𝜆0) 
 ) 

= arctan(cos (λ − λ0)(tan (𝜑0) + tan(𝜃) tan(𝜆 − 𝜆0 ))) 

= arctan (tan(𝜑0) cos(𝜆 − 𝜆0) + tan (𝜃)sin (𝜆 − 𝜆0)) 

Hence the line of coordinates (𝜆0, 𝜑0, 𝜃)  has 

parametrization 𝜆 ↦ 𝜑(𝜆) = 𝑓(𝜆|𝜆0, 𝜑0, 𝜃) 

= arctan(tan(𝜑0) cos(𝜆 − 𝜆0) + tan(𝜃) sin(𝜆 − 𝜆0)) (1) 

where 𝜆 ∈ [𝜆0 − 𝜋/2, 𝜆0 + 𝜋/2 ]. 

Let us use this to plot some lines and get a feel for 

their appearance. First, we note that spatial 

rotational symmetries around the z axis become 

translational symmetries for 𝜆 . We see that 

𝑓(𝜆|𝜆0, 𝜑0, 𝜃) = 𝑓(𝜆 − 𝜆′|𝜆0 − 𝜆′, 𝜑0, 𝜃) for any 𝜆′ ; in 

particular, 𝑓(𝜆|𝜆0, 𝜑0, 𝜃) = 𝑓(𝜆 − 𝜆0|0, 𝜑0, 𝜃) , so we 

can draw any line as if it lies on the 𝜆0 = 0 vertical 

plane, and then shift it sideways to its correct 

position on the perspective plane. This reduces the 

drawing problem to the 𝜆0 = 0 case. 

Let’s begin by drawing horizontals. Then 𝜃 = 0, and 

our parametrization simplifies to 𝑓(𝜆|𝜆0, 𝜑0, 0) =

arctan(tan(𝜑0) cos(𝜆 − 𝜆0)) . The plot looks 

sinusoidal up to around the 45º mark, and then 

grows squarish as 𝜑0  approaches 90º degrees 

(Figure 4 (top)). Notice the mirror symmetry around 

𝜆 = 𝜆0, and the translational symmetry that allows us  

to plot a full grid (Figure 4 (top)) of horizontals (and 

verticals) by just calculating the central family and 

then sliding three copies to the side by 90º 

increments. All in all, horizontals don’t look too 

complicated. General lines are another matter: In 

(Figure 4 (bottom)) I plotted three families of parallel 

 
Figure 3 | Angular coordinates of a generic spatial line. 

 

 
Figure 4 | Top: Grid of horizontal and vertical lines at 15º 
intervals. Bottom: Sets of parallels with incline equal to 15º, 45º, 
and 75º. When 𝜑0 = 0, the incline of the image at the equator 
equals the true incline of the spatial line on its vertical plane. 
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lines. From left to right we have 𝜃 =15º, 45º and 75º, 

with 𝜆0 =  −90º, 0º, 90º respectively, and lines in 

each family separated by intervals of 15 degrees of 

latitude. We see that as 𝜃 grows the lines become 

S-shaped, and then progressively sigmoidal, with 

the maximum of the curve being reached closer and 

closer to the vanishing point. Individual lines are no 

longer mirror symmetric across the 𝜆 = 𝜆0 axis, only 

the 𝜑0 = 0 line of each family retaining central 

symmetry. These curves seem rather daunting to 

the unaided analog artist!  

Fortunately, there is a way to reduce all lines to the 

𝜃 = 0 case. In any spherical perspective is it always 

smart to draw a line by first drawing its great circle 

and then finding the line inside it. A line projected on 

a sphere is always a meridian (half of a great circle), 

and a great circle projects either as a vertical or as a 

union of two horizontals (Figure 5) oriented at some 

angle 𝜆𝑀. We will find that angle, those horizontals, 

and our line within them, as a subset delimited by its 

two vanishing points. Start by recalling some 

spherical geometry: The antipodal point of a point 𝑃 

is the point 𝑃⋆ diametrically opposite to it on the 

sphere. If 𝑃 = (𝜆, 𝜑)  then 𝑃⋆ = (𝜆 − 𝑠𝑔𝑛(𝜆)𝜋, −𝜑) 

where 𝑠𝑔𝑛(𝑥) = 𝑥/|𝑥| . A great circle is the 

intersection of the sphere with a plane through its 

center. A spatial line defines such a plane; Hence a 

spatial line defines a single great circle and projects 

as a meridian, the great circle being the union of two 

meridians whose points are antipodal to each other. 

