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Abstract
This study proposed a hybrid computationalmodel by incorporating Simulated Annealing algorithm (SA) in themaximum likelihood
in estimation the parameters of Generalized Gamma Distribution (GGD). The purpose is to improve the searching capacity of max-
imum likelihood estimator for Generalized Gamma Distribution (GGD). A simulated Annealing algorithm (SA) is one of the global
search heuristics computational approach inspired by the metallurgical process, in which metal is rapidly heated to a high temper-
ature, then cooled slowly until it reaches the lowest-energy state, increasing its strength and making it easier to work with. It has
been applied in approximating global optimization in a large search space for various optimization problems. This study employs a
Simulated Annealing algorithm (SA) to improve the global search capacity of maximum likelihoodmethods (MLE) in estimating the
parameters of the Generalized Gamma Distribution (GGD). The Generalized Gamma Distribution (GGD) constitutes an extensive
family that contains nearly all of the most commonly used distributions including the exponential, Weibull, and lognormal distribu-
tion. The performances of the proposed estimation method are computed based on their biases and mean square errors through
a simulation study. The study reveals that the Simulated Annealing algorithm (SA) performs better than the classical estimators in
estimating the parameters of Generalized Gamma Distribution (GGD).
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1. INTRODUCTION

The Gamma Distribution (GD) is one of the most important
statistical distributions for its widely used in many �elds of
data modelling and forecasting of various phenomena. It is
useful in handling large scales of data due to its �exibility to
be transformed to other distributions such as exponential and
normal distributions. The important features of the Gener-
alized Gamma Distribution (GGD) made it useful in various
areas of research which include business, engineering and other
lifetime analysis (Lawless, 2003; Tang and Cheong, 2004; Eric
et al., 2020). The probability density function of the gamma
distribution is given as.

fXK (x , U , \) =
{

1
Γ(U)

[ 1
\

]U
xU−1e

x
\ , x > 0

0, otherwise
(1)

where a and q are the shape and scale parameters of the
gamma distribution model respectively. We employ a Gen-
eralized Gamma Distribution (GGD) in this work, which was

established by Amoroso (1925). The gamma distribution is
among the most widely statistical distribution employed in
modelling a di�erent kind of lifetime data set with application
in modelling di�erent phenomena characterized with mono-
tone failure rates. It requires a little measure of parameters
for learning. The �rst generalization of the gamma distribu-
tion can be found in Amoroso (1925), which analyzed and
applied a GGD to �tting the income rates based on the GGD
with four parameters has been studied by Johnson et al. (1995).
The study on the four gamma distribution was later reduced
to the GGD according to Stacy (1962) by setting the location
parameter to zero. Mudholkar and Srivastava (1993) used the
exponentiated method to derive the gamma distribution model
for data anlysis. Stacy (1962) developed the generalized version
of the gamma distribution based three-parameters. Agarwal
and Al-Saleh (2001) modelled the distribution of hazard rates
using the gamma distribution model. Similar distribution was
emplyed by Balakrishnan and Peng (2006) in creating a gen-
eralized version of gamma distribution to modelling frailty
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data. Another sort of GGD suggested by Nadarajah and Gupta
(2007) was used to �t drought data. Another generalization of
distribution by Stacys used an exponentiated approach to GGD
model and used it to lifetime and survival analysis (Ortega et al.,
2012). A study by Chen et al. (2017) employed a generalized
version of the gamma distribution (GGD) with three param-
eters in modelling the �ood frequency data analysis. Zhao
et al. (2018) employed the three-parameter GGD model in
calculating the statistical characteristics of high-resolution SAR
pictures. Similarly, Mead et al. (2018) propose the modi�ed
version of GGD to evaluate greater �exibility and appropria-
teess in representing data from a practical standpoint, and they
derived a variety of identities and properties of this distribution,
which include explicit representations for lifetime expression.

