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AbstractPyrethroids are synthetic or man-made versions of natural pyrethrins discovered in the flowers of a plant species of the Compositaefamily called "Chrysanthemum cinerariaefolium". The plant was transported into Europe and America after it was discovered in theNear East. Commercial insecticides such as pyrethrin and synthetic pyrethroid are available. These are used to control agriculturalpests as well as non-agricultural insects. They are also commercially used in personal care items such as shampoo and as a scent ininsect repellent to boost efficacy and persistence in the environment, these insecticides are frequently combined with additionalchemicals in diverse formulations, known as synergists. Nerve toxins, known as pyrethroids, although their chemical mechanism ofaction is unknown. Pyrethroids are neurotoxins, which interfere with the messages sent along nerves by maintaining sodium andchloride channels in an open position. This review presents perspectives, commercial uses and other useful characteristics featuresof pyrethroids based on human benefits and environmental friendly.
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1. INTRODUCTION

Pyrethroids are synthetic or man-made versions of natural
pyrethrins discovered in the owers of a plant species of the
Compositae family called "Chrysanthemum cinerariaefolium" (of-
ten referred to as pyrethrum). The plant, which is native to
the Near East, was rst imported to Europe and America in
the nineteenth century, then to Japan and Africa afterwards.
Kenya and other African countries, Equador, and Japan are its
key cultural regions. Pyrethrin’s insecticidal capabilities come
from the ketoalcoholic ester of chrysanthemic acid and the
pyrethronic acids. These acids are very lipophilic, allowing
them to easily permeate and pyralize the neural systems of
many insects.

Natural chemicals contained in Chrysanthemum cinerariae-
folium (Figure 1) extracts decompose rapidly when exposed to
light, thus they’ve been replaced with synthetic derivatives that

were once thought to be safe for humans and higher animals
(Bradberry et al., 2005; Costa, 2015; Soderlund, 2012). Since
the 1980s, they’ve been used as insecticides all over the world
due to their high ecacy and low toxic eects when contrasted
towards other insecticides like organophosphates and carbamic
ester chemicals (Cárcamo et al., 2017) . Pyrethrum was dis-
covered to have valuable insecticidal characteristics in the 19th

century. In the rst part of the twentieth century, these proper-
ties motivated a detailed research of the chemical composition
of active esters. Commercial insecticides such as pyrethrin and
synthetic pyrethroid are available. These are used to control
agricultural pests as well as non-agricultural insects. To boost
ecacy and persistence in the environment, these insecticides
are frequently combined with additional chemicals in diverse
formulations, known as synergists.

Pyrethroids are also used in personal care items including
shampoo and insect repellent scent. In recent years, the pesti-
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cides ‘cypermethrin’, ‘deltamethrin’, ‘fenpropathrin’, ‘fenvaler-
ate’, ‘bifenthrin’, ‘permethrin’, ‘l-cyhalothrin’, and ‘cyuthrin’
have all been extensively utilized (Gong, 2013) . Pyrethroid
pesticides are less prone to pollute the environment than other
synthetic pesticides. It can get into your body via the food
chain. They are particularly toxic to aquatic life and may have
unfavorable eects on the aquatic environment (Zhao, 2014) .
Vulnerability to even minimal dose pyrethroid over a period
can increase serious illnesses and damaging eects on an organ-
ism’s neurological, immunological, circulatory, and hereditary
systems, resulting in teratogenic eects, mutagenicity, and car-
cinogenicity (Xin, 2009) . Pyrethroid exposure has been linked
to problems with the male reproductive system (Koureas et al.,
2012) . Urinary pyrethroid metabolite levels have been re-
ported to be linked to sperm aneuploidy (Radwan et al., 2015) .

Figure 1. Chrysanthemum cinerariaefolium Flower

2. DEVELOPMENTOF COMMERCIAL PYRETHRO-
IDS
The evolution of commercial pyrethroids is depicted in the
form of a tree with dierent architectures (Figure 2). The dis-
covery of “3-phenoxybenzyl alcohol (C6H5OC6H4CH2OH)”
and, “𝛼-cyano-3-phenoxybenzyl alcohol (C14H11NO2)” moi-
eties as agricultural insecticides was signicant at the main trunk
A. A few branches from the main stem have been marketed
for agricultural use, as have numerous diphenyl ether-type
pyrethroids. At trunk B, N-hydroxymethyl type pyrethroids
are used, which have signicant knockdown activity against a
variety of insect pests. Pyrethroids of the allethrin class are
used at trunk C. Prallethrin is found towards the end of trunk C
and has a structure that is quite similar to pyrethrin I. Tetrau-
orobenzyl type pyrethroids are found in the fourth trunk D.
Sumitomo chemical chemists created the pyrethroids shown
in yellow in Figure 2. The author contributed signicantly to
the development of the pyrethroids shown in pink by Matsuo
(2019) .