The vanishing points of the line, that delimit it inside 

its great circle, are obtained (in any central 

perspective) by translating the line to 𝑂  and 

intersecting with the sphere. Hence a line (𝜆0, 𝜑0, 𝜃) 

has vanishing points at 𝑣1 = (𝜆0 − 𝑠𝑔𝑛(𝜆0)𝜋, 𝜃) and 

at its antipode 𝑣1
⋆ . We now note that our 

parametrization of a line (hence, of a meridian) can 

already be used to plot the whole great circle that 

contains it, simply by extending its domain while 

preserving its functional form. In fact, let 𝐶  be the 

great circle of 𝑙. Then the perspective image of 𝐶 is 

the union of the image of 𝑙 with the set of the images 

of the antipodal points of 𝑙. But from eq. 1 we see 

that 𝜑(𝜆 − 𝑠𝑔𝑛(𝜆)𝜋|𝜆0, 𝜑0, 𝜃) = −𝜑(𝜆|𝜆0, 𝜑0, 𝜃), since 

the sin and cos reverse sign and arctan is odd, so 

the function 𝜆 ↦ 𝑓(𝜆|𝜆0, 𝜑0, 𝜃) already parametrizes 

the whole great circle of 𝑙 if we extend its domain to 

[𝜆0 − 𝜋, 𝜆0 + 𝜋] . Further, we can rewrite the 

parametrization to get a single cosine in the arctan 

argument. Just set 𝐶 cos(𝜆 − 𝜆𝑀) = tan(𝜑0) cos(𝜆 −

𝜆0) + tan(𝜃) sin(𝜆 − 𝜆0) for unknown 𝜆𝑀 , 𝐶 . Setting 

𝜆 = 𝜆0we get 𝐶 cos(𝜆0 − 𝜆𝑀) = tan(𝜑0)  , and setting 

𝜆 = 𝜆0 + 𝜋/2  we get 𝐶 sin(𝜆0 − 𝜆𝑀) = − tan(𝜃 )   , 

whence  C2 = tan2(𝜑0)  + tan2(𝜃)  and 𝜆𝑀 = 𝜆0 +

arctan(tan(𝜃)/ tan(𝜑0))  . Then the parametrization 

of the great circle containing line (𝜆0, 𝜑0, 𝜃) takes the 

form 

𝑔(𝜆|𝜆𝑀, 𝜑𝑀) = arctan(tan(𝜑𝑀) cos(𝜆 − 𝜆𝑀))  (2) 

where  𝜆 ∈ [−𝜋, 𝜋], and 

𝜆𝑀 = 𝜆0 + arctan(tan(𝜃)/ tan(𝜑0)), 

𝜑𝑀 = arctan(√tan(𝜑0) + tan(𝜃) ). 

We see that a great circle is therefore described by 

the pair of parameters (𝜆𝑀, 𝜑𝑀) . We have 

𝑓(𝜆|𝜆0, 𝜑0, 𝜃) = 𝑔(𝜆|𝜆𝑀, 𝜑𝑀) when 𝜆 ∈ [𝜆0 − 𝜋/2, 𝜆0 +

𝜋/2], so that both parametrize the same line in a 

given window of width 𝜋. But notice that (2) has the 

functional form the plot of a horizontal! It is the plot 

of the horizontal (𝜆𝑀, 𝜑𝑀 , 0) when 𝜆 is in the interval 

[𝜆𝑀 − 𝜋, 𝜆𝑀 + 𝜋] and of its antipode (𝜆𝑀 ± 𝜋,−𝜑𝑀 , 0) 

