Vol. 5, No. 4, October 2020

Research Paper

Set Covering Model in Solving Multiple Cutting Stock Problem

Sisca Octarina ${ }^{1 *}$, Devi Gusmalia Juita ${ }^{1}$, Ning Eliyati ${ }^{1}$, Putra Bahtera Jaya Bangun ${ }^{1}$
${ }^{1}$ 1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Inderalaya 30662, South Sumatera, Indonesia
*Corresponding author: sisca_octarina@unsri.ac.id

Abstract

Cutting Stock Problem (CSP) is the determination of how to cut stocks into items with certain cutting rules. A diverse set of stocks is called multiple stocks. This study used the Pattern Generation (PG) algorithm to determine the cutting pattern of three sizes of stocks, then formulated them into the Gilmore and Gomory Model. The set covering model was generated from the Gilmore and Gomory model. There are two stages of cutting where the first stage is based on the length and the second stage is based on the width. Based on the results, selected cutting patterns in the first stage can be used in the second stage. The combination of patterns produced in the Gilmore and Gomory model showed that the use of stocks is less than the use of stocks in the set covering model.

Keywords

Cutting Stock Problem, Pattern Generation, Set Covering Model

Received: 16 September 2020, Accepted: 6 October 2020
https://doi.org/10.26554/sti.2020.5.4.121-130

1. INTRODUCTION

Integer Linear Programming (ILP) is one of the optimization sciences applied in the paper industry. The problem with how to cut paper is known as the Cutting Stock Problem (CSP). CSP is the determination of how to cut stocks into items with certain cutting rules. Stock is the basic material used before formed into an item. Item is manufactured according to the size requested by customers. Diverse stock sizes are known as multiple stocks. Stocks that cut into the item, often result in remaining cuts called trim loss. Trim loss in large quantities will increase production costs. A good strategy to overcome this problem is by minimizing trim loss.

CSP was first examined by Kantorovich, followed by Gilmore and Gomory who were also successful in formulating CSP. CSP now has been developed by many researchers. Pattern Generation (PG) algorithm was proposed Suliman (2001) to determine feasible cutting patterns. The improved algorithm called Modified Branch and Bound Algorithm was also created (Rodrigo et al., 2012; Rodrigo, 2013, 2017). But the search for cutting patterns required a lot of time and a high level of accuracy so it took an application that can help to solve it. The application to form cutting patterns using Modified Branch and Bound Algorithm in two-dimensional CSP (Octarina et al., 2017, 2018, 2019) was improved so that the search for a lot number of paper cutting patterns could be done easily.

Resulting cutting patterns were formed into a model to obtain the optimal trim loss (Bangun et al., 2019, 2020; Octarina
et al., 2020). Gilmore and Gomory proposed a model for twodimensional CSP by extending the Column Generation Technique (CGT) approach in a one-dimensional CSP. CGT was a method that can provide the best solution in completing linear programs, because of the approach to solve large-scale linear program problems. Some of the researches about PG and CGT have been done ((Brandão et al., 2018; Mellouli and Dammak, 2008; Ma et al., 2018; Octarina et al., 2019).

Gilmore and Gomory model also can be developed into different formulations using the set covering model. The set covering model can solve problems involving multiple rows and columns. Umetani and Yagiura (2007) stated that set covering was one of the combinatorial optimization problems and can solve various difficult problems. Caprara et al. (2000) developed the heuristic method for completing the set covering model. They explained that there was no appropriate algorithm in the literature for the set covering model rather than using a good programming tool. Set covering research for various dimensions continues to develop. Jin et al. (2015) proposed a heuristic algorithm to find the initial solutions of CSP by considering defective and non-defective stocks. This algorithm was effective for two-dimensional stocks but could not eliminate the same patterns.

There have been limited studies concerned on the model of multiple CSP. Therefore, this research intends to implement the set covering model in the multiple two-dimensional CSP. The set covering model was completed by the LINGO 13.0 program.

2. EXPERIMENTAL SECTION

2.1 Data

The data used in this study consisted of 3 types of stock sizes and four different item sizes. The stock sizes are 1022×1200 $\mathrm{mm}^{2}, 1200 \times 1200 \mathrm{~mm}^{2}$, and $1200 \times 1500 \mathrm{~mm}^{2}$ respectively with the item sizes are $282 \times 208 \mathrm{~mm}^{2}, 280 \times 250 \mathrm{~mm}^{2}, 235 \times 185 \mathrm{~mm}^{2}$, and $164 \times 100 \mathrm{~mm}^{2}$ of 20 pieces each. For detail, it can be seen in Table 1.

Table 1. Size of items and demands

No	Size of items $\left(\mathrm{mm}^{2}\right)$	Demands (pieces)
1	282×208	20
2	280×250	20
3	235×185	20
4	164×100	20

2.2 Methods

The steps taken in this study are as follows:
a. Describe the data needed in forming cutting patterns which include stock size (length and width) and the number of demand for each stock.
b. Process data using the PG algorithm to determine cutting patterns with minimum trim loss.
c. Create a tree diagram that has been completed with the PG algorithm.
d. Form tables of cutting patterns are made by the sequence of branches so that cut loss can be obtained.
e. Formulate the Gilmore and Gomory model whereas the objective function shows the minimum amount of stock to meet the demand for each item and the constraints ensure that the strips produced in the first stage are those used in the second stage.
f. Solve the Gilmore and Gomory model using the LINGO 13.0 application.
g. Formulate the set covering model in the following ways:

1. Define the variables.
2. Determine the objective function that produces the minimum amount of stock to fulfill the demand for each item.
3. Determine constraints by ensuring that all requests are fulfilled.
h. Solve Set Covering model using the LINGO 13.0 application.
i. Analyze the final results.

