Science and Technology Indonesia
 e-ISSN:2580-4391 p-ISSN:2580-4405

Vol. 7, No. 3, July 2022

Enumerate the Number of Vertices Labeled Connected Graph of Order Seven Containing No Parallel Edges

Muslim Ansori ${ }^{1}$, Wamiliana ${ }^{1 *}$, Fitriani ${ }^{1}$, Yudi Antoni ${ }^{1}$, Desiana Putri ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Mathematics and Natural Science, Universitas Lampung, Bandarlampung, 35145, Indonesia
*Corresponding author: wamiliana.1963@fmipa.unila.ac.id

Abstract

A graph that is connected $G(V, E)$ is a graph in which there is at least one path connecting every two vertices in G ; otherwise, it is called a disconnected graph. Labels or values can be assigned to the vertices or edges of a graph. A vertex-labeled graph is one in which only the vertices are labeled, and an edges-labeled graph is one in which only edges are assigned values or labels. If both vertices and edges are labeled, the graph is referred to as total labeling. If given n vertices and m edges, numerous graphs can be made, either connected or disconnected. This study will be discussed the number of disconnected vertices labeled graphs of order seven containing no parallel edges and may contain loops. The results show that number of vertices labeled connected graph of order seven with no parallel edges is $N\left(G_{7, m, g}\right)_{l}=6,727 \times \mathrm{C}_{6}^{m}$; while for $7 \leq g \leq 21, N\left(G_{7, m, g}\right)_{l}=k_{g} C_{g-1}^{(m-(g-6))}$, where $k_{7}=30,160, k_{8}=30,765, k_{9}$ $=21,000, k_{10}=28,364, k_{11}=26,880, k_{12}=26,460, k_{13}=20,790, k_{14}=10,290, k_{15}=8,022, k_{16}=2,940, k_{17}=4,417, k_{18}=2,835, k_{19}=$ $210, k_{20}=21, k_{21}=1$.

Keywords
Vertex Labeled, Connected Graph, Order Seven, Loops

Received: 5 April 2022, Accepted: 13 July 2022
https://doi.org/10.26554/sti.2022.7.3.392-399

1. INTRODUCTION

Without any doubt, one of the most widely used fields of mathematics is graph theory, especially to represent a real-life problem because of the flexibility of drawing a graph. The date of birth of graph theory began with the publication of Euler's solution regarding the Konigsberg problem in 1736, one of the mathematical fields with specific birth date is graph theory (Vasudev, 2006). Given a set $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \cdots, \mathrm{v}_{n}\right\}$ of vertices/nodes, $\mathrm{V} \neq \varnothing$, and a set of edges $\mathrm{E}=\left\{\mathrm{e}_{i j} \mid \mathrm{i}, \mathrm{j} \epsilon \mathrm{V}\right\}$, a graph $G(\mathrm{~V}, \mathrm{E})$ is a structure that consists of ordered pair of V and E . In real-life problems, the cities, buildings, airports, and others can be portrayed by vertices, while the roads that connect the cities, the pipes that connect the buildings, the flight paths that connect the airports, and others can be portrayed by edges. In order to represent real-life problems, on the edges, we can assign nonstructural information such as distance, time, flow, cost, and others by setting a non-negative number $\mathrm{c}_{i j} \geq 0$.