outside of that interval. That means we can draw 

any line by drawing horizontals and clipping them at 

 
Figure 5 | Left: the plane of a great circle (𝜆𝑀, 𝜑𝑀) = LARB. Right: the image of a set of parallels (red) and their great circles (dashed), 
with (𝜆𝑀, 𝜑𝑀) in blue and green. Line 𝑉⋆𝐴𝑉  (green) has θ ≠ 0 but shares the plot of horizontal line 𝐿𝐴𝑅 = (𝜆𝑀, 𝜑𝑀 , 0), both being 
meridians of the same circle. The incline of the projected great circle equals 𝜑𝑀 at 𝜆𝐸.  
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the line’s vanishing points! Figure 5 clarifies the 

geometric meaning of the pair 𝜆𝑀, 𝜑𝑀. On Figure 5 

(left) we see a great circle 𝐶 = 𝐴𝑅𝐵𝐿 and on Figure 

5 (right) its perspective image (blue and green line). 

The plane of the great circle intersects the equatorial 

plane at a line 𝐿𝑅 and makes an angle 𝜑𝑀  with it. 

This angle equals the maximum latitude reached by 

𝐶 , at point 𝐴  with longitude 𝜆𝑀 . Note that 𝜑𝑀  also 

equals the incline of the tangent at the latitude 𝜆𝐸 

where the circle crosses the equator. Since tangents 

are preserved at the equator, the plot has incline  

𝜑𝑀  at longitude 𝜆𝐸 . This and the zero incline at 𝜆𝑀 

gives the draughtsman useful control points for the 

tangents. Note that a line with 𝜆0 = 𝜆𝐸 has 𝜃 = 𝜑𝑀; a 

line with 𝜃 = 0 has incline 𝜑0 = 𝜑𝑀  at its vanishing 

points; and a line with 𝜑0 = 0 has latitude 𝜃 = 𝜑𝑀 at 

its vanishing points.  𝜆𝑀  and 𝜑𝑀  define the circle 

uniquely, but there are many meridians (lines) in it; 

we write 𝑙 ≡ 𝑙′ when lines 𝑙, 𝑙′ share the same great 

circle. To specify a line, we set either 𝜆0  or a 

vanishing point 𝑉 . This defines a 180º clipping 

window (the interval [𝜆0 − 𝜋, 𝜆0 + 𝜋] ) where line 

𝑉⋆𝐴𝑉 (in green on Figure 5, right) lies on the plot of 

the complete great circle (in blue). Note that on the 

plot, latitude rises from 𝑉⋆ , goes to zero at 𝜆𝐸 , 

passes through 𝜑0  and reaches its maximum over 

𝜆𝑀  , then declines towards 𝑉. It has incline  𝜑𝑀  at 

longitude 𝜆𝐸 , as discussed. We see that the 

asymmetrical plot of the line is just a section of the 

more symmetrical plot of the great circle in blue, and 

this is just the union of two mirrored horizontals. In 

fact, (𝜆𝑀 − 𝜋/2,0, 𝜑𝑀) ≡ (𝜆𝑀, 𝜑𝑀 , 0) . We illustrate 

this for a family of parallels. In Figure 5 (right) we 

draw in filled red. They have vanishing points at 

(±90∘, ±30∘) , so 𝜆0 = 0 , and their range is 

[−90∘, 90∘]. They all have incline 𝜃 = 30∘ and differ 

by 15º increments in 𝜆0. By plotting their full circles 

(dashed red) we see how they are nothing more 

than a plot of horizontals as in the grid of Figure 4 

and the asymmetry is an artefact of their sampling 

by the clipping window. All we need to draw are 

horizontals (𝜃 = 0) lines and their lateral 

translations. For instance, for our green line, which 

is (0, 30∘, 30∘), we obtain from the definitions in eq. 2 

that 𝜆𝑀 = 45∘ and 𝜑𝑀 = arctan(√(2/3)) ≈ 39∘, so we 

plot the horizontals  (45∘, 39∘, 0) and (135∘, −39∘, 0) 

which together make up the circle (45∘, 39∘) , and 

then clip it at 𝜆 = ±90∘. Of course we’d rather not 

use the expressions of eq. 2 to obtain (𝜆𝑀, 𝜑𝑀). We 

don’t wish to draw with calculator in hand. But we 

can measure them directly from observation. On the 

domain of a line you always have one of the 

extremes and one points where it hits the equator. If 

𝜆𝐸 is easier to spot, find it and you know 𝜆𝑀 is 90º 

away; then measure the angular height at 𝜆𝑀 to get 

𝜑𝑀. Or measure the incline at 𝜆𝐸, and recall it must 

equal 𝜑𝑀. For instance, for our blue line, the incline 

at 𝜆𝐸 = 45∘ is 𝜑𝑀 ≈ 39∘. 