3. RESULTS AND DISCUSSION

3.1 Pattern Generation

Pattern Generation (PG) is one algorithm to determine cutting patterns. Cutting pattern obtained using PG in CSP is usually obtained from the size of stocks with standard width $\mathrm{w}_{k}(k=1,2, \ldots, h)$ cut into items with width w_{i} and length $\mathrm{l}_{i}(i=1,2, \ldots, n)$. The CSP
model is as follow: Minimize

$$
z=\sum_{k=1}^{h} \sum_{j=1}^{m} c_{j k} x_{j k}+\sum_{i=1}^{n} W_{i} S_{i}
$$

Subject to

$$
\begin{equation*}
\sum_{k=1}^{h} \sum_{j=1}^{m} a_{j k} x_{j k}-S_{i}=I_{i} \tag{1}
\end{equation*}
$$

$$
x_{k j}, S_{i}, c_{j k}, a_{i j k} \geq 0, \text { for all } i, j \text { and } k
$$

whereas
$a_{i j k}=$ is the number of the item with the width w_{i} which will be cut according to $j^{t h}$ pattern from $k^{t h}$ pieces $(i=1,2, \ldots, n ; j=$ $1,2, \ldots, m ; k=1,2, \ldots, h)$
$x_{j k}=$ is the length of $k^{t h}$ pieces which will be cut according to $j^{\text {th }}$ pattern
$c_{j k}=$ is the trim loss
$S_{i}=$ is the residual length which will produce item with the width W_{i}
$m=$ is the number of cutting patterns
The PG algorithm is as follows:

1. Sort the length $\left.l_{(}\right),(i=1,2, \ldots, n)$ with descending order.
2. Fill the first column $\left(j_{0}=1\right)$ of the matrix using Equation (2).

$$
\begin{equation*}
a_{i j k}=\left[\frac{\left(I_{k}^{\prime}-\sum_{z=1}^{i-1} a_{z j k} I_{z}\right)}{w_{i}}\right] \tag{2}
\end{equation*}
$$

3. Use Equation (3) to find the cut loss from the cutting pattern

$$
\begin{equation*}
c_{j k}=I_{k}^{\prime}-\sum_{z=1}^{i-1} a_{z j k} I_{z} \tag{3}
\end{equation*}
$$

4. Set index level (row index), i to $n-1$.
5. Check current vertices at the $i^{\text {th }}$ level, for initial vertex (i, j). If vertices have the value equals to zero $\left(a_{i j k}=0\right)$, go to Step 7. If not, generate the new column $j_{p}=j_{(p-1)}+1$ with these elements :
a. $a_{z i k}=a_{(z(i-1) k,}(z=1, \ldots, i-1)$ element to fill preceding vertices i, j.
b. $a_{i j k}=a_{i(j-1) k}-1$ element to fill current vertices i, j.
6. Fill remaining vertices from the $j^{\text {th }}$ column, like
$a_{(i+1) j k}, a_{(i+2) j k}, \ldots, a_{n j k}$ using Equation (3).
7. Find the cut loss from the $j^{\text {th }}$ cutting pattern using Equation (3). Go back to Step 4.
8. Set $i_{p}=i_{p-1}-1$. If $i_{p}>0$ redo Step 5. If not, stop.

The PG algorithm is used to determine the cutting pattern based on the length of two available stock sizes, namely 1022 mm and 1200 mm . By using the data in Table 1, the determination of the pattern based on length is described by the available length, and below is the detailed for the first pattern.

1. Sort the length of stocks in descending order, l_{k}^{\prime} for $k=1,2$ so $l_{1}^{\prime}=1200 \mathrm{~mm}$ and $l_{2}^{\prime}=1022 \mathrm{~mm}$.
2. Sort the length of items in descending order, l_{i} for $i=$ $1,2,3,4$ so $l_{1}=282 \mathrm{~mm}, l_{2}=280 \mathrm{~mm}, l_{3}=235 \mathrm{~mm}$, and $l_{4}=164 \mathrm{~mm}$.
3. Fill the element of first row $(i=1)$, first column $\left(j_{0}=1\right)$ for $k=1$ and $i=1,2,3,4$, by using Equation (2) :

$$
\begin{aligned}
& a_{i 11}=\left[\frac{\left(I_{1}^{\prime}-\sum_{z=1}^{i-1} a_{z 11} I_{z}\right)}{I_{i}}\right] \\
& a_{111}=\left[\frac{1200-0}{282}\right]=0 \\
& a_{111}=\left[\frac{1200-(4)(282)}{280}\right]=\left[\frac{72}{280}\right]=0 \\
& a_{111}=\left[\frac{1200-(4)(282)-(0)(280)}{235}\right]=\left[\frac{72}{235}\right]=0 \\
& a_{111}=\left[\frac{1200-(4)(282)-(0)(280)-(0)(235)}{164}\right]=\left[\frac{72}{164}\right]=0
\end{aligned}
$$

4. Find the cut loss from the first pattern by using Equation (3).

$$
c_{11}=I_{1}^{\prime}-\sum_{z=1}^{i-1} a_{z 11}=1200-(4)(282)-(0)(280)-(0)(235)-(0)(164)=72
$$

5. Set index level (row index) $i_{0}=n-1=4-1=3$

6 . Find the new vertex from the third level $a_{311}=0$.
7. Subtract 1 from index i_{0} in Step 5 , so $i_{1}=3-1=2$, $i_{1}>0$.
8. The current vertex is in the second level, $a_{211}=0$.
9. Subtract 1 from index i_{1} in Step 7, so $i_{2}=2-1=1, i_{2}>0$.
10. The current vertex is in the first level $a_{111}, a_{111}>0$, so continue to the next pattern.

There are 11 cutting patterns according to the length of 1022 m and 14 cutting patterns according to the length of 1200 mm , which can be seen in Table 2 and Table 3 respectively.