Figure 2. Tree Depicts The Evolution of Pyrethroids

3. CLASSIFICATION OF PYRETHROIDS (TYPE I
AND TYPE II)
Pyrethroids are classied into two groups depending on their
chemical and physical properties: type I and type II are its
two dierent types. Pyrethroid derivatives without a cyano
(-CN) group are classied as type I pyrethroids, that cause
tumors syndrome (T), which is characterized by whole-body
tumours, aggressive behaviour, hypersensitivity, and ataxia. In
mammals, type II pyrethroids produce chloreoathetosis and
salivation, choreoathetosis-salivation syndrome (CS), and mo-
tor impairment (Motomura and Narahashi, 2001; Williamson
et al., 1989). These chemicals have been shown to inuence
chloride channels, particularly GABA-dependent ones, in ad-
dition to sodium channels (Chen et al., 2018) . Classication of
pyrethroids is shown as pictorial form in Figure 3.

Figure 3. Classication of Pyrethroids
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4. MOLECULAR CHEMISTRYOF PYRETHROID

Pyrethrum extract is made up of six insecticidal esters known as
pyrethrins, which are almost identical save for the terminal sub-
stituents on the acid and alcohol side chains (Chen et al., 2018) .
Pyrethrum is a genus of old category Chrysanthemum or Tanace-
tum plants species. Its Molecular chemistry is represented in the
form of the chemical structure of chrysanthemic acid in both
cis and trans form Matsui et al. (2020) is shown in Figure 4.
The alcohol is a substituted cyclopentenolone, and the acid is a
substituted cyclopropanecarboxylic acid. Pyrethrolone (Figure
5), cinerolone (Figure 6(a)), and jasmolone (Figure 6(b)) are
the three alcohols involved in the “pyrethrins”, “cinerins”, and
“jasmolins”, respectively.

Figure 4. Chemical Structural Representation of Chrysanthe-
mic Acid

Figure 5. Chemical Structural Representation of Pyrethrolone

Figure 6. Cinerolone (a) and Jasmolone (b)

Pyrethrin I, a “3-penta-1,3-dienyl-2-methyl-4-oxocyclo-
pent-2,1-en-1-ylester” of chrysanthemic acid, (4S)-4-hydroxy-
3-methyl-2-[(2Z)-penta-2,4-dien-1-yl]cyclopent-2-en-1-one
is the active ingredient in pyrethrum (rethrins). Pyrethrin II
is a pyrethric acid ester composed of 3-penta-1,3-dieny-1-

2-methyl-4-oxocyclopent-2-en-1-yels. The chemical names
Todd et al. (2003a) of the pyrethrins are listed in Table 1.

Cinerin I, cinerin II, the “3-but-2-enyl” analogues, as well
as ‘jasmolin I’ and ‘jasmolin II’, the 3-pent-2-enyl analogues of
pyrethrin I and pyrethrin II, correspondingly. Table 2 presents
the chemical identity and features of pyrethrins (Todd et al.,
2003a) .

Pyrethroids that are commercially accessible include. Com-
mercially available pyrethroids include ‘allethrin’, ‘bifenthrin’,
‘bioresmethrin’, ‘cyuthrin’, ‘cyhalothrin’, ‘cypermethrin’, ‘del-
tamethrin’, ‘esfenvalerate’ (fenvalerate), ‘ucythrinate’, ‘ume-
thrin’, ‘uvalinate’, ‘fenpropathrin’, ‘permethrin’, ‘phenothrin’,
‘resmethrin’, ‘teuthrin’, ‘tetramethrin’, and ‘tralomethrin’. Ta-
bles 3, 4, 5, and 6 provide information on the chemical identi-
cation Todd et al. (2003a) of pyrethroids.

The structures and stereochemical properties of both the
acid and alcohol components inuence the biological activi-
ties of the pyrethrum constituents. Pyrethrins I and II have a
much higher potency than cinerins and jasmolins. The chrysan-
themates (I) are more lethal, whereas the pyrethrates (II) are
more successful in knocking down. As a result, pyrethrum has
both an eective knockdown agent (pyrethrin II) and a pow-
erful insecticidal component (pyrethrin I). Because pyrethrins
contain three chiral centres, they can take on eight distinct opti-
cally active forms (Figure 7). There is additionally geometrical
isomerism (E or Z) in the side chain of the alcohol (chrysanthe-
mates) or the acid and alcohol (pyrethrates), resulting in a total
of 16 stereoisomers for chrysanthemates and 32 stereoisomers
for pyrethrates. Despite the fact that not all of these isomers
have been created and tested, the existing information clearly
suggests that the naturally occurring conguration is the most
powerful (Huang et al., 2005) .

Figure 7. Pyrethrin II (Trans)

Unlike single molecules, pyrethroids are complex mixtures
of isomers other than deltamethrin. Isomerism around the
cyclopropane ring has a signicant impact on the toxicity of
pyrethroids with the cyclopropane moiety. Two pairs of di-
astereomers result from the existence of two chiral centres in
the ring. Diastereomers and their non-super-imposable mirror
duplicates (enantiomers) are depicted in Figure 8. The carbon
atom linked to the ester moiety is given to the C-1 position of
the ring in this diagram. Instead of giving an absolute cong-
uration to the stereochemistry at the C-3 location, it is more
common to simply label it as ‘cis or trans’ in relation to the
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Table 1. Chemical Features of The Pyrethrins