There is a lot of application of graph theory in real-life problems, such as in computer science, chemistry, biology, sociology, agriculture, and others. In computer science, the graph structure plays an important role, for example, in designing a database, software engineering, and network system (Singh, 2014). The database is used for interconnecting analysis, as a
storage system with index-free adjacency, as a tool for graph-like-query, and for other purposes. In network design, graphbased representation makes the problem easier to visualize and provides a more accurate definition. In agriculture, the dynamic closures of the accounting structure are represented by a directed graph (Álvarez and Ehnts, 2015). The structure of graphs, together with discrete mathematics, are applied in chemistry to model the biological and physical properties of chemical compounds (Burch, 2019). The theoretical graph concept also was used by Gramatica et al. (2014) to represent or describe the possible modes of action of a given pharmacological compound. In biology, a phylogenetic tree was represented by a leaf-labeled tree (Huson and Bryant, 2006; Brandes and Cornelsen, 2009), while Mathur and Adlakha (2016) represented DNA using a combined tree. Hsu and Lin (2008) presented many graph theoretical concepts in engineering and computer science, and Al Etaiwi (2014) used the concepts of a complete graph, cycle graph, and minimum spanning tree to generate a complex cipher text. Priyadarsini (2015) explored the use of graph theory concepts, expander, and extremal graphs, in the design of some ciphers, whereas Ni et al. (2021) created ciphers using corona and bipartite graphs. In agriculture, graph theory concepts were used to
group agricultural workers performing manual tasks (Kawakura and Shibasaki, 2018), while the concept of graph coloring to optimize a farmer's goal was used by Kannimuthu et al. (2020). The relationship and unification of graph theory and physicalchemical measures (such as boiling and melting point, covalent and ionic potentials, and electronic density) make molecular topology can describe molecular structure comprehensively. A weighted directed graph, connectivity matrix, and Dijkstra's algorithm were used by Holmes et al. (2021) in plasma chemical reaction engineering. The basic structure of a directed graph is mostly used for the visualization of the reactions. Moreover, they use Gelphi, an open-source graph software for visualization.

In 1874, Cayley counted the number of hydrocarbon isomers $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$ (Cayley, 1874), and this process is similar to enumerating the number of a binary tree. Bona (2007) discussed the method of enumerating trees and forests. Redfield and Pólya are two other mathematicians that worked independently with graphical enumeration, especially in graph coloring (Bogart, 2004), and in graph enumeration, a comprehensive explanation of Pólya's counting theorem is one of the most powerful tools.

The number of graphs that can be formed for labeled and unlabeled graphs is different if we are given n vertices and m edges. For example, given $n=3$ and $m=2$, the number of simple connected unlabeled graphs that can be constructed is only one, while if every vertex is assigned labeled, The maximum number of graphs that can be created is three. The higher the order of the graph, the more labeled graph are formed. Agnarsson and Greenlaw (2006) gave the formula to enumerate graphs. However, no formula for enumerating graphs with special properties such as planarity or connectivity was provided.

There are some studies that have been done concerning the enumeration of the vertex-labeled graph with connectivity properties. In 2017, Amanto et al. (2017) proposed the formula to count disconnected vertices labeled graphs of order maximal four. For order five, the number of labeled vertices in connected graphs with no loops and may contain maximal five parallel edges had been proposed by Wamiliana et al. (2019). Amanto et al. (2021) studied the relationship between the formula for the number of connected vertex labels with no loops in graphs of order five and order six. Wamiliana et al. (2020) also discussed the number of vertices labeled connected graphs of order six with no parallel edges and a maximum of ten loops, while Puri et al. (2021) gave the formula to compute the number of vertices labeled connected graphs of order six without loops, while Ansori et al. (2021) proposed the number of vertices labeled connected graphs of order seven with no loops.

The article is organized as follows: Section I provides information about graphs, graph applications in various fields, and previous research related to this topic. Section II discusses Observation and Investigation, while Section III discusses Results and Discussion. Section IV contains the conclusion.

2. OBSERVATION AND INVESTIGATION

Suppose that we are given the number of vertices $n=7$, and the number of edges m. We will construct connected graphs $G(\mathrm{~V}, \mathrm{E})$ of order n. Since the graph must be connected, then $m \geq 6$. Moreover, every vertex is labeled. Let g as the number of non-loop edges, $g \geq n-1$.