2.3 PLOTTING WITH RULER, COMPASS AND 

PROTRACTOR 

  We have reduced all line plots to those of type 

(0, 𝜑𝑀, 0) , modulo translation and choice of 

vanishing points. It remains to show how to plot 

these lines by elementary means, using ruler, 

compass, and protractor, rather than computers or 

calculators. We will do it with some simple 

descriptive geometry diagrams. 

We work on the setup of construction of Figure 6 

(left), which is nothing more than an orthographic 

view of the general scheme in Figure 3 for the case 

𝜃 = 0 . The following construction obtains 𝜑 for a 

given 𝜆. It can be seen as a graphical algorithm that 

takes 𝜆 as input and outputs 𝜑(𝜆) = 𝑓(𝜆|0, 𝜑0, 0), the 

protractor serving as the input-output interface and 

the ruler and compass providing the operations of 

the (analog) computer: 

1. Draw a vertical segment 𝑂𝑄0 ̅̅ ̅̅ ̅̅ of arbitrary 

length. Draw perpendiculars to 𝑂𝑄0  through 
𝑂 and 𝑄0. Let these be 𝑙𝑂 and 𝑙′ 
respectively. 

2. With a protractor, find 𝐻 on 𝑙′ such that 

∠𝑄0𝑂𝐻 = 𝜑0. With center on 𝑄0 draw a 
circle through 𝐻, to find 𝑃0 on 𝑄𝑄0. Draw a 

horizontal 𝑙 through 𝑃0.   

Steps 1 and 2 set up our machine for the line 

(0, 𝜑0, 0) . Now we are ready to use it (Figure 6 

(right)): 

3. Input 𝜆: With a protractor, find 𝑄𝜆 on 𝑙′ such 

that 𝑄𝜆𝑂𝑄0 = 𝜆. 
4. Operation: With center at 𝑄𝜆, draw a circle 

through 𝑂 to find 𝑂𝜆 on 𝑙′. Then |𝑂𝜆𝑄𝜆| =
|𝑂𝑄𝜆|. Draw a vertical through 𝑄𝜆 to find 𝑃𝜆 
on 𝑙.  

5. Output: Read 𝜑(𝜆) = ∠𝑃𝜆𝑂𝜆𝑄𝜆 with a 
protractor.  

In Figure 7 (top) we used this construction to draw 

one quarter of the great circle (0,80∘), or half of the 

line (0,80∘, 0) (Figure 7 (bottom)). The rest of the 

great circle can be obtained from this section by 

mirror and central symmetry. Six points were found 
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(with errors in the order of one degree) and the rest 

were interpolated by eyeballing constant curvature 

segments (arcs of circle) between each consecutive 

set of three points. Besides these six points we 

know both the longitudes and the tangent inclines at 

𝜆𝑀  and 𝜆𝐸  (the incline at 𝜆𝐸  equals 𝜑𝑀 = 80∘  and is 

null at 𝜆𝑀 ). These control points for the tangents 

help us direct the drawing of the curve. We can see 

that even at this high value of latitude, as few as 

three judiciously chosen points would still provide a 

serviceable approximation to the curve.  

Application to the 𝜃 ≠ 0 case: The construction 

above could be trivially applied to lines with 𝜃 ≠ 0 

with a simple modification to step 2: draw line 𝑙 on 

step 2 with incline 𝜃. The rest of the procedure is 

identical. But doing this makes for an unwieldy 

diagram. It is easier to use this diagram to find 

(𝜆𝑀 , 𝜑𝑀) , then reduce the problem to the 

corresponding one of type 𝜃 =  0  through 

longitudinal translation and apply the procedure 

described above. To obtain (𝜆𝑀, 𝜑𝑀) from (𝜆0, 𝜑0, 𝜃) 

(as an alternative to direct measurement or 

calculation) do as follows: on step 2, draw 𝑙  with 

incline 𝜃. Find the intersection of 𝑙  with 𝑙′. Let this 

intersection be 𝑄𝐸  . Then measure 𝑄0𝑂𝑄𝐸  with a 

protractor to obtain 𝜆𝐸. 