Characteristic Pyrethrin I Cinerin I Jasmolin I

Chemical Name (1S)-2-Methyl-4-oxo-3-
[(2Z)-penta-2,4-dien-1-
yl]cyclopent-2-en-1-yl
(1R,3R)-2,2-dimethyl-3-
(2-methylprop-1-en-1-
yl)cyclopropane-1-

carboxylate

[(1S)-3-[(Z)-but-2-enyl]-
2-methyl-4-oxocyclopent-

2-en-1-yl]
(1R,3R)-2,2-dimethyl-3-

(2-methylprop-1-
enyl)cyclopropane-1-

carboxylate

[(1S)-2-methyl-4-oxo-3-
[(Z)-pent-2-

enyl]cyclopent-2-en-1-yl]
(1R,3R)-2,2-dimethyl-3-

(2-methylprop-1-
enyl)cyclopropane-1-

carboxylate
Trade Name Alfadex, Evergreen,

ExciteR, Milon, Pycon,
Pyrocide, Pyronyl

Alfadex, Evergreen,
ExciteR, Milon, Pycon,
Pyrocide, Pyronyl

Alfadex, Evergreen,
ExciteR, Milon, Pycon,
Pyrocide, Pyronyl

Chemical Formula C21H28O3 C20H28O3 C21H30O3
Molecular Structure 328.5 316.4 330.5

Table 2. Chemical Features of The Pyrethrins

Characteristic Pyrethrin II Cinerin II Jasmolin II

Chemical Name [(1S)-2-methyl-4-oxo-3-
[(2Z)-penta-2,4-

dienyl]cyclopent-2-en-1-yl]
3-[(E)-3-methoxy-2-methyl-
3-oxoprop-1-enyl]-2,2-
dimethylcyclopropane-1-

carboxylate

[(1S)-3-[(Z)-but-2-enyl]-2-
methyl-4-oxocyclopent-2-en-

1-yl]
(1R,3R)-3-[(E)-3-methoxy-2-
methyl-3-oxoprop-1-enyl]-
2,2-dimethylcyclopropane-1-

carboxylate

[(1S)-2-methyl-4-oxo-3-[(Z)-
pent-2-enyl]cyclopent-2-en-

1-yl]
(1R,3R)-3-[(E)-3-methoxy-2-
methyl-3-oxoprop-1-enyl]-
2,2-dimethylcyclopropane-1-

carboxylate
Trade Name Alfadex, Evergreen, ExciteR,

Milon, Pycon, Pyrocide,
Pyronyl

Alfadex, Evergreen, ExciteR,
Milon, Pycon, Pyrocide,

Pyronyl

Alfadex, Evergreen, ExciteR,
Milon, Pycon, Pyrocide,

Pyronyl
Chemical Formula C22H28O5 C21H28O5 C22H30O5

ester group attached to C-1. The 1R isomers are signicantly
more poisonous than the 1S isomers around the cyclopropane
ring. Both the ‘cis and trans’ isomers have insecticidal activ-
ity, although the cis-isomers are more eective in mammalian
toxicology (Huang et al., 2005) . The toxicity of pyrethroids
with a cyano substituent at the alcohol moiety is determined
by the optical isomerism of the 𝛼-carbon (type II pyrethroids).
The S conformation around the 𝛼-carbon has been demon-
strated to be substantially more dangerous to insects than the
R-conformation (Bradberry et al., 2005) . The S-conformation
of the ‘type II’ pyrethroid cyhalothrin around the alpha car-
bon is shown in Figures 8-9. Pyrethroids with three chiral
centres, such as ‘cyuthrin’, ‘cypermethrin’, and ‘cyhalothrin’,
have eight potential isomers. One reason for the vast range
of reported toxicity of pyrethroids is the production of these
compounds with varied isomeric ratios. For example, cyper-
methrin is divided into 4 distinct insecticides depending on
the ratio of various isomers (𝛼-, 𝛽 -, \-, and Z -cypermethrin),
each with its own toxicological eects.

5. INGREDIENTS AND SYNERGISTS OF PYRETH-
ROIDS
Pyrethroid that is chemically pure (technical grade) is fre-
quently prepared (combined with carriers, solvents, and other
ingredients) for commercial pest control. When determining
the toxicity of a created product, the toxicity of these other
constituents must be taken into account. Fenvalerate, for ex-
ample, is far less hazardous to mice than the manufactured
drug pyridine (Gosselin et al., 1984) . In rare circumstances, it’s
possible that formulations containing the same active substance
with various carriers. have a ten-fold dierence in toxicity.
Pyrethroid and pyrethrin are frequently combined with syner-
gists like piperonyl butoxide (PBO) and n-octylbicycloheptane
dicarboximide and packed with oil or petroleum distillates.
Synergists are used to boost the pesticide’s toxicity. Synergists
are included in a variety of goods, including foggers, repel-
lents, and garden sprays. Many formulations of permethrin,
resmethrin, and sumithrin, such as Scourge and Anvil, are used
to control and battle mosquitoes and contain the synergist PBO.
PBO has been demonstrated to inhibit hepatic microsomal ox-
idase enzyme in laboratory rodents and interfere in humans,
making it a crucial liver enzyme responsible for several poisons,
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Table 3. Chemical Features of Selected Pyrethrins