We start firstly by constructing all basic patterns of connected graphs of order seven. Note that the basic patterns contain no loops. The basic pattern starts with $m=6$, and with $n=7, m=6$, and constructs all possible patterns. After all possible patterns for $m=6$ are already constructed, then we continue with $m=7$, and so on until $m=21$. When $m=21$, only one pattern can be constructed because parallel edges are not allowed. Figure 1 shows some examples of patterns for $m=6$, Figure 2 shows some patterns that are isomorphic with the first graph in the second row of the graphs in Figure 1, and Figure 3 shows when $m=21$.

Figure 1. Some Basic Patterns for $n=7$ and $m=6$

Note that all isomorphic graphs will be counted in the pattern. However, we do not need to construct isomorphic graphs. Figure 2 shows the patterns of isomorphic graphs of the pattern of the first graph in the second row of Figure 1.

Figure 2. Some Patterns are Isomorphic with the First Graph in the Second Row in Figure 1

Figure 3. The Basic Pattern for $n=7$ and $m=21$

Figure 4. The Procedure

After constructing the basic pattern, the enumeration step begins. It begins from the first pattern of $n=7$ dan $m=6$ by adding one loop so that $m=7$, calculating the number of graphs that are able to be formed, and then continuing with this pattern by increasing the number of loops ($m=9$), and so on. Continue with this similar manner until the last pattern. The procedure can be put in the following diagram:

3. RESULTS AND DISCUSSION

The first step, as given in Figure 4 is constructing all possible patterns. Because there are many patterns obtained and due to limitation of space, here we give some patterns and also the number of all possible graphs formed according to the patterns. The obtained graphs are grouped by m and g, for example, for $n=6, m=6$, and $g=6$, the patterns are:
The results for all patterns are shown in Table 1 below:
Please note that in the table the dash sign (-) means there is impossible to construct the graph, while the empty space on the table means that we are not calculate more because g is fixed in each column, adding more edges simply adds more loops, and the constructed graph already constitute a sequence of numbers. The number in each column is able to be written as multiplication of a fix number and a sequence of number so that Table 2 can be rewritten in Table 3 as follow:

From Table 3 we can see that for every $g=6,7, \cdots, 21$, the number of graphs obtained are bigger as m increases, and the number of graphs obtained are multiplication of a fix number. For example, for $g=6$, the fix number is 6,727 , and the number of graphs increases follows a certain pattens of sequence which is $1,7,28,84,210,462,924,1,716,3,003,5,005$.

1	7	28	84	210	462	924	1716	3003	5005
	6	21	56	126	252	462	792	1287	2002
	15	35	70	126	210	330	495	715	

Table 1. The Pattern for $n=7, m=6$, and $g=6$
The number of
isomorphic graphs

Table 2. The Number of Vertices Labeled Connected Graph of Order Seven Containing No Parallel Edges

The number of vertices labeled connected order seven graphs with no parallel edges							
m	6	7	8	g	9	10	11
6	6,727	-	-	-	-	-	
7	47,089	30,160	-	-	-	-	
8	188,356	211,120	30,765	-	-	-	
9	565,068	844,480	215,355	21,000	-	-	
10	$1,412,670$	$2,533,440$	861,420	147,000	28,364	-	
11	$3,107,874$	$6,333,600$	$2,584,260$	588,000	198,548	26,880	
12	$6,215,748$	$13,933,920$	$6,460,650$	$1,764,000$	794,192	188,160	
13	$11,543,532$	$27,867,840$	$14,213,430$	$4,410,000$	$2,382,576$	752,640	
14	$20,201,181$	$51,754,560$	$28,426,860$	$9,702,000$	$5,956,440$	$2,257,920$	
15	$33,668,635$	$90,570,480$	$52,792,740$	$19,404,000$	$13,104,168$	$5,64,800$	
16	-	$150,950,800$	$92,387,295$	$36,036,000$	$26,208,336$	$12,418,560$	
17	-	-	$153,978,825$	$63,06,000$	$48,672,624$	$24,837,120$	
18	-	-	-	$105,105,000$	$85,177,092$	$4,126,080$	
19	-	-	-	-	$141,961,820$	$80,720,640$	
20	-	-	-	-	-	$134,534,400$	