Having learned to find all vanishing points and plot 

all great circles, we can now build complex scenes 

as the example of Figure 10, with ramps that climb 

up or down at arbitrary angles. 

A note is in order at this point. One might reasonably 

doubt the worth of using descriptive geometric 

constructions to obtain what a pocket calculator can 

do in seconds. The point is that with this last step, by 

avoiding all explicit numerical calculations, we have 

placed equirectangular perspective into the very 

small set of perspectives that can be fully 

constructed within that geometric tradition that 

connects Euclid, Alberti, and Monge. It is also 

perhaps unexpected, hence worth noting, the 

simplicity of the operations required.   

2.4 APPROXIMATIONS 

We note that, for small 𝜑0 , equirectangular 

perspective looks very similar to cylindrical 

perspective. It is to be expected that sinusoids will 

approximate horizontals reasonably well. Circular 

arc approximations also turn out to be useful. Both 

these curves are easily plotted by ruler and compass 

(or freehand). In both cases we approximate the 

equirectangular plot of the horizontal line (0, 𝜑𝑜, 0) 

by the single sinusoid/arc-of-circle that coincides 

with it at the apex (0, 𝜑𝑜) and at the vanishing points 

(±90∘, 0) . These approximations are plotted in 

Figure 8 (top). We see that for 𝜑 < 35∘, the sinusoid 

is a good approximation (max. error ≈ 1∘), and just 

Figure 6 | Left: Setup of orthographic view for calculating φ(λ) of 

a (0,𝜑𝜆 , 0)  line. Right: Finding the latitude φ(λ)  for a given 
longitude λ. 

   

 

 
Figure 7 | Calculation with ruler, compass and protractor (top), of 
one half of the line (0, 80º, 0) (bottom). 
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as it collapses (see Table 1) the circle becomes a 

better approximation and remains so until about 

𝜑0 = 60∘ (max. error ≈ 2∘). In Figure 8 (bottom) we 

can see a plot of the approximation errors. The 

sinusoids have always positive error with a single 

maximum on each side, always located close to the 

60º latitude. The circles have a more complex 

behavior, starting with single-minimum negative 

errors and then developing two extrema, one 

positive and one negative, whose locations travel 

towards the 90º mark with growing 𝜑𝑜. Positive error 

grows with 𝜑0  while negative error stays bounded 

above -2º. We note that there is a region where 

drawing both curves and taking their average by 

drawing between them would provide a better 

approximation, but the added effort defeats the 

purpose.  Taken in their proper regions, these 

approximations hold quite well until 𝜑0 = 60∘, always 

keeping the error below 2º, which is probably within 

the interval for measuring/drawing errors anyway. 

For larger values of 𝜑0  the curves take their 

characteristic sigmoid shape and one should use the 

general construction of the previous section. 

2.5 UNIFORM GRIDS 

The construction of uniform grids is the pons 

asinorum in the study of a perspective. Passing it 

means the student is ready to begin the real work. 

Let us consider here only a very simple example of 

what would be a one-point perspective grid in 

classical perspective: a tiled box, as in Figure 1. In 

that picture the box is cubical of side 2𝑑  and has 

been tiled with squares of side 𝑑/4 , with a grid 

crossing under the viewpoint 𝑂 which is at the center 

of the box. We solve this grid as follows: Set 00 

latitude along a grid axis and measure the latitudes 

of the grid points on the floor along the  𝜆 = 0∘ 

plane. This can be done by direct observation (with 

a clinometer [1]) or by the diagram of Figure 9 (left) 

with a protractor. This diagram represents an 

orthographic side view of the box, with the dots 

marking the box divisions on the floor and on the 

facing wall. With the protractor you will obtain four 

points 𝑃𝑖 = (0, ℎ𝑖)  of latitudes ℎ𝑖 = −90∘ +

arctan(𝑖/4), 𝑖 = 1,… ,4 . These are all the 

measurements you need. Through each of these 𝑃𝑖   

pass the horizontal (0, ℎ𝑖 , 0). These are the edges of 

Table 1 | Errors of sinusoidal/circular approximations. 