Characteristic Allethrin Bifenthrin Bioresmethrin

Chemical Name 2-methyl-4-oxo-3-(2-
propenyl)-2-cyclopenten
1-yl-2,2-dimethyl-3-(2-

methyl-1-
propenyl)cycloprane

carboxylate

(2-methyl[1,1’-biphenyl]-3-
yl)methyl-3-(2-chloro-

3,3,3-triuoro-1-propenyl)-
2,2-dimethylcyclopropane-

carboxylate

(1R-trans)-[(5-phenylmethyl)-
3-furanyl]mehtyl 2,2-

dimethyl-3-(2-methyl-1-
propenyl)cyclopropane-

carboxylate

Trade Name Pyresin, Pynamin Forte Talstar Exthrin
Chemical Formula C19H26O3 C23H22ClF3O2 C22H26O3

Table 4. Chemical Features of Selected Pyrethrins

Characteristic Cyuthrin Cyhalothrin Cypermethrin

Chemical Name Cyano(4-uoro-3-
phenoxyphenyl)methyl

3-(2,2-dichloroethenyl)-2,2-
dimethylcyclopropanecarboxy-

late

[1𝛼,3𝛼(Z)]-(±)-Cyano-(3-
phenoxyphenyl)methyl

3-(2-chloro-3,3,3-triuoro-1-
propenyl)-2,2-

dimethylcyclopropanecarboxy-
late

Cyano(3-
phenoxyphenyl)methyl-3-

(2,2-dichloro
ethenyl)-2,2-

dimethylcyclopropanecarboxylate

Trade Name Baythroid, Baygon aerosol,
Solfac

Cyhalon, Grenade Arrivo, Cymbush,
Cymperator, Cyno, Ripcord,
Basathrin, Demar, Grand,

Starcyp
Chemical Formula C22H18NO3Cl2F C23H19ClF3NO3 C22H19Br2NO3

Figure 8. Diastereomers and their Non-Superimposable
Mirror Images of Pyrethroid

including the active ingredients in pesticides. Because these en-
zymes are involved in the detoxication of many medications
and chemicals, prolonged exposure to an insecticidal synergist
may make a person sensitive to a variety of harmful insults that
would otherwise be tolerated. Anorexia, vomiting, diarrhoea,
intestinal inammation, lung bleeding, and maybe mild central

Figure 9. (S) Conformer at Alpha Carbon of Cyhalothrin
Pyrethroid

nervous system depression are all symptoms of PBO poisoning.
Contact with the skin on a regular basis may produce minor
irritation. Increased liver weight has been shown in chronic
toxicity trials, even up to 30 mg/kg/day. Animal studies have
showed hepatocellular carcinomas, even with dosing as low as
1.2 percent (Takahashi et al., 1994; FMC Agricultural Chem-
icals Group, 1989), despite the fact that it is not deemed a
carcinogen by the EPA.

Inert (secret) components and pollutants can further alter
the toxicity of pyrethroid formulations, especially because de-
signed products frequently include more "inert" constituents
than pyrethroid formulations used in America. Are compounds
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Table 5. Chemical Features of Selected Pyrethrins

Characteristic Deltamethrin Esfenvalerate Fenpropathrin

Chemical Name [1R-[1𝛼(S),3𝛼]-Cyano
(3-phenoxyphenyl)methyl]3-

(2,2-dibromo
ethenyl)-2,2-

dimethylcyclopropanecarboxylate

[S-R,R]-Cyano(3-
phenoxyphenyl)methyl

4-chloro-2-(1-
methylethyl)benzeneacetate,

fenvalerate

Cyano(3-
phenoxyphenyl)methyl

2,2,3,3-
tetramethylcyclopropanecarbo-
xylate(racemate) fenpropanate

Trade Name Butox, Decis, K-Othrin,
Kordon, Sadethrin

Sumi-alfa, Sumi-alpha, Asana
Pydrin, Ectrin, Sumicidin
Arfen, Dufen, Fenval

(fenvalerate)

Danitol, Herald, Meothrin,
Rody, Digital

Chemical Formula C22H19NO3Br2 C25H22NO3Cl C22H23NO3

Table 6. Chemical Features of Selected Pyrethrins

Characteristic Flucythrinate Flumethrin Fluvalinate

Chemical Name Cyano(3-
phenoxyphenyl)methyl-4-
(diuoromethoxy)(1-

methylethyl)benzeneacetate

2-Cyano-4-uoro-
3phenoxybenzyl

-3-(𝛽 ,4-dichlorostyryl)-2,2-
dimethylcyclopropanecarboxylate

Cyano(3-
phenoxyphenyl)methyl
N-N-[2-chloro-4-

(triuoromethyphenyl)-DL-
valinate

Trade Name Cybolt, Cythrin, Pay-o,
Fluent

Bayticol, Bayvarol Klartan, Mavrik

Chemical Formula C26H23NO4F2 C28H22NO3Cl2F C26H22N2O3ClF3

that depress the central nervous system (CNS) such as benzene
or are recognized or probable carcinogens (such as silica, tri-
methylbenzenes, and ethyl benzene) (such as xylenes). Toxic
contaminants including ethylene oxide, benzene, and arsenic
can be found in pyrethroid compositions (ICI Americas, 1989;
FMC Corporation, 1989; FMC Corporation, 1988; Walters
et al., 2009).