From Table 2 for the stock with a length of 1022 mm , it can be seen that by using the first pattern, it will yield 3 pieces of items with length 282 mm and an item with a length 164 cm with 12 mm of cut loss, and so on.

From Table 3 for the stock with the length of 1200 mm , it can be seen that by using the first pattern, it will yield 3 pieces of items with length 282 mm and 2 pieces of items 164 mm with 26 mm of cut loss, and so on for the next pattern. According to the width, there are 38 cutting patterns of width 1200 mm and 65 cutting patterns of width 1500 mm , which can be seen in Table 4 and Table 5.

It can be seen from Table 4, there are 4 pieces of items of width 250 mm and an item of width 185 mm for the first cutting
pattern. The trim loss for this first pattern is 15 mm . It continues until the $38^{\text {th }}$ cutting pattern. Meanwhile, from Table 5, we can see that the first pattern only yields 6 pieces of items of width 250 mm without cut loss. All the cutting patterns in Table 2-5 have a maximum of 60 mm of cut loss.

3.2 The Gilmore and Gomory Model

The Gilmore and Gomory model are as follows.
Minimize

$$
\begin{equation*}
z=\sum_{j \in j_{0}}^{j} \lambda_{j}^{0} \tag{4}
\end{equation*}
$$

Subject to :

$$
\begin{aligned}
& M^{\prime} \bar{\lambda}=0 \\
& M^{\prime \prime} \bar{\lambda} \geq b
\end{aligned}
$$

$$
\bar{\lambda} \geq 0 \text { and integer }
$$

with
M^{\prime} and $M^{\prime \prime}$ are m^{\prime} in the first row and m " in the last row of M.

$$
\bar{\lambda}=\left[\lambda_{1}^{0} \ldots \lambda_{j}^{0} \lambda_{1}^{1} \ldots \lambda_{j}^{1} \lambda_{1}^{2} \ldots \lambda_{j}^{2} \ldots \lambda_{1}^{m^{\prime}} \ldots \lambda_{j}^{m^{\prime}}\right]^{T}
$$

λ_{j}^{0} is the $j^{\text {th }}$ cutting pattern in the first stage.
λ_{j}^{s} is the $j^{\text {th }}$ cutting pattern that related to sth pattern in the second stage, where $s \epsilon\left(1, \ldots, m^{\prime}\right)$.
$b=\left[b_{1} b_{2} \ldots b_{m}\right]^{T}$ is the number of demand of item i.
The objective function in this case is to minimize the use of stocks. Meanwhile, the problem is how to determine the optimal cutting pattern with minimum stock usage. Cutting is done in the first stage along the length and then in the second stage along the width.

The Gilmore and Gomory model for the stock of 1022×1200 mm^{2} can be seen in Equation (5) and Constraints (6)-(14).

Minimize

$$
\begin{equation*}
z=\sum_{j=1}^{11} \lambda_{j}^{0} \tag{5}
\end{equation*}
$$

Subject to

$$
\begin{align*}
& \sum_{j=0}^{4} \lambda_{j}^{0}+\lambda_{7}^{0}+3\left(\lambda_{6}^{0}+\lambda_{9}^{0}+\lambda_{10}^{0}+2 \lambda_{11}^{0}\right)-\lambda_{1}^{1}=0 \tag{6}\\
& \lambda_{3}^{0}+\lambda_{6}^{0}+\lambda_{9}^{0}+3\left(\lambda_{5}^{0}+\lambda_{8}^{0}\right)+2 \lambda_{10}^{0}-\sum_{j=1}^{4} \lambda_{j}^{2}=0 \tag{7}
\end{align*}
$$

Table 2. Cutting patterns according to the length of 1022 mm

The j-th cutting pattern	The length for each cutting pattern				
282 mm	280 mm	235 mm	Cut Loss (mm)		
1	3	0	0	1	12
2	2	1	0	1	14
3	2	0	1	1	59
4	1	2	0	1	16
5	1	0	3	0	35
6	1	0	1	3	13
7	0	3	0	1	18
8	0	1	3	0	37
9	0	1	1	3	15
10	0	0	2	3	60
11	0	0	0	6	38

Table 3. Cutting patterns according to the length of 1200 mm

The	The length for each cutting pattern				Cut Loss
j-th cutting pattern	282 mm	280 mm	235 mm	164 mm	$(\mathrm{~mm})$
1	3	0	0	2	26
2	2	1	0	2	28
3	2	0	2	1	2
4	1	2	0	2	30
5	1	1	2	1	4
6	1	0	3	1	49
7	1	0	1	4	27
8	0	3	0	2	32
9	0	2	2	1	6
10	0	1	3	1	51
11	0	1	1	4	29
12	0	0	5	0	25
13	0	0	3	3	3
14	0	0	0	7	52