The number of vertices labeled connected order seven graphs with no parallel edges

m	g				
	12	13	14	15	16
12	26,460	-	-	-	-
13	185,220	20,790	-	-	-
14	740,880	145,530	10,290	-	-
15	$2,222,640$	582,120	72,030	8,022	-
16	$5,556,600$	$1,746,360$	288,120	56,154	2,940
17	$12,224,520$	$4,365,900$	864,360	224,616	20,580
18	$24,449,040$	$9,604,980$	$2,160,900$	673,848	82,320
19	$45,405,360$	$19,209,960$	$4,753,980$	$1,684,620$	246,960
20	$79,45,380$	$35,675,640$	$9,507,960$	$3,706,164$	617,400
21	$132,432,300$	$62,432,370$	$17,657,640$	$7,412,328$	$1,358,280$
22	-	$104,053,950$	$30,900,870$	$13,765,752$	$2,716,560$
23	-	-	$51,501,450$	$24,090,066$	$5,045,040$
24	-	-	-	$40,150,110$	$8,828,820$
25	-	-	-	-	$14,714,700$

The number of vertices labeled connected order seven graphs with no parallel edges

m		g			
	12	13	14	15	16
17	4,417	-	-	-	-
18	30,919	2,835	-	-	-
19	123,676	19,845	210	-	-
20	371,028	79,380	1,470	21	1
21	927,570	238,140	5,880	147	7
22	$2,040,654$	595,350	17,640	588	28
23	$4,081,308$	$1,309,770$	44,100	1,764	84
24	$7,579,572$	$2,619,540$	97,020	4,410	210
25	$13,264,251$	$4,864,860$	194,040	97,02	462
26	$22,107,085$	$8,513,505$	360,360	19,404	924
27	-	$14,189,175$	630,630	36,036	1,716
28	-	-	$1,051,050$	63,063	3,003
29	-	-	-	105,105	5,005
30	-	-	-	-	

Table 3. Alternative form of Table 2

m	The number of vertices labeled connected order seven graphs with no parallel edges					
				g		
	6	7	8	9	10	11
6	1x6,727	-	-	-	-	-
7	7x6,727	1x30,160	-	-	-	-
8	28x6,727	$7 \mathrm{x} 30,160$	1x30,765	-	-	-
9	84x6,727	$28 \times 30,160$	$7 \mathrm{x} 30,765$	1x21,000	-	-
10	210x6,727	$84 \times 30,160$	28x30,765	$7 \mathrm{x} 21,000$	1x28,364	-
11	462x6,727	210x30,160	$84 \times 30,765$	28x21,000	7x28,364	1x26,880
12	924×6,727	462x30,160	210x30,765	$84 \times 21,000$	28x 28,364	7x26,880
13	1,716x6,727	$924 \times 30,160$	$462 \times 30,765$	$210 \times 21,000$	$84 \times 28,364$	$28 \times 26,880$
14	3,003x6,727	1,716x30,160	$924 \times 30,765$	$462 \times 21,000$	210x28,364	84x26,880
15	5,005x6,727	3,003x30,160	1,716x30,765	924x 21,000	462x28,364	$210 \times 26,880$
16		5,005x30,160	3,003x30,765	1,716x21,000	$924 \times 28,364$	$462 \times 26,880$
17	-		5,005x30,765	3,003x21,000	1,716x28,364	$924 \times 26,880$
18	-	-	-	5,005x21,000	3,003x28,364	1,716x26,880
19	-	-	-	-	5,005x28,364	3,003x26,880
20	-	-	-	-	-	5,005x26,880