6. MAINLY USED PATTERNS OF PYRETHROID

There isn’t a lot of information regarding how pyrethroids
are used. According to data gathered from various sources.
In non-agricultural contexts across the world, the amount of
pyrethroids professionally administered was higher than in
agricultural regions.

Pyrethroids are commonly used in houses to control cock-
roaches, wasps, ants, and spiders, as well as animal parasites
such as eas and ticks, and lice on humans (Figure 10). They are
also used to control mosquitoes in areas where they may be car-
rying infectious diseases such as West Nile Virus. Pyrethroids
can be delivered in many dierent forms: in powders, gels,
traps, spray solutions, combustible spirals, and in aerosols de-
livered from spray can sand bombs (Thatheyus and Selvam,
2013a) .

Figure 10. Common uses of Pyrethroids in Home to Kill
Cockroaches, Wasps, Ants, and Spiders, as well as Animal
Parasites like Fleas and Ticks, and Lice

7. PYRETHROID INTHEPRESENTENVIRONMENT

Pyrethroid is not persistent, but omnipresent. Natural pyreth-
rins are rapidly degraded in the presence of humidity by sun-
light ormicroorganisms (Berger-preieß et al., 1997) . Synthetic
pyrethroids, however, are more stable inside homes (Weston
and Lydy, 2010) . Protected from the elements, pyrethroids
may be even more persistent. In domestic use, they may be
disposed of through sewers and water treatment plants which
are ineective at removing the chemicals (Giroux and Fortin,
2010) . In outdoor applications, pyrethroids can enter surface
waters when washed o surfaces by rain (Oros and Werner,
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Table 7. Applications of Pyrethroids

Pyrethroid Insects Crops
Additional applications

and regions

Allethrin N/A

Public health places,
Flies, residential place,

mosquitoes, animal houses, topi
ants cal application in pet

sprays and shampoos

Bifenthrin

Beetles, weevil, Alfalfa hay, beans, cantaloupes, cereals,

N/A
houseies, mosquitoes, lice, corn, cotton, eld and grass seed, hops,
bedbugs, aphids, moths, melons, oilseed rape, potatoes, peas,
cockroaches, locust raspberries, watermelons, squash

Bioresmethrin
Houseies, mosquitoes,

N/A
Household, public

cockroaches health, animal houses

Cyuthrin

Aphids, cabbage Alfalfa, cereals, cotton,

Green houses
stem ea beetle, citrus, deciduous fruit, ground
cockroaches, house nuts, maize, oilseed rape, pears,
ies, mosquitoes, rape potatoes, rice, sugar beet, sugar
winter stem weevil cane, tobacco, vegetables

Cyhalothrin
Bedbugs, beetles, house

N/A
Public health,

ies, ked, lice, mosquitoes, animal houses,
moths, weevils inert surfaces

Cypermethrin
Cockroaches, Cotton, lettuce, onions, Residential and

ies, pears, peaches, pecans, commercial buildings,
moths sugar beets animals houses

Deltamethrin

Aphids, beetles, bollworm, Alfalfa,beet,cereals, coee, cotton, gs, Forests,
bud-worm, caterpillars, cicadas, fruits, hops, maize, oilseed rape, households,
coding moths, totrix moths, olives, oil palms, potatoes, rice, soybeans, animal houses,
weevils, whitey, winter moths sunowers, tea, tobacco, vegetables. stored products

Esfenvalerate Beetles, moths

Cabbage, corn, cotton, fruit
trees, grains, groundnuts, Ornamentals,

maize, pecan, potatoes, sorghum, non-crop land
soybeans, sugar cane, sunowers, sweet
corn, tomatoes, vegetables, wheat

Fenvalerate

Beetles, Alfalfa hay, apples, beet, cere
cockroaches, als, cottonorn, nuts, cucurbita, Ornamentals,

ies, fruit, greenbeans, grounnuts, hops, forestry,
locusts, maize, oilseed rape, olives, potatoes, non-crop land

mosquitoes, sorghum, soybeans, squash, sugarcane,
moths sunower, vegetabes, vines, tobacco.

Fluvalinate
Aphids, leafhoppers, Apples, vegetables, vines, Outdoor and

moths, spider tobacco, cereals, peaches, indoor
mites, thrips, white-ies cotton, pears ornamentals, turf

Permethrin
Ants, beetle, bollworm, bud- Alfalfa hay, corn, cotton, grains, Home gardens, green
worm, eas, ies, lice, moths, lettuce, onion, peaches, potatoes, houses, pet sprays
mosquitoes, termites, weevils sweet corn, tomatoes, wheat. and shampoos
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2005; Kuivila et al., 2012a) particularly in urban areas where
they are used near to, or on, impervious surfaces that facilitate
runo (Giroux, 2014) .