$$
\begin{array}{rrr}
\lambda_{2}^{0}+2 \lambda_{4}^{0}+3 \lambda_{7}^{0}+\lambda_{8}^{0}+\lambda_{9}^{0}-\sum_{j=1}^{10} \lambda_{j}^{3}=0 & \text { (8) } & \lambda_{1}^{2}+2 \lambda_{2}^{2}+3 \lambda_{3}^{2}+4 \lambda_{4}^{2}+4 \lambda_{3}^{2}+5 \lambda_{3}^{3}+\lambda_{5}^{3}+2 \lambda_{6}^{3}+ \\
3 \lambda_{7}^{3}+\lambda_{3}^{10}+\lambda_{1}^{4} 2 \lambda_{4}^{2}+3 \lambda_{3}^{4}+4 \lambda_{4}^{4}+2 \lambda_{5}^{4}+3 \lambda_{6}^{4}+ \\
3 \lambda_{1}^{0}+2\left(\lambda_{2}^{0}+\lambda_{3}^{0}\right)+\lambda_{4}^{0}+\lambda_{5}^{0}+\lambda_{6}^{0}-\sum_{j=1}^{23} \lambda_{j}^{3}=0 & \text { (9) } & 4 \lambda_{7}^{4}+2 \lambda_{8}^{4}+3 \lambda_{9}^{4}+4 \lambda_{13}^{4}+\lambda_{15}^{4}+\lambda_{17}^{4}+2 \lambda_{20}^{4}+\lambda_{22}^{4} \geq 20 \\
& \lambda_{1}^{3}+\lambda_{2}^{32}+2 \lambda_{5}^{3}+2 \lambda_{6}^{3}+2 \lambda_{7}^{3}+3 \lambda_{8}^{3}+4 \lambda_{9}^{3}+4 \lambda_{10}^{3}+4 \lambda_{14}^{4}+\lambda_{11}^{4}+\lambda_{13}^{4}+ \\
\lambda_{14}^{4}+\lambda_{15}^{4}+\lambda_{16}^{4}+\lambda_{17}^{4}+\lambda_{18}^{4}+2 \lambda_{19}^{4}+2 \lambda_{20}^{4}+3 \lambda_{21}^{4}+3 \lambda_{22}^{4}+3 \lambda_{23}^{4}=20 \\
12 \lambda_{1}^{1}+10 \lambda_{2}^{1}+8 \lambda_{2}^{2}+6 \lambda_{3}^{2}+4 \lambda_{4}^{2}+9 \lambda_{1}^{3}+2 \lambda_{2}^{3} & \\
+7 \lambda_{4}^{3}+5 \lambda_{5}^{3}+3 \lambda_{6}^{3}+\lambda_{7}^{3}+4 \lambda_{8}^{3}+2 \lambda_{9}^{3}+8 \lambda_{1}^{4}+6 \lambda_{2}^{4} & \lambda_{1}^{4}+\lambda_{2}^{4}+\lambda_{3}^{4}+\lambda_{4}^{4}+2 \lambda_{5}^{4}+2 \lambda_{6}^{4}+2 \lambda_{7}^{4}+3 \lambda_{8}^{4}+3 \lambda_{9}^{4}+5 \lambda_{10}^{4} \\
+4 \lambda_{3}^{4}+2 \lambda_{1}^{4}+4 \lambda_{5}^{2}+4 \lambda_{4}^{5}+2 \lambda_{6}^{4}+2 \lambda_{8}^{4}+\lambda_{10}^{4}+7 \lambda_{11}^{4}+5 \lambda_{12}^{4} & +\lambda_{11}^{4}+\lambda_{12}^{4} \lambda_{13}^{4}+2 \lambda_{14}^{4}+2 \lambda_{15}^{4}+3 \lambda_{16}^{4}+3 \lambda_{17}^{3}+4 \lambda_{18}^{4}+(1) \tag{10}\\
l_{14}^{4}+3 \lambda_{15}^{4}+3 \lambda_{15}^{4}+3 \lambda_{16}^{4}+\lambda_{17}^{4}+\lambda_{18}^{4}+3 \lambda_{19}^{4}+\lambda_{20}^{4}+2 \lambda_{21}^{4} \geq 20 & \lambda_{9}^{3}+4 \lambda_{10}^{3}+4 \lambda_{11}^{4}+\lambda_{19}^{4}+\lambda_{20}^{4}+\lambda_{21}^{4}+\lambda_{22}^{4}+\lambda_{23}^{4} \geq 20
\end{array}
$$

$$
\begin{equation*}
\lambda \geq 0 \tag{14}
\end{equation*}
$$

Table 4. Cutting patterns according to the width of 1200 mm

The j-th cutting pattern	The width for each cutting pattern (mm)				Cut Loss (mm)	The j-th cutting pattern	The width for each cutting pattern (mm)				Cut Loss (mm)
	250	208	185	100			250	208	185	100	
1	4	0	1	0	15	20	1	1	0	7	42
2	4	0	0	2	0	21	1	0	5	0	25
3	3	2	0	0	34	22	1	0	4	2	10
4	3	1	1	0	57	23	1	0	0	9	50
5	3	1	0	2	42	24	0	5	0	1	60
6	3	0	0	4	50	25	0	3	3	0	21
7	2	1	2	1	22	26	0	3	2	2	6
8	2	1	1	3	7	27	0	2	4	0	44
9	2	0	3	1	45	28	0	2	3	2	29
10	2	0	2	3	30	29	0	2	2	4	14
11	2	0	1	5	15	30	0	1	4	2	52
12	2	0	0	7	0	31	0	1	3	4	37
13	1	4	0	1	18	32	0	1	2	6	22
14	1	3	1	1	41	33	0	1	1	8	7
15	1	3	0	3	26	34	0	0	4	4	60
16	1	2	1	3	49	35	0	0	3	6	45
17	1	2	0	5	34	36	0	0	2	8	30
18	1	1	4	0	2	37	0	0	1	10	15
19	1	1	1	5	57	38	0	0	0	12	0

with

$$
\lambda=\left[\lambda_{1}^{0} \ldots \lambda_{11}^{0} \lambda_{1}^{1} \lambda_{1}^{2} \ldots \lambda_{4}^{2} \lambda_{1}^{3} \ldots \lambda_{10}^{3} \ldots \lambda_{23}^{4}\right]^{T}
$$

Constraints (6-9) show that strips with lengths of 164 mm , $235 \mathrm{~mm}, 280 \mathrm{~mm}$, and 282 mm are used in the first and second stages of the cutting pattern. Constraints (10-13) show that items measuring $164 \times 100 \mathrm{~mm}^{2}, 235 \times 185 \mathrm{~mm}^{2}, 280 \times 250 \mathrm{~mm}^{2}$, and $282 \times 208 \mathrm{~mm}^{2}$ are produced not less than 20 sheets. Constraint (14) shows the nonnegative solution. By using LINDO 13.0, the solution of model with Objective Function (5) and Constraints (6-14) shows that in the first stage $\lambda_{1}^{0}=3$ and $\lambda_{7}^{0}=1$ which means the $1^{\text {st }}$ and the $7^{\text {th }}$ pattern will be used 3 times and once respectively. On the other side, in the second stage, the solution shows that $\lambda_{9}^{4}=6$ which means the 9 th pattern on the fourth stripe will be used six times. The objective function $z=4$ means that there are 4 pieces of the first stock of sizes $1022 \times 1200 \mathrm{~mm}^{2}$.