Researchers in the �elds of statistical distribution have tried
a variety of methods in estimating the parameters of the GGD.
This include, moment method (Khodabina and Ahmadabadib,
2010), quantile methods (Nagatsuka and Balakrishnan, 2012),
modi�ed moment methods (Dey et al., 2021), evolutionary
algorithm (Yonar and Yapici, 2020), maximum likelihood (Hi-
rose, 1995), Bayesian approach (Khodabina and Ahmadabadib,
2010; Pradhan and Kundu, 2011). However, because parame-
ters involve leading to the same density function, it is di�cult
and challenging face by researchers in estimating the parame-
ters of the generalized version of the gamma distribution us-
ing methods like moment methods and maximum likelihood.
The likelihood equations must be solved simultaneously in the
maximum likelihood technique. To explore other approach
in estimating the parameter of the generalized version of the
gamma distribution, conventional methods were developed. It
also showcases the incapability of the conventional/traditional
method such as moment method and maximum likelihood
estimator to estimate the parameters of the proposed GGD
distribution. However, the results are unappealing due to their
intricacy of the traditional method. As a result, it appears that
estimating the parameters of the GGD is quite challenging
and not straightforward. There is the need to incorporating
other search approach such as heuristics method to overcome
such challenges and limitation associated with the conventional
methods. In this study, a stochastic computational methods
based on the Simulated Annealing algorithm (SA) has been
incorporated to reduce the complexity involve in the searching
for the optimal parameters of the generalized version of the
gamma distribution model. In this study, a simulation study
has been carried out according to the proposed model. The
remainder of this paper is organized as follows: The simulated
annealing algorithm and Generalize gamma distribution and
its parameters have been presented in Section 2. A simulated
annealing algorithm for optimization of gamma distribution pa-
rameters is studied in Section 3. The experimental results and
with discussion have been presented in Section 4. Conclusions
and recommendation the of the study in Section 5.

2. SIMULATED ANNEALING ALGORITHM

The Simulated Annealing algorithm (SA) aims to generate new
solutions using a random process through a series of probability
distributions. This random operation does not necessarily
improve the objective function, but even so, it may be accepted
(Franzin and Stützle, 2019). The algorithm was originally
used as an optimization process in Metallurgical engineering to
achieve the minimum energy by gradually reducing the atomic
motion that reduces the uniformity of lattice defects, thereby
reducing the metal temperature (Du and Swamy, 2016). The
Simulated Annealing algorithm (SA) cannot be a�ected by any
restraint at any local minimum and has an indulgent acceptance
of any changes that arise in the objective function, thus its
e�ciency makes it useful in many �elds, including �nance and
the mathematical and statistical sciences (Crama and Schyns,
2003; Orús et al., 2019; Abubakar and Sabri, 2021b; Abubakar
and Sabri, 2021a).

The acceptance probability in the SA algorithm can be
written as,

P = e
−(ΔZ)
H (2)

Where ΔZ denote the increase in the objective function and
H represent the controlling parameter. Some studies includ-
ing (Abbasi et al., 2006) and (Bertsimas and Tsitsiklis, 1993),
presented the most general form of the Simulated Annealing
algorithm (SA) which can be written in the following steps:
i. Start with initial solutions X=X0.
ii. Generate a random chance of the solutions X.
iii. Evaluate the objective function at the randomly generated
solutions.
iv. Setting an initial controlling parameter H=H0 and an ap-
proach to reduce it as the process goes.

The general form of the SA algorithm, which has been ex-
plained above, works toward minimizing the control parameter
H, in adjusting the procedure which can be implemented in
other problems. The purpose is to explore the feasibility of
Simulated Annealing algorithm (SA) in estimating the param-
eters of proposed model in relation to conventional method.
And to �nd out how the estimated parameters will maximize
the log-likelihood function. To maximize the log-likelihood
function, the controlling parameterH in the algorithmmust be
maximized too, so the objective function should be multiplied
by (-1) according to (Sabri and Sarsour, 2019). The deter-
mination of the control parameter and generating initial and
neighbouring solutions based on the SA procedure should be
carefully observed. Also, the data sample should be big enough
to obtain an accurate result. The performance of the Simu-
lated Annealing algorithm (SA) has been assessed according to
Mean Absolute Error (MAE) based on the simulated data set
for di�erent sample size. The e�ectiveness of Mean Absolute
Error (MAE) has been demonstrated in several studies, includ-
ing (Peng and Yao, 2003; Franses, 2016; Frías-Paredes et al.,
2018; Sayed and Sabri, 2022). The following section presents
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the generalised gamma distribution along with its parameters
and statistical properties.