𝜑0 15º 30º 35º 40º 45º 50º 60º 

Maximum errors in absolute value:  

sin 0,1º 1.1º 1.8º 2.8º 4º 6º 11º 

circ 0.8º 1.5º 1.7º 1.8º 1.8º 1.9º 1.9º 

 

 

 
Figure 8 | Top: Plot of horizontals (black) with 𝜑0 = 10∘ to 𝜑0 =
70∘ in 5º increments, and of sinusoidal (red) and circular (blue) 
approximations. Sinusoids omitted for 𝜑0 > 55∘. Bottom: Plot of 
the errors of the approximations above. The error of the sinusoids 
(red) is always positive, with a single maximum near the 60º 
mark. For circles (blue), it starts negative for small 𝜑0 , with a 
single minimum, and then develops two extrema with both 
negative and positive errors. The minimum stays above the -2º 
mark and maximum grows with 𝜑0, its latitude shifting nearer to 

±90∘. 

 

Figure 9 | Left: Protractor measurement of a uniform grid on a 
box. Right: Equirectangular perspective of a corner of the box. 
The rest can be obtained by symmetry. 
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the floor tiles that go to your left and right vanishing 

points (the top one is the edge of the vertical wall, at 

𝜑0 = ℎ4 = −45∘ ). To get the orthogonal edges, 

either repeat the process with your center line facing 

the left wall (𝜆 = −90∘) or pass a vertical through 

𝜆 =  −45∘  and mirror the lines you have drawn, 

using the symmetries of the room. You thus obtain 

the lines of the grid that go to 𝜆 =  0, and in this way 

a quarter of the tiled floor is achieved (Figure 9, 

right). To get the horizontal lines of the frontal wall, 

you might again use the diagram of Figure 9, but 

notice these angles are mirror images across the 

45º line of the angular heights ℎ𝑖  obtained for the 

floor, so you don’t have to measure them; just mirror 

the points 𝑃𝑖  across 𝜑 = −45∘. Draw the horizontal 

lines that go through these at the 𝜆 = 0∘ plane and 

vanish at 𝜆 =  ±90∘ , just as you did with the floor 

horizontals. To get the vertical lines of the wall, pass 

verticals through the intersections of the floor lines 

with the bottom edge of the wall. The rest of the box 

can be tiled by symmetry without further calculation.  

Exercise to the reader: extend the floor grid to 

infinity. You will find the process is analogous to the 

one used in classical perspective.  

Uniform grids of this kind have an interesting 

property in equirectangular projection: In a sense 

there is only one of them. If you rotate the room 

around the z axis, the new drawing will just be 

displaced by the horizontal offset corresponding to 

the angle of rotation. 

3 | ON THE PRACTICE OF DRAWING 

3.1 ON MEASURING 

The previous sections assumed access to the 

variables 𝜆0, 𝜑0, 𝜃. How hard are these to obtain in 

drawing from life? Direct measurements of 𝜑0  can 

be obtained with an improvised clinometer, made 

from a protractor and a weight on a string, or, less 

charmingly, with a digital clinometer on a mobile 

phone. 𝜃 can be measured by tilting a pencil in front 

of one’s eyes: by triangle similarity, angles with the 

horizontal will be preserved as long as the pencil is 

on a plane parallel to that of the line being 

measured. Often, circumstances will make some of 

these variables hard to obtain. Then boxing them 

inside of horizontals and verticals is useful, among 

other strategies dictated by circumstance. For 

example, in Figure 10 there was nothing better for it 

than just building up a plan and elevation with 

measuring tape in hand and taking angles from that. 

Measurement is an art of cunning and circumstance. 

3.2 ON GRIDDING 

Figure 10 | Equirectangular perspective of a stairwell, with stairs going up and down at 34-degree incline. Notice convergence to 
vanishing points. Drawing by the author. The VR panorama rendering is available at the author’s website (Araújo, 2017c). 
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The greatest difficulty of this perspective is the 

awkwardness of the line plots. It is nice to know you 

can solve them by descriptive geometry, but not 

something you’d like to do while outdoor sketching. 