The Gilmore and Gomory model for the stock 1200×1200 mm^{2} can be seen in Equation (15) and Constraints (10-13) to Constraints (16-20).

Minimize

$$
\begin{equation*}
z=\sum_{j=1}^{14} \lambda_{j}^{0} \tag{15}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
2\left(\lambda_{1}^{0}+\lambda_{2}^{0}+\lambda_{4}^{0}+\lambda_{5}^{0}+\lambda_{6}^{0}\right)+\lambda_{9}^{0}+\lambda_{10}^{0}+3 \lambda_{13}^{0}+7 \lambda_{14}^{0}-\lambda_{1}^{1}=0 \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
2 \lambda_{3}^{0}+2 \lambda_{5}^{0}+3 \lambda_{6}^{0}+\lambda_{7}^{0}+2 \lambda_{9}^{0}+3 \lambda_{10}^{0}+\lambda_{11}^{0}+5 \lambda_{12}^{0}+3 \lambda_{13}^{0}-\sum_{j=1}^{4} \lambda_{j}^{2}=0 \tag{17}
\end{equation*}
$$

$$
\begin{align*}
& \lambda_{2}^{0}+2 \lambda_{4}^{0}+\lambda_{5}^{0}+3 \lambda_{8}^{0}+2 \lambda_{9}^{0}+\lambda_{10}^{0}+\lambda_{11}^{0}-\sum_{j=1}^{10} \lambda_{j}^{3}=0 \tag{18}\\
& 3 \lambda_{1}^{0}+2 \lambda_{2}^{0}+2 \lambda_{3}^{0}+\lambda_{4}^{0}+\lambda_{5}^{0}+\lambda_{6}^{0}+\lambda_{7}^{0}-\sum_{j=1}^{23} \lambda_{j}^{4}=0 \tag{19}
\end{align*}
$$

With Equations (10)-(13)

$$
\begin{equation*}
\lambda \geq 0 \tag{20}
\end{equation*}
$$

with

$$
\lambda=\left[\lambda_{1}^{0} \ldots \lambda_{14}^{0} \lambda_{1}^{1} \lambda_{1}^{2} \ldots \lambda_{4}^{2} \lambda_{1}^{3} \ldots \lambda_{10}^{3} \lambda_{1}^{4} \ldots \lambda_{23}^{4}\right]^{T}
$$

By using LINDO 13.0, the solution of model with Objective Function (15) and Constraints (16-20) shows that the $1^{\text {st }}$ and the $3^{r d}$ pattern will be used once and three times respectively in the first stage. While in the second stage, we will use four times the $4^{\text {th }}$ pattern on the second stripe and once of the $18^{\text {th }}$ or the $23^{r d}$ pattern on the fourth stripe.

The Gilmore and Gomory model for the stock 1200×1500 mm^{2} can be seen in Equation (21) and Constraints (22-30).

Table 5. Cutting patterns according to the width of 1500 mm

| $\begin{array}{c}\text { The } \\ \text { j-th cutting } \\ \text { pattern }\end{array}$ | The width for each
 cutting pattern (mm) | | $\begin{array}{c}\text { Cut } \\ \text { Loss }\end{array}$ | $\begin{array}{c}\text { The } \\ \text { j-th cutting }\end{array}$ | The width for each | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cutting pattern (mm) | | | | | | | | \(\left.\begin{array}{c}Cut

Loss\end{array}\right)\)

Table 6. Optimal Solution

Type of Stock	Stage of Cutting	The Gilmore and Gomory Model		The Set Covering Model	
		Type of Pattern	Number of Cutting	Type of Pattern	Number of Cutting
Stock 1	First Stage	The 1st	3	The 2nd	12
		The 7th	1	The 4th	3
				The 8th	6
				The 9th	2
	Second Stage	Stripe 4	6	Stripe 3	
		The 9th		The 3rd	1
				The 9th	4
				The 10th	1
				Stripe 4	
				The 9th	6
				The 18th	1
Stock 2	First Stage	The 1st	1	The 1st	5
		The 3rd	3	The 2nd	1
				The 5th	13
				The 8th	2
	Second Stage	Stripe 4		Stripe 2	
		The 18th	1	The 4th	5
		The 23th	1	Stripe 4	
				The 10th	2
				The 23th	7
Stock 3	First Stage	The 1st	1	The 1st	4
		The 5th	1	The 5th	12
		The 8th	1	The 8th	4
	Second Stage	Stripe 3		Stripe 1	
		The 16th	1	The 1st	2
		Stripe 5		Stripe 2	
		The 15th	6	The 3rd	3
				Stripe 3	
				The 16th	4
				Stripe 4	
				The 15th	3

Minimize

$$
\begin{equation*}
z=\sum_{j=1}^{14} \lambda_{j}^{0} \tag{21}
\end{equation*}
$$