The number of vertices labeled connected order seven graphs with no parallel edges

m	g				
	12	13	14	15	16
12	$1 \times 26,460$	-	-	-	-
13	$7 \times 26,460$	$1 \times 20,790$	-	-	-
14	$28 \times 26,460$	$7 \times 20,790$	$1 \times 10,290$	-	-
15	$84 \times 26,460$	$28 \times 20,790$	$7 \times 10,290$	1×8022	-
16	$210 \times 26,460$	$84 \times 20,790$	$18 \times 10,290$	$7 \times 8,022$	$1 \times 2,940$
17	$462 \times 26,460$	$210 \times 20,790$	$84 \times 10,290$	$28 \times 8,022$	$7 \times 2,940$
18	$924 \times 26,460$	$462 \times 20,790$	$210 \times 10,290$	$84 \times 8,022$	$28 \times 2,940$
19	$1,716 \times 26,460$	$924 \times 20,790$	$462 \times 10,290$	$210 \times 8,022$	$84 \times 2,940$
20	$3,003 \times 26,460$	$1,716 \times 20,790$	$92 \times 10,290$	$462 \times 8,022$	$210 \times 2,940$
21	$5,005 \times 26,460$	$3,003 \times 20,790$	$1,716 \times 10,290$	$924 \times 8,022$	$46 \times 2,940$
22	-	$5,005 \times 20,790$	$3,003 \times 10,290$	$1,716 \times 8,022$	$924 \times 2,940$
23	-	-	$5,005 \times 10,290$	$3,003 \times 8,022$	$1,716 \times 2,940$
24	-	-	-	$5,005 \times 8,022$	$3,003 \times 2,940$
25	-	-	-	-	$5,005 \times 2,940$

The number of vertices labeled connected order seven graphs with no parallel edges

m	g				
	12	13	14	15	16
17	$1 \times 4,417$	-	-	-	-
18	$7 \times 4,417$	$1 \times 2,835$	-	-	-
19	$28 \times 4,417$	$7 \times 2,835$	1×210	-	-
20	$84 \times 4,417$	$28 \times 2,835$	7×210	1×21	-
21	$210 \times 4,417$	$84 \times 2,835$	28×210	7×21	1×1
22	$462 \times 4,417$	$210 \times 2,835$	84×210	28×21	7×1
23	$924 \times 4,417$	$462 \times 2,835$	210×210	84×21	28×1
24	$1,716 \times 4,417$	$924 \times 2,835$	462×210	210×21	84×1
25	$3,003 \times 4,417$	$1,716 \times 2,835$	924×210	462×21	210×1
26	$5,005 \times 4,417$	$3,003 \times 2,835$	$1,716 \times 210$	924×21	462×1
27	-	$5,005 \times 2,835$	$3,003 \times 210$	$1,716 \times 21$	924×1
28	-	-	$5,005 \times 210$	$3,003 \times 21$	$1,716 \times 1$
29	-	-	-	$5,005 \times 21$	$3,003 \times 1$
30	-	-	-	-	$5,005 \times 1$

20	35	56	84	120	165	220		
	15	21	28	36	45	55		
		6	7	8	9	10		
			1	1	1	1		

Notate $N\left(G_{7, m, g}\right)_{l}$ as the number of vertices labeled connected graphs of order seven containing no parallel edges (loops are allowable) with the number of edges is m and the number of non loop edges is g.
Result 1: Given $m \geq 6, g=6$, the total number of vertices
labeled connected graphs of order seven with no parallel edges is $N\left(G_{7, m, g}\right)_{l}=6,727 \times \mathrm{C}_{6}^{m}$
Proof:
Consider the above sequence of numbers.
That sequence of numbers is able to be represented by polynomial of order six because the fixed

$$
Q_{5} m=\alpha_{6} m^{6}+\alpha_{5} m^{5}+\alpha_{4} m^{4}+\alpha_{3} m^{3}+\alpha_{2} m^{2}+\alpha_{1} m+\alpha_{0}
$$

The following system of equations is obtained by substituting $m=6,7,8,9,10,11,12$ to $Q_{5}(m)$.