2.1 Generalize Gamma Distribution and its Parameters
The most common pdf form of the generalized version of the
gamma distribution (GGD) can be written as,

f (t; U , V , c) = V

Γ(U)c

( t
c

)U V−1
e−( tc )

U

(3)

Where U>0 and V>0 are the shape parameters, c>0 is the
scale parameter and Γ(U) is the gamma function that de�nes
as,

Γ(U) =
∞∫

0

xU−1e−xdx (4)

Because such a distribution is associated with convergent
di�culties of the MLE, some reparameterization with the pa-
rameters was used to alleviate these di�culties as follow,

` = ln(c) + 1
V
ln

(
1
_ 2

)
(5)

f =
1

V
√
U

(6)

_ =
1
√
U

(7)

where -∞ < ` <∞, f > 0, 0 < _ . Based on this reparameter-
ization and the values of the parameters, the GGD can include
special cases of some distributions such as The Gamma Dis-
tribution (GD), The Exponential Distribution (ED), Weibull
Distribution (WD), and The Lognormal Distribution (LD) as
shown in Figure 1.

In this case, a continuous random variable Xk taking a
non-negative real value is said to follow the gamma distribu-
tion for K-years period. Xk distributed using two parameters
Gamma distribution U and \ with mean=U\ and variance=U\2.
Then, K=2,...,4, we impose a new growth rate, W by letting
Xk=(1+W)k−1X1 . Because the growth rate W is associated with
the scale of the data, this results from the development of the
Gamma distribution to become a generalized gamma distribu-
tion as follows,

fXK (X , U , (1+W)
K−1\) =


1

Γ(U)

[
1

(1+W )K−1\

]U
xU−1e

x
(1+W )K−1\ , x > 0

0, otherwise

(8)

Figure 1. Generalized Gamma Distribution Based on The
Di�erent Parameters

With the parameters U and (1 + W)K−1\ and having the
mean=U (1 + W)K−1\ and variance=U

[
(1 + W)K−1\

]2
. Estimat-

ing the parameters along with the growth parameter W of Equa-
tion (8) using the method of the moment is not an easy task
because it’s di�cult to construct the values of them from the
mean and variance equations unless we �x the value of one of
them and solve for the other two.

From Equation (8), the likelihood function (L) of XK is

L(U , (1 + W)K1\ |xK) = − ln [Γ(UK)] − UK ln((1 + W)K−1\K)

+ ln(xUK−1K ) − XK
(1 + W)K−1\K

(9)

and, the log-likelihood function is then be simpli�ed as,

l (U , (1 + W)K1 \ |xK ) = −
K∗∑
K−1

ln [Γ(UK )] −
K∗∑
K=1

UK ln((1 + W)K−1\K )

+
K∗∑
K=1

ln(xUK−1K ) −
K∗∑
K−1

XK
(1 + W)K−1\K

(10)

It is observed by various studies include (Abbasi et al., 2006)
and Abubakar and Sabri (2021b) that the maximum likelihood
approach used to estimate the three parameters of our gen-
eralized gamma model is a di�cult process, this is because is
hard to get a straightforward di�erentiation of the resulting
log-likelihood function in Equation (10). Therefore, it is math-
ematically challenging in searching for the optimal parameters
of the generalized gamma distribution simultaneously from
Equation (10) as di�erentiating the log-likelihood function to-
wards U couldn’t be derived directly. Therefore, it is easier to
incorporate with another useful method such as the Simulated
Annealing algorithm (SA) to search for the gamma distribution
parameters, which works with the log-likelihood function as an
objective function and aims to maximize it. The SA procedure
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use in estimating the parameters of the generalized gamma
distribution has been presented in the following section.