Subject to

$$
\begin{align*}
& 2\left(\lambda_{1}^{0}+\lambda_{2}^{0}+\lambda_{4}^{0}+2 \lambda_{7}^{0}+\lambda_{8}^{0}+2 \lambda_{11}^{0}\right)+\lambda_{3}^{0}+\lambda_{5}^{0}+\lambda_{6}^{0}+\lambda_{9}^{0}+\lambda_{10}^{0}+3 \lambda_{13}^{0}+7 \lambda_{14}^{0}-\lambda_{1}^{1}=0 \tag{22}\\
& 2\left(\lambda_{3}^{0}+\lambda_{5}^{0}+\lambda_{9}^{0}\right)+3\left(\lambda_{6}^{0}+\lambda_{10}^{0}+\lambda_{13}^{0}\right)+\lambda_{7}^{0}+\lambda_{11}^{0}+5 \lambda_{12}^{0}-\sum_{j=1}^{6} \lambda_{j}^{2}=0 \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\lambda_{2}^{0}+2 \lambda_{5}^{0}+\lambda_{5}^{0}+3 \lambda_{8}^{0}+2 \lambda_{9}^{0}+\lambda_{10}^{0}+\lambda_{11}^{0}-\sum_{j=1}^{15} \lambda_{j}^{3}=0 \tag{24}
\end{equation*}
$$

$$
\begin{array}{r}
\lambda_{1}^{2}+2 \lambda_{14}^{3}+\lambda_{1}^{4}+2 \lambda_{2}^{4}+7 \lambda_{5}^{2}+8 \lambda_{6}^{2}+4 \lambda_{2}^{3}+5 \lambda_{3}^{3}+6 \lambda_{4}^{3}+\lambda_{6}^{3}+2 \lambda_{7}^{3}+3 \lambda_{8}^{3}+ \\
4 \lambda_{9}^{3}+4 \lambda_{11}^{3}+\lambda_{13}^{3}+2 \lambda_{14}^{3}+\lambda_{1}^{4}+2 \lambda_{2}^{4}+3 \lambda_{3}^{4}+2 \lambda_{15}^{3}+11 \lambda_{1}^{4}+ \\
9 \lambda_{2}^{4}+4 \lambda_{4}^{4}+2 \lambda_{5}^{4}+3 \lambda_{6}^{4}+7 \lambda_{6}^{4}+5 \lambda_{8}^{4}+2 \lambda_{9}^{43}+3 \lambda_{10}^{4}+3 \lambda_{10}^{4}+ \\
4 \lambda_{11}^{4}+3 \lambda_{12}^{4}+4 \lambda_{2}^{4}+5 \lambda_{3}^{4}+6 \lambda_{4}^{4}+\lambda_{6}^{4}+4 \lambda_{7}^{4}+5 \lambda_{8}^{4}+\lambda_{10}^{4}+ \\
3 \lambda_{12}^{4}+\lambda_{17}^{4}+4 \lambda_{18}^{4}+5 \lambda_{19}^{4}+\lambda_{21}^{4}+\lambda_{23}^{4}+2 \lambda_{24}^{4}+\lambda_{30}^{4}+2 \lambda_{31}^{4}+ \\
3 \lambda_{32}^{4}+4 \lambda_{33}^{4}+2 \lambda_{34}^{4}+3 \lambda_{24}^{4}+\lambda_{37}^{4}+\lambda_{39}^{4}+\lambda_{41}^{4} \geq 20 \\
\sum_{j=1}^{4} \lambda_{j}^{4}+2 \sum_{j=5}^{9} \lambda_{j}^{3}+3 \sum_{j=10}^{11} \lambda_{j}^{3}+4 \sum_{j=12}^{14} \lambda_{j}^{3}+5 \lambda_{15}^{3}+6 \lambda_{16}^{3}+7 \lambda_{17}^{3}+ \\
\sum_{j=16}^{33} \lambda_{j}^{4}+2 \sum_{j=30}^{35} \lambda_{j}^{4}+3 \sum_{j=36}^{40} \lambda_{j}^{4}+4 \lambda_{41}^{4}+5 \lambda_{42}^{4} \geq 20 \\
\sum_{j=1}^{4} \lambda_{j}^{4}+2 \sum_{j=5}^{8} \lambda_{j}^{4}+3 \sum_{j=9}^{11} \lambda_{j}^{4}+4 \lambda_{12}^{4}+5 \lambda_{13}^{4}+6 \lambda_{14}^{4}+7 \lambda_{14}^{4}+\sum_{j=16}^{33} \lambda_{j}^{4}+ \\
\lambda_{j}^{4}+2 \lambda_{34}^{4}+2 \lambda_{35}^{4}+\lambda_{36}^{4}+\lambda_{37}^{4}+\lambda_{38}^{4}+2 \lambda_{39}^{4}+3 \lambda_{40}^{4}+\lambda_{41}^{4}+\lambda_{42}^{4}+\geq 20 \tag{29}
\end{array}
$$

$$
\begin{equation*}
\lambda \geq 0 \tag{30}
\end{equation*}
$$

with

$$
\lambda=\left[\lambda_{1}^{0} \ldots \lambda_{14}^{0} \lambda_{1}^{1} \lambda_{1}^{2} \ldots \lambda_{6}^{2} \lambda_{1}^{3} \ldots \lambda_{16}^{3} \lambda_{1}^{4} \ldots \lambda_{42}^{4}\right]^{T}
$$

$16^{\text {th }}$ pattern will be used once on the third stripe in the second stage and the 15th patterns on the fourth stripe will be used six times.