Surface water of certain agricultural regions has detectable
levels of pyrethroids (i.e., permethrin, cypermethrin, lambda-
cyhalothrin) in concentrations which may surpass the crite-
ria established to protect aquatic life (Kuivila et al., 2012b) .
According to an American study, urban surface waters may
be even more contaminated by pyrethroids than agricultural
waters (Larocque et al., 2015) . Permethrin and piperonyl bu-
toxide, common pyrethroids formulation ingredients, have
also been found in Québec aquifers (Ray, 2003) . Although
20% of Québec residents-scattered over 90% of the inhabited
territory-drinking groundwater, our knowledge of pyrethroid
concentrations in ground water remains fragmentary (Hodgson
and Levi, 1999) . Several Application of pyrethrin are shown in
Table 7 (Berger-preieß et al., 1997; Weston and Lydy, 2010;
Giroux and Fortin, 2010; Oros and Werner, 2005; Kuivila
et al., 2012a; Giroux, 2014; Kuivila et al., 2012b; Larocque
et al., 2015; Ray, 2003; Hodgson and Levi, 1999).

8. PYRETHROIDS MODE OF ACTION

Pyrethroids are nerve toxins, although their chemical path of
action is unknown. Pyrethroids are neurotoxins, which in-
terfere with the messages sent along nerves by maintaining
sodium and chloride channels in an open position. It’s unclear
if symptoms in insects and other animals are caused by central
nervous system impacts, peripheral nervous system eects, or
both (Hutson, 1979) . They allow repetitive nervous inux,
or a depolarization, which leads to dierent symptoms such
as tremors, involuntary movements and enhanced salivation
in animals. As a consequence, pyrethroid poisoning mostly
aects excitable cells (nerve and muscle), resulting in dysfunc-
tional function rather than structural damage. In addition to
their active ingredients, formulations sold on the market may
also contain one of two common co-formulants that enhance
the toxicity of pyrethroids (Abou-Donia, 1996) . These syner-
gists, piperonyl butoxide and MGK-264, inhibit enzymes that
break down pyrethroids, making them last longer ; they are all
toxic themselves (Abou-Donia, 1996) . By blocking pyrethroid
hepatic metabolism, piperonyl butoxide increases pyrethroid
toxicity. These pesticides are degraded by the cytochrome
P450 (CYP) monooxygenases using piperonyl butoxide as an
alternate substrate. When CYP hydroxylates piperonylbutox-
ide, an intermediary (a carbene) creates a long-lasting molecule
with the cytochrome’s haem iron, eectively preventing CYP
function in the future. Certain CYP isozymes are predicted to
produce the inhibitory complex preferentially, although these
have yet to be identied with certainty (He et al., 1990) . As
a result, using ’piperonyl butoxide’ with most formulations
will not only improve the ’knock down’ eect on insects, but
also increase poisonous eects in people. When a substantial
amount of pyrethroid and piperonyl butoxide is consumed,
huge amounts of circulating insecticide and piperonyl butox-
ide can be generated. The latter may then interfere with the

metabolism of the pyrethroid, resulting in increased toxicity.
Organophosphorus pesticides obstruct pyrethroid metabolism
if a sucient amount of the two insecticides is consumed, hence
co-formulation might greatly enhance human toxicity of the
two insecticides (Ray, 1991; Kaneko, 2010; Leahey, 1985).

9. METABOLISM OF PYRETHROID

Pyrethroids are metabolized in liver by oxidation of aromatic
ring and methyl group as well as hydrolysis of ester linkage by
conjugate reaction (Cárcamo et al., 2017; Kinsler et al., 1990).
These processes produce a variety of metabolites, which are
mostly eliminated in urine (Dalvi and Dalvi, 1991) . Trans-
isomers are hydrolyzed faster than cis-isomers, whose principal
metabolic pathway is oxidation (Conney et al., 1972) .

Piperonyl butoxide inhibits CYPmono-oxygenase enzymes
by up to 50% within three hours of treatment (Conney et al.,
1972; Zhang et al., 1991). The activity of CYP is then grad-
ually boosted, but it takes another 36 hours for it to revert to
normal. With typical use, inclusion of ‘piperonyl butoxide’
in commercial pyrethroid formulations appeared unlikely to
be clinically relevant (Narahashi, 1989; Eells et al., 1992). In
animals, organophosphorus insecticides have been reported to
prevent pyrethroid hydrolysis (Ray, 1991; Kaneko, 2010; Lea-
hey, 1985), and sprayers using a methamidophos/deltamethrin
or methamidophos/fenvalerate mixture excreted more un-
modied pyrethroid than sprayers using pyrethroid alone (Vi-
jverberg and Bercken, 1982) . Carboxyesterae responsible for
pyrethroid hydrolysis is inhibited by organophosphorous in-
secticide (Soderlund and Casida, 1977) .