$$
\begin{align*}
6,727 & =46,656 \alpha_{6}+7,776 \alpha_{5}+1,296 \alpha_{4}+216 \alpha_{3}+36 \alpha_{2}+6 \alpha_{1}+\alpha_{0} \tag{1}\\
47,089 & =117,649 \alpha_{6}+16,807 \alpha_{5}+2,401 \alpha_{4}+343 \alpha_{3}+49 \alpha_{2}+7 \alpha_{1}+\alpha_{0} \\
188,356 & =262,144 \alpha_{6}+32,768 \alpha_{5}+4,096 \alpha_{4}+512 \alpha_{3}+64 \alpha_{2}+8 \alpha_{1}+\alpha_{0} \\
565,068 & =531,441 \alpha_{6}+59,049 \alpha_{5}+6,561 \alpha_{4}+729 \alpha_{3}+81 \alpha_{2}+9 \alpha_{1}+\alpha_{0} \\
1,412,670 & =1,000,000 \alpha_{6}+100,000 \alpha_{5}+10,000 \alpha_{4}+1,000 \alpha_{3}+100 \alpha_{2}+10 \alpha_{1}+\alpha_{0} \\
3,107,874 & =1,771,561 \alpha_{6}+161,051 \alpha_{5}+14,641 \alpha_{4}+1,381 \alpha_{3}+121 \alpha_{2}+11 \alpha_{1}+\alpha_{0} \\
6,215,748 & =2,985,984 \alpha_{6}+248,832 \alpha_{5}+20,736 \alpha_{4}+1,728 \alpha_{3}+144 \alpha_{2}+12 \alpha_{1}+\alpha_{0}
\end{align*}
$$

These equations form a system of equations that can be transformed into a matrix $A x=b$ as follow:
$\left[\begin{array}{ccccccc}46,656 & 7,776 & 1,296 & 216 & 36 & 6 & 1 \\ 117,649 & 16,807 & 2,401 & 343 & 49 & 7 & 1 \\ 262,144 & 32,768 & 4,096 & 512 & 64 & 8 & 1 \\ 531,441 & 59,049 & 6,561 & 729 & 81 & 9 & 1 \\ 1,000,000 & 100,000 & 10,000 & 1,000 & 100 & 10 & 1 \\ 1,771,561 & 161,051 & 14,641 & 1,331 & 121 & 11 & 1 \\ 2,985,984 & 248,832 & 20,736 & 1,728 & 144 & 12 & 1\end{array}\right]\left[\begin{array}{c}\alpha_{6} \\ \alpha_{5} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{0}\end{array}\right]=\left[\begin{array}{c}6,727 \\ 47,089 \\ 188,356 \\ 565,068 \\ 1,412,670 \\ 3,107,874 \\ 6,215,748\end{array}\right]$

By solving this system of equations we get: $\alpha_{6}=\frac{6,727}{720}, \alpha_{5}=$ $-\frac{100,905}{720}, \alpha_{4}=\frac{57,175}{720}, \alpha_{3}=-\frac{151,575}{720}, \alpha_{2}=\frac{1,843,198}{720}$,
$\alpha_{1}=-\frac{807,240}{720}, \alpha_{0}=0$.

Thus

$$
\begin{aligned}
Q_{5}(m)= & \alpha_{6} m^{6}+\alpha_{5} m^{5}+\alpha_{4} m^{4}+\alpha_{3} m^{3}+\alpha_{2} m^{2}+\alpha_{1} m^{+} \alpha_{0} \\
= & \frac{6,727}{720} m^{6}-\frac{100,905}{720} m^{5}+\frac{57,175}{720} m^{4}-\frac{151,575}{720} m^{3} \\
& +\frac{1,843,198}{720} m^{2}-\frac{807,240}{720} m \\
= & \frac{6,727}{720}\left(m^{6}-15 m^{5}+85 m^{4}-225 m^{3}+274 m^{2}-120 m\right) \\
= & \frac{6,727(m-1)(m-2)(m-3)(m-4)(m-5)(m-6)!}{6.5 .4 .3 .2 .1(m-6)!} \\
= & 6,727 \times C_{6}^{m}
\end{aligned}
$$