3.3 Set Covering Model

Set covering model can be seen in Equation (31).
Minimize

$$
z=\sum_{j=1}^{n} x_{j}
$$

Subject to

$$
\begin{align*}
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{1}, \mathrm{i}=1,2, \ldots, \mathrm{~m} \tag{31}\\
& x_{j} \in Z^{+}, \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{align*}
$$

whereas
x_{j} is the number of $j^{t} h$ cutting pattern
$a_{i j}$ is the number of $i^{t} h$ items which cut in $j^{t} h$ cutting pattern b_{i} is the number of demands
From all cutting patterns, then formulated the set covering model. The model for a stock size of $1022 \mathrm{~mm} \times 1200 \mathrm{~mm}$ is:

Minimize

$$
\begin{equation*}
z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10}+x_{11} \tag{32}
\end{equation*}
$$

Subject to

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}+x_{4}+3 x_{6}+x_{7}+3 x_{9}+3 x_{10}+6 x_{11}-y_{1} \geq 20 \\
& x_{3}+3 x_{5}+x_{6}+3 x_{8}+x_{9}+2 x_{10}-\sum_{i=2}^{5} y_{i} \geq 20 \\
& x_{2}+2 x_{4}+3 x_{7}+x_{8}+x_{9}-\sum_{i=6}^{15} y_{i} \geq 20 \\
& 3 x_{1}+2 x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}-\sum_{i=16}^{38} y_{i} \geq 20 \\
& 122_{1}+10 y_{2}+8 y_{3}+6 y_{4}+4 y_{5}+8 y_{6}+6 y_{7}+4 y_{8}+2 y_{9}+4 y_{10}+ \\
& 2 y_{11}+2 y_{13}+y_{15}+9 y_{16}+2 y_{17}+7 y_{19}+5 y_{20}+5 y_{22}+3 y_{23}+ \\
& 3 y_{24}+y_{25}+y_{26}+7 y_{27}+5 y_{28}+3 y_{29}+y_{30}+3 y_{31}+y_{32}+4 y_{33}+ \\
& 2 y_{34}+2 y_{37} \geq 20 \tag{37}
\end{align*}
$$

$$
\begin{array}{r}
y_{2}+2 y_{3}+3 y_{4}+4 y_{5}+y_{6}+2 y_{7}+3 y_{8}+4 y_{9}+2 y_{10}+3 y_{11} \\
+4 y_{12}+2 y_{13}+3 y_{14}+4 y_{17}+5 y_{18}+y_{20}+4 y_{21}+y_{23}+ \\
y_{25}+y_{28}+2 y_{29}+3 y_{30}+y_{31}+2 y_{32}+y_{35}+y_{38} \geq 20 \\
y_{6}+y_{7}+y_{8}+2 y_{9}+2 y_{10}+2 y_{11}+2 y_{12}+3 y_{13}+4 y_{14} \\
+4 y_{15}+y_{26}+y_{27}+y_{28}+y_{29}+y_{30}+y_{31}+y_{32}+y_{33}+ \tag{39}\\
2 y_{34}+2 y_{35}+3 y_{36}+3 y_{37}+3 y_{38} \geq 20
\end{array}
$$

$x_{j}, y_{j} \geq 0$ and integer, $j=1,2, \ldots, 38$.
By using the LINGO 13.0, the optimal solutions of model with Objective Function (32) and Constraints (33-40) are $x_{2}=$ $12, x_{4}=3, x_{9}=2, x_{8}=y_{24}=6, y_{1}=y_{8}=y_{15}=y_{33}=1, y_{14}=4$ with the objective value $z=23$ Based on the solutions, from the first stage of cutting (cutting based on length), the $2^{\text {nd }}$ cutting pattern was cut 12 times, the $4^{t h}$ cutting pattern was cut 3 times, the $8^{\text {th }}$ and the $9^{t h}$ cutting pattern were cut 6 times and twice respectively. In the second stage of cutting, the first cutting pattern was cut once in the first stripe. None cutting pattern was chosen in the second stripe. In the third stripe, the $3^{r d}$ and $10^{\text {th }}$ were used once each and the $9^{\text {th }}$ cutting pattern was used four times. Only the $18^{\text {th }}$ cutting pattern was used once in the fourth stripe.

Set covering model for stock size of $1200 \mathrm{~mm} \times 1200 \mathrm{~mm}$ is:

Minimize
$z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}+x_{13}+x_{14}$
$2 x_{1}+2 x_{2}+x_{3}+2 x_{4}+x_{5}+x_{6}+4 x_{7}+2 x_{8}+x_{9}+x_{10}+4 x_{11}+3 x_{13}+7 x_{14}-y_{1} \geq 20$

$$
\begin{equation*}
2 x_{3}+2 x_{5}+3 x_{6}+x_{7}+2 x_{9}+3 x_{10}+x_{11}+5 x_{12}+3 x_{13}-\sum_{i=2}^{5} y_{i} \geq 20 \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
x_{2}+2 x_{4}+x_{5}+3 x_{8}+2 x_{9}+x_{10}+x_{11}-\sum_{i=6}^{5} y_{i} \geq 20 \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
3 x_{1}+2 x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}+x_{7}-\sum_{i=6}^{38} y_{i} \geq 20 \tag{45}
\end{equation*}
$$

With Equations (37-40)
$x_{j}, y_{j} \geq 0$, and integer $j=1,2, \ldots, 38$.
The optimal solutions of model with Objective Function (41) and Constraints (37-40) to Contraints (42-45) are $x_{1}=5, x_{2}=$ $1, x_{5}=13, x_{8}=2, y_{5}=5, y_{25}=2, y_{38}=7$ with objective value $\mathrm{z}=21$. The first cutting pattern (cut 5 times), the second cutting pattern (cut once), the $5^{\text {th }}$ cutting pattern (cut 13 times), and the $8^{\text {th }}$ cutting pattern (cut twice) were used in the first stage. For the second stage, it used the second and fourth stripe. The $4^{t h}$ cutting pattern was used 5 times in the second stripe. The $10^{\text {th }}$ cutting pattern was used twice and the $23^{r d}$ cutting pattern was used 7 times each in the fourth stripe.