3. SIMULATED ANNEALING ALGORITHM FOR
GAMMA PARAMETERS ESTIMATION
In this work, a simulated annealing algorithm is used to estimate
the parameters of the generalized gamma distribution and
detect how close the estimated parameters are to the true ones.
Furthermore, we observe how the estimated parameters are
going to maximize the log-likelihood function. This procedure
involves some steps, as it is shown in Figure 2.

Figure 2. Block Diagram of The Proposed Framework

Step1: Variables Designing
Start with generating the data sample randomly by simu-

lation method using Microsoft Excel. From Equation (1) the
cumulative density function of X when K=1 is,

FX1 (X∗) =
X∗∫
0

1
Γ(U)

(
1
\

)U
xU−1e−

x
\ dx = Gamma(U , \ , x∗)

(11)

If the value of Fx1 (x∗)=p, then we �nd x as,

Gamma(U , \ , x∗) = p → x∗ = Gamma−1 (U , \ , p) (12)

In Excel, the value of p is computed as the function of
p=randa(). The cumulative density function of X when K>1 is,

FXK (X∗) =
X∗∫
0

1
Γ(U)

[
1

(1 + W)K−1\

]U
xU−1e

− x
(1+W )K−1\ dx (13)

and

Gamma(U , (1 + W)K−1\ , x∗) = p (14)

Thus,

x∗ = Gamma−1 (U , (1 + W)K−1\ , p) (15)

So, in Microsoft Excel x∗ is generated and distributed using
CDF of the gamma distribution to calculate the log-likelihood
function in the following few steps:

1. Generate p using the function =rand().
2. Select initial values for U , \ , W.
3. Generate x∗ using the inverse gamma function Gamma−1

(U,(1 + W)K−1\ , p).
4. Find the cumulative gamma distribution FX1 (x∗) using

the initial parameters.
5. Find the inverse log of FX1 (x∗) and calculate the log-

likelihood function.
6. Estimate a set of 100 gamma parameters of U , \ , W using

the simulated annealing method.
7. Find the cumulative gamma distribution FX1 (x∗) using

the mean of the 100 estimated parameters.
8. Find the inverse log of FX1 (x∗) and calculate the log-

likelihood function.

Step 2: Simulated Annealing Optimization

As mentioned earlier, it is only helpful to incorporate a use-
ful method such as simulated annealing to estimate Gamma
parameters that maximize the log-likelihood function. The
process of SA requires advanced programming, hence, in this
study, MATLAB coding is used to estimate 100 values of the
Gamma parameters. The SA algorithm is explained as follows:

1. Get a big enough sample of data x∗.
2. Determine the objective function f = (l, x∗) where l is

the maximum likelihood.
3. Select controlling parameters for the SA, for example,
Ho , H , A, B such that:
while H > Ho , H = AH.

4. Select lower and upper bounds of random variables lb =
[., ., .] , ub = [., ., .].

5. Generate random values a, b, and c within the lower and
upper bounds.

6. Compute the likelihood function l at random values.
7. Generate neighbour values a1 , b1, and c1 within the lower

and upper bounds.
8. Compute the likelihood function l1 at the neighbour

values.
9. If l1 > l, then l1 = l, and a = a1, b = b1, c = c1.