Please note that for every g (every column, the sequence of numbers is the same, except the multiplier). Thus, the
polynomial related to the sequence of numbers is the same. However, because the multipliers are different, it will cause different formulas.
Result 2: Given $m \geq 7, g=7$, the total number of vertices labeled connected graphs of order seven with no parallel edges is $N\left(G_{7, m, g}\right)_{l}=30,160 \times \mathrm{C}_{6}^{(m-1)}$
Proof:
The polynomial that represents the sequence is the same which is

$$
Q_{5} m=\alpha_{6} m^{6}+\alpha_{5} m^{5}+\alpha_{4} m^{4}+\alpha_{3} m^{3}+\alpha_{2} m^{2}+\alpha_{1} m+\alpha_{0}
$$

However, for $m=7$, the numbers of graphs are different. The following system of equations is obtained by substituting $m=7$, $8,9,10,11,12,13$ to the equation.

30,160	$=117,649 \alpha_{6}+16,807 \alpha_{5}+2,401 \alpha_{4}+343 \alpha_{3}+49 \alpha_{2}+7 \alpha_{1}+\alpha_{0}$
211,120	$=262,144 \alpha_{6}+32,768 \alpha_{5}+4,096 \alpha_{4}+512 \alpha_{3}+64 \alpha_{2}+8 \alpha_{1}+\alpha_{0}$
844,480	$=531,441 \alpha_{6}+59,049 \alpha_{5}+6,561 \alpha_{4}+729 \alpha_{3}+81 \alpha_{2}+9 \alpha_{1}+\alpha_{0}$
$2,583,440$	$=1,000,000 \alpha_{6}+100,000 \alpha_{5}+10,000 \alpha_{4}+1,000 \alpha_{3}+100 \alpha_{2}+10 \alpha_{1}+\alpha_{0}$
$6,383,600$	$=1,771,561 \alpha_{6}+161,051 \alpha_{5}+14,641 \alpha_{4}+1,331 \alpha_{3}+121 \alpha_{2}+11 \alpha_{1}+\alpha_{0}$
$13,933,920$	$=2,985,984 \alpha_{6}+248,832 \alpha_{5}+20,736 \alpha_{4}+1,728 \alpha_{3}+144 \alpha_{2}+12 \alpha_{1}+\alpha_{0}$
$27,867,840$	$=4,826,809 \alpha_{6}+371,293 \alpha_{5}+28,561 \alpha_{4}+2,197 \alpha_{3}+169 \alpha_{2}+13 \alpha_{1}+\alpha_{0}$

These equations form a system of equations that can be transformed into a matrix $A x=b$ as follow:
[$\quad\left[\begin{array}{ccccccc}117,649 & 16,80 & 2401 & 343 & 49 & 7 & 1 \\ 262,144 & 32,768 & 4096 & 512 & 64 & 8 & 1 \\ 531,441 & 59,049 & 6561 & 729 & 81 & 9 & 1 \\ 1,000,000 & 100,000 & 10,000 & 1000 & 100 & 10 & 1 \\ 1,771,561 & 161,051 & 14,641 & 1331 & 121 & 11 & 1 \\ 2,985,984 & 248,832 & 20,736 & 1728 & 144 & 12 & 1 \\ 4,826,809 & 371,293 & 28,561 & 2197 & 169 & 13 & 1\end{array}\right]\left[\begin{array}{c}\alpha_{6} \\ \alpha_{5} \\ \alpha_{4} \\ \alpha_{3} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{0}\end{array}\right]=\left[\begin{array}{c}30,160 \\ 211,120 \\ 844,400 \\ 2,533,440 \\ 6,333,600 \\ 13,