10. NEURO-TOXIC IMPACTS OF PYRETHROIDS

10.1 Eects on Sodium (Na) Channels
Most excitable cells rely on sodium ion channels, which are
voltage-gated channels with their opening controlled by volt-
age. They produce an action potential by generating an inward
sodium current, which is closed at standard resting potentials.
Depending on the species and the location of the anatomical
structure, they come in a variety of isoforms. All of these are
extremely ion selective, with sodium ions having a 30:1 ratio
over potassium ions. Pyrethroids alter the gating properties
of voltage-sensitive sodium channels in mammalian and in-
vertebrate neural membranes, causing the channels to delay
closing (Soderlund and Bloomquist, 1989; Miyamoto et al.,
1995). This allows for a prolonged sodium inow, often known
as sodium ’tail current’ (Clark and Brooks, 1989; Forshaw
and Ray, 1990; Forshaw and Ray, 1993). The proportion of
sodium channels that have been altered, which is determined
by the pyrethroid concentration, dictates the amplitude of the
tail current. The tail current’s duration, on the other hand, is
determined by the pyrethroid’s structure, which is indepen-
dent of its concentration. Permethrin and deltamethrin are
type I pyrethroids that maintain the channel open for a shorter
duration than type II pyrethroids. If a sodium tail current
is sucient to keep the cell membrane potential over thresh-
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old, a second action potential will occur extremely early, and
a repeating strain of action potentials will be formed. This
mechanism is hypothesised to be responsible for pyrethroid-
induced paraesthesiae. Despite the existence of tail currents,
cells may continue to function, although at a very high level of
excitation. However, they may reach a point when they can no
longer operate at this level, a circumstance known as "conduc-
tion block". Type II pyrethroids (when the sodium channel is
maintained open for an excessive amount of time) Ray et al.
(1997) or type I pyrethroids (when the sodium channel is kept
open for an excessive amount of time) can induce conduction
block (when a large amplitude tail current is produced).

10.2 Eects on Chloride Channels
Type II pyrethroids impact on voltage-dependent ion chlo-
ride channels inside the brain, neurons, muscles, and salivary
glands (Forshaw et al., 2000) . Their role is to regulate in-
versely proportional cell excitability, chloride conductance, and
sodium conductance. Those vulnerable to pyrethroids had the
most chloride channels (Hutson, 1979) . They haven’t been de-
scribed at the molecular level, although depolarization activates
them. They are calcium-independent and have a high conduc-
tivity. Protein kinase C phosphorylation renders them inactive
(Bloomquist et al., 1986) . In vitro Bradbury et al. (1983) and
in vivo Forshaw et al. (2000) , chloride channel currents are
reduced by type II pyrethroids. Pyrethroid-induced salivation,
choreoathetosis and tiresome ring in skeletal muscle are pre-
vented by ivermectin and pentobarbital, which activate chloride
ions channels Joy and Albertson (1991) , the most important
component in the symptoms of type II pyrethroid poisoning,
such as salivation and myotonia, is probably chloride channel
actions.

10.3 Eect on GABA Ionophrone Complex
Pyrethroids may also act on ’GABA’-gated chloride channels,
whichmay explain why severe type II poisoning leads to seizures
(Cremer et al., 1980) . Some more studies have shown that
the GABA receptor-ionophore complex is involved in type
II pyrethroid toxicity components. In deltamethrin-poisoned
rats, however, baclofen had no therapeutic impact (Hutson,
1979; Cutkomp et al., 1982). GABA antagonists had no eect
on deltamethrin-induced hippocampal inhibition or deltame-
thrin choreoathetosis in rats (Rao et al., 1984; Clark and Mat-
sumura, 1982). The apparent potential of type II pyrethroids
to act on the GABA receptor appears to be of restricted clinical
signicance outside of acute poisoning.

10.4 Calcium Regulation and ATP-Hydrolyzing Enzymes
The ion pumps that maintain ionic gradients across cell and
organelle membranes are powered by adenosine triphosphate
(ATP), a fundamental component of cell energy metabolism.
Pyrethroid neurotoxicity may be mediated by ATP-using en-
zymes and ion pumps, which are classied as ion dependent
ATP hydrolyzing enzymes (ATPases) Clark and Matsumura
(1987) type I and type II pyrethroids have been demonstrated

to block oligomycin-sensitive Mg2+-ATPases in recent investi-
gations (Ray, 1982) . In addition to the numerous Ca2+ ATPases
involved in the homeostatic regulation of intracellular calcium
levels, pyrethroids also act through a second type of ATPases.
In squid and cockroach nerve preparations, pyrethroids de-
creased the activity of two Ca2+ATPases: type I pyrethroids,
such as allethrin, inhibited the Na++Ca2+ ATPases, which were
assumed to represent an ATP-modulated sodium-calcium ex-
change transporter. Type II pyrethroids, such as cypermethrin,
inhibited the Ca2++Mg2+ ATPases, an energy-dependent cal-
cium extrusion mechanism (Brodie and Aldridge, 1982; Brad-
berry et al., 2005).

10.5 In Mammals
Pyrethroids are systemically toxic in mammals; cismethrin, a
type I pyrethroid, causes the T syndrome (tremor) in rats. Ad-
ditional symptoms include social arousal, continuous muscular
tremor with poor coordination, heightened scary reaction, back
muscle twitching, and respiratory failure (Müller-Mohnssen,
1999) . The CS (choreoathetosis/psalivation) syndrome (also
known as type II poisoning) causes signicant chewing, noising,
and overstated jaw opening in rats, as well as mucus secretion,
coarse whole-body vibration, steadily increasing muscles tone
in the hind limbs, choreiform body movement of the forelimbs
and trunk, and hetotic spasms encompassing the limbs (Zhang
et al., 2007; Todd et al., 2003b).