10. Else generate a random value rn (0,1).

11. If e−
(l1−l )
H >r then a = a1, b = b1, c = c1.

12. Print 100 sets of a, b, and c which are Û,\̂ , and Ŵ respec-
tively.

4. EXPERIMENT RESULT AND DISCUSSION

In this study, 4 sets with di�erent samples sizes of 50, 100,
200, and 500 were generated using Microsoft Excel for the
values of K=2,3,4,5 accordingly. The CDF of the gamma
distribution with three initial parameters (U=4, \=0.3, W=-0.05)
was distributed across all data sets generated. Then the SA
algorithm was used to further estimate 100 sets of the gamma
parameters for each data sample size. The performance of the
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SA algorithm was evaluated using the Mean Absolute Error
(MAE) of the estimated parameters Û,\̂ , and Ŵ for each sample
size as follows,

1
3

(
|Û − U | + | \̂ − \ | + |Ŵ − W |

)
(16)

The CDF of gamma distribution was calculated for each
sample size with the initial parameters and the mean of the
estimated parameters to see how close the distributions will be
for the di�erent data sets. Finally, the inverse of the maximum
likelihood is calculated based on the initial parameters, then
the average of the estimated parameters for each sample size
to observe on how the means of our estimated parameters sets
will maximize the maximum likelihood.

Figure 3. Box Plots of The MAE for Each Sample Size Sample
50, 100, 200 and 500

Figure 4. CDF of The GGD for 50 Sample Sizes

Table 1. Estimated Parameters of The GGD Via SA

Sample size (n) Mean of the estimate Likelihood at the
initial estimate

Likelihood at the
Mean

500 4, 0.31, -0.052 504.7 524.27
200 4.2, 0.29, -0.051 194.03 202.09
100 4.2, 0.27, -0.052 93.25 125.57
50 4.1, 0.33, -0.051 45.65 55.79

According to box plots in Figure 3, the larger the sample
size, the closer the average absolute error of the estimated pa-
rameters to zero. The sample of size 50 has a larger spread

Figure 5. CDF of The GGD for 100 Sample Sizes

Figure 6. CDF of The GGD for 200 Sample Sizes

while the spread of the data gets smaller when the size of the
data sample gets larger, which means that the 100 sets of esti-
mated parameters Û, \̂ , and Ŵ fall closer to the initial parame-
ters the larger the data sample gets, which stresses the e�ciency
of the algorithm. Figures 4 to 7, displayed the CDF of the
GGD function based on the data set generated using both the
initial parameters and the mean of the estimated parameters
for each sample size. It can be observed that the estimated
parameters of the generalized gamma distribution are getting
closer to the true parameters as the sample size increases. Table
1 reports the mean of the estimate, the likelihood value of the
mean and the initial estimate. It is seen that the Gamma accu-
racy of the estimated parameters is getting closer to the true
parameters when the sample size becomes large. Moreover, the

Figure 7. CDF of The GGD for 500 Sample Sizes
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mean estimated parameters using the SA algorithm maximize
the likelihood function optimally. When it comes to parameter
estimation for a Generalized Gamma Distribution (GGD), the
classical method produces a lot of inaccuracies. Although the
amount of inaccuracies in SA is low, the o�ered settings are
occasionally surprising and unrealistic. This reveals that the
simulated annealing algorithm can work optimally with maxi-
mum likelihood in estimating the parameters of the generalized
gamma distribution model.

5. CONCLUSION

The goal of this study was to explore a simple approach to �t a
Generalized Gamma Distribution (GGD) using simulated data,
not to propose a new theoretical estimation of the parameters
of the generalized gamma distribution. This study shows the
e�ciency of using the simulated annealing algorithm based
on to estimate the parameters of the generalized Gamma dis-
tribution for a randomly generated data sample based on the
simulation method explained above. The results presented in
the tables and �gures demonstrated that the parameters of gen-
eralized gamma distribution can be optimally estimated using
a simulated annealing algorithm incorporated in the maximum
likelihood method and the ability to simplify the use of such a
generalized distribution to model important phenomena that
other distributions cannot. Implementing the simulated an-
nealing algorithm on other distributions from the same family
will be our future direction. The study presented in this pa-
per can also contribute to modelling di�erent real-life data set
such as internal rate of return and option pricing in the �nan-
cial market, wind speed and reliability problems in reliability
engineering.
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