There, you really want to grid. But our study of 

symmetries has shown that the grid of horizontals 

and verticals (Figure 4) has more to it than is 

apparent at first: it is a plot of great circles, and this 

can be used for a smarter kind of gridding, not 

limited to drawing horizontals and verticals and 

guessing the rest. By drawing on tracing paper over 

such a grid, you can find the single line that joins 

any two given points A and B.  Just slide the grid 

under your drawing, shifting it horizontally until you 

find the single great circle that connect them; then 

trace over it, joining A and B. Our study of 

symmetries assures us that this works for lines of 

any incline – and on top of it, finds you the values of 

(𝜆𝑀, 𝜑𝑀) graphically. Knowing these symmetries and 

knowing how to measure and plot all vanishing 

points, a whole avenue of geometrical constructions 

analogous to those of classical perspective is 

opened to the draughtsman, as well as a very 

practical and quick method for on location sketching 

(Figure 13). This is a longer discussion that we must 

leave for further notes and materials on the author’s 

web page. 

3.3 ON HOW IT MEASURES UP 

All said and done, how well does this perspective 

measure up against the alternatives? Its greatest 

failing is the awkwardness of line plots for high 𝜑0, 

but outdoor sketching can focus on eyeballing 

shapes and measuring angles, and accurate plotting 

done later back in the studio; or some smart gridding 

can be called upon, using the symmetries pointed 

out above. All in all, I think this perspective 

compares favorably with cylindrical perspective in 

the drawing experience. Often the latter suffers from 

mixing two kinds of measurements (angles and their 

tangents), and the line plots, as we have seen, are 

similar for low 𝜑0 ; just the more limited domain to 

which cylindrical perspective is by its nature 

restricted. As for azimuthal equidistant perspective, 

it remains the most natural spherical perspective, 

with the simplest line images, but it renders on a 

disc, which is sometimes objectionable to the artist, 

and always awkward for conversion to VR. Also, 

scene symmetries are crucial for the choice (Figure 

12), and equirectangular is often better where top 

and bottom are not the focus (landscapes). There it 

aligns well with intuition and makes it easier to 

improvise figures and action on top of carefully 

planned referential backdrops. 

4 | CONCLUSION 

Equirectangular perspective is an attractive option 

for drawing panoramas. It is a full spherical 

perspective, yet carries the symmetries of cylindrical 

perspective in good approximation for low latitudes. 

VR visualization makes it useful both for the student 

of geometry, who can validate constructions in 

anamorphosis and for the artist interested in the 

interface between analog and digital drawing. Its 

main defect is the complexity of high-latitude line 

projections, but these can be solved by achieving a 

few points through descriptive geometry, the rest 

following by symmetry. We have given a brief outline 

of a procedure for plotting these lines with 

elementary tools: ruler, compass, and protractor. 

 
Figure 11 | Top: Two arbitrary points A and B, not in the same 
horizontal or vertical. Bottom: Horizontal translation of the drafting 
paper over the grid finds the single great circle that connects A 
and B – in this case at a 45º shift. This is the value of 𝜆𝑀, read 
directly from the new position of mark 𝑂. It is much easier to spot 
the curve when using a grid that is very fine but separates 
adjacent lines by color, for easy identification when crossing the 
equator. An adequate grid is available at the author’s web site. 

Figure 12 | Left: Author’s sketch of the cylindrical reading room 
and dome of the British Museum viewed from its axis. Rotational 
symmetry around the z axis reduces the drawing to a simple tile 
pattern. Right: Snapshot of the VR panorama. 
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There is an art, however, to knowing what to 

measure and where to start. Solving a perspective 

mean also giving a corpus of solved problems that 

help the artist in framing the most common 

situations, and in this we have here by necessity 

been terse to a fault. The reader will find in due 

course further notes, illustrations and VR panoramas 

at the author’s website (Araújo, 2017c). 
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ENDNOTES 

[1] A clinometer is a device for measuring the 

angular elevation of a target. It may be improvised 

thus: nail a tube to a protractor so that they move 

together, and hang a weight from the nail by a 

thread, to mark the vertical. When you spot the 

target through the tube, the vertical thread will mark 

the angular elevation on the protractor. 
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