Many pyrethroids can irritate the skin and eyes, ranging
from mild to severe. Some pyrethroids have been shown to
cause reversible skin sensitivity on the face (Thatheyus and
Selvam, 2013b) . Some pyrethroid formulations have a higher
skin toxicity than the technical grade.

10.6 Eects on Human
The major impact of pyrethroid on people in China was in the
packaging of fenvalerate and deltamethrin. Burning sensations,
numbness or stiness in the mouth, runny noses, and cough or
sneeze plague them. Abnormal face feelings, dizziness, weari-
ness, and skin rashes were among the other complaints (Clark
andMatsumura, 1982) . The disorders include cerebro-organic
disorders, sensomotor polyneuropathy of the lower limbs and
mental illnesses such as paroxysmal tachycardia, heat sensitiv-
ity, and exercise intolerance all are the prolonged pyrethroid
side eects (Van Engelsdorp et al., 2009) .

In hamster and human cell lines, the pyrethroid perme-
thrin has been found to cause mutations (Goulson et al., 2008) .
The US Agency for Toxic Substances and Disease Registry
(ATSDR) has categorized the three pyrethroids, deltamethrin,
fenvalerate and permethrin, as potential carcinogens for hu-
mans (Potts et al., 2010) . Recently, the “International Agency
for Research on Cancer” (IARC) considered an updated review
of permethrin’s carcinogenicity to be a high priority for the
2015-2019 periods.
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10.7 Eects on Non-Targeted Organisms
Certain benecial insects such as bees can be killed or sub-
lethally aected by pyrethroids (Stork and Eggleton, 1992;
European Food Safety Authority, 2011) when exposed dur-
ing the application process or when they visit treated plants
(Smith and Stratton, 1986) . Sublethal concentrations of insec-
ticides, including pyrethroids are suspected of contributing to
the worldwide decline of bee populations, in combination with
other environmental factors (Kallaji, 1990; Moore and Waring,
2001). Other invertebrates, such as earthworms that play a
crucial role in organic matter recycling can also die or suer
sublethal eects from long-term exposure to pyrethroids (EPA,
2009) .

Pyrethroids are extremely harmful to the majority of sh.
Deltamethrin is the most harmful, allethrin is the tiniest haz-
ardous, and ‘cypermethrin’, ‘permethrin’, and ‘fenvalerate’ are
in the middle. As a result of synergistic interactions, concen-
trated pyrethroid emulsions are up to nine times more toxic
than technical grade pyrethroids (EPA, 2006) . White sucker
sh is substantially more poisonous to resmethrin combined
with piperonyl butoxide than the technical grade product (Md-
delcc, 2015; Shu, 2016).

Pyrethroids have sublethal eects on sh, such as gill dam-
age and behavioural abnormalities. Because pyrethroids are
strongly lipophilic, they are absorbed by the gills even from
water having modest amounts of them. They are more risky
for sh, frogs, and reptiles at lower temperatures. Toxicity
assessments for estuarine sh, marine, crustaceans, mollusks
and benthic species are, however, severely limited (Shu, 2016;
Santé Canada, 2010).

11. ALTERNATIVES TO PYRETHROIDS

Several alternatives of pyrethroids exist. They include physical,
biological or less toxic chemical treatments. For example heat
can kill bed bugs and head lice; and cold can kill bed bugs, head
lice and cockroaches (Olson et al., 2013; Choi et al., 2016;
Buhagiar et al., 2017). Regular monitoring, early intervention,
sometimes with the assistance of a professional exterminator
or health practitioner, can increase the eectiveness of non-
chemical alternatives to pyrethroids. Biological insects and
biopesticide can be used for controlling the insect in agriculture.
This involves using a pest insect predator or parasite to control
pest populations (Buhagiar et al., 2017; Zhou et al., 2019; Zhu
et al., 2020).

12. CONCLUSIONS

The focus of the review paper is on the insecticides known as
"pyrethroids", because of their excellent ecacy and in compar-
ison to other insecticides, it is low in toxicity (e.g. organophos-
phorus and carbamic ester compounds), they have been in use
since the 1980s. They are synthetic or man-made versions of
natural pyrethrins discovered in the owers of a plant species of
the Compositae family called "Chrysanthemum cinerariaefolium"
Compositae family of plants. Commercial insecticides such

as pyrethrin are often used to manage both agricultural and
non-agricultural pests. To boost ecacy and persistence in
the environment, these insecticides are frequently combined
with additional chemicals in diverse formulations, known as
synergists e.g n-octylbicycloheptane dicarboximide and piper-
onyl butoxide. Synergists remain used to boost the pesticide’s
toxicity. Synthetic pyrethroid are most stable inside homes as
natural pyrethrins are not persistent and are rapidly degraded in
the presence of humidity by sunlight or microorganisms. The
development of pyrethroids and their classication as ‘type I’
and ‘type II’ without –CN group, molecular chemistry and its
chemical structure is well discussed in the article. Pyrethroids
mode of action as neurotoxins, which interfere with the mes-
sages sent along nerves by maintaining sodium, chloride chan-
nels, GABA ionophrone complex, ATP-Hydrolyzing Enzymes
and Calcium Regulation as well in Mammal and their potential
eects on Human body and some non-targeted organisms is
presented.
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