Set Covering model for stock size of $1200 \mathrm{~mm} \times 1500 \mathrm{~mm}$ is
Minimize (41) Subject to Constraints (42)

$$
\begin{gather*}
2 x_{3}+2 x_{5}+3 x_{6}+x_{7}+2 x_{9}+3 x_{10}+x_{11}+5 x_{12}+3 x_{13}-\sum_{i=2}^{7} y_{i} \geq 20 \tag{46}\\
x_{2}+2 x_{4}+x_{5}+3 x_{8}+2 x_{9}+x_{10}+x_{11}-\sum_{i=8}^{65} y_{i} \geq 20 \tag{47}\\
3 x_{1}+2 x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}+x_{7}-\sum_{i=24}^{65} y_{i} \geq 20 \tag{48}
\end{gather*}
$$

With Equations (37-40)
$x_{j}, y_{j} \geq 0$ and integer $j=1,2, \ldots, 65$.
The optimal solution of Model with Objective Function (41) and Constraints (37-40) to Contraints (42), (46-48) are $x_{1}=4, x_{5}=$ $12, x_{8}=4, y_{1}=2, y_{7}=3, y_{23}=4, y_{38}=3$ with objective value $\mathrm{z}=20$. In the first stage, it used the $1^{\text {st }}$ cutting pattern (4 times), the $5^{t h}$ cutting pattern (12 times), and the $8^{\text {th }}$ cutting pattern (4 times). Otherwise, in the second stage, it used the $1^{\text {st }}$ cutting
pattern (twice) in the first stripe, the $3^{r d}$ cutting pattern (3 times) in the second stripe, the $16^{\text {th }}$ cutting pattern (4 times) in the third stripe and the $15^{\text {th }}$ cutting pattern (3 times) in the fourth stripe.

For details, the summary of optimal solutions between the Gilmore and Gomory model and the set covering model can be seen in Table 6. From both of the models, the set covering model yields more patterns combination than the Gilmore and Gomory model. The more patterns combination created, the more stock used, and the trim loss will be bigger. But, the Gilmore and Gomory model uses less stock than the set covering model.

4. CONCLUSIONS

From the result and discussion, it can be concluded that the Gilmore and Gomory model and the set covering model can be implemented in the Cutting Stock Problem, especially in multiple stocks cases. Both of the models which were solved by LINGO 13.0 showed that some optimal cutting patterns used in the first stage can be reused in the second stage. There are more patterns combination generated from the set covering model rather than the Gilmore and Gomory model which means the Gilmore and Gomory model uses less stock and yields the minimum trim loss.

For further research, the more extensions of the dimensions in the Cutting Stock Problem are critically important to have models that are more realistic rather than previous models. Computational tests for further research are suggested.

5. ACKNOWLEDGEMENT

This research is supported by Universitas Sriwijaya through Sains, Teknologi dan Seni (SATEKS) Research Grant Scheme, 2019.

REFERENCES

Bangun, P. B., S. Octarina, and A. P. Pertama (2019). Implementation of branch and cut method on n-sheet model in solving two dimensional cutting stock problem. Journal of Physics: Conference Series, 1282; 012012
Bangun, P. B. J., S. Octarina, S. P. Sepriliani, L. Hanum, and E. S. Cahyono (2020). 3-Phase Matheuristic Model in TwoDimensional Cutting Stock Problem of Triangular Shape Items. Science and Technology Indonesia, 5(1); 23
Brandão, J. S., A. M. Coelho, F. do Carmo, and J. F. Vasconcelos (2018). Study of different setup costs in SingleGA to solve a one-dimensional cutting stock problem. GSTF fournal on Computing ($70 C$), 2(1)
Caprara, A., P. Toth, and M. Fischetti (2000). Algorithms for the Set Covering Problem. Annals of Operations Research, 98(1/4); 353-371
Jin, M., P. Ge, and P. Ren (2015). A new heuristic algorithm for two-dimensional defective stock guillotine cutting stock problem with multiple stock sizes. Tehnicki vjesnik - Technical Gazette, 22(5)
Ma, N., Y. Liu, Z. Zhou, and C. Chu (2018). Combined cutting
stock and lot-sizing problem with pattern setup. Computers \& Operations Research, 95; 44-55
Mellouli, A. and A. Dammak (2008). An algorithm for the twodimensional cutting-stock problem based on a pattern generation procedure. International journal of information and management sciences, 19(2); 201-218
Octarina, S., V. Ananda, and E. Yuliza (2019). Gilmore and gomory model on two dimensional multiple stock size cutting stock problem. Journal of Physics: Conference Series, 1282; 012015
Octarina, S., P. B. Bangun, and S. Hutapea (2017). The Application to Find Cutting Patterns in Two Dimensional Cutting Stock Problem. Journal of Informatics and Mathematical Sciences, 9(4)
Octarina, S., M. Janna, E. S. Cahyono, P. B. J. Bangun, and L. Hanum (2020). The modified branch and bound algorithm and dotted board model for triangular shape items. Journal of Physics: Conference Series, 1480; 012065
Octarina, S., M. Radiana, and P. B. J. Bangun (2018). Implementation of pattern generation algorithm in forming Gilmore and Gomory model for two dimensional cutting stock problem.

IOP Conference Series: Materials Science and Engineering, 300; 012021
Rodrigo, N. (2017). One-Dimensional Cutting Stock Problem with Cartesian Coordinate Points. International fournal of Systems Science and Applied Mathematics, 2(5); 99
Rodrigo, W. (2013). A Method for Two-Dimensional Cutting Stock Problem with Triangular Shape Items. British fournal of Mathematics \& Computer Science, 3(4); 750-771
Rodrigo, W., W. Daundasekera, and A. Perera (2012). Pattern generation for two-dimensional cutting stock problem with location. Indian Journal of Computer Science and Engineering (IFCSE), 3(2); 354-368
Suliman, S. M. A. (2001). Pattern generating procedure for the cutting stock problem. International fournal of Production Economics, 74(1-3); 293-301
Umetani, S. and M. Yagiura (2007). Relaxation Heuristics for The Set Covering Problem(special issuethe 50th anniversary of the operations research society of japan). Journal of the Operations Research Society of Japan, 50(4); 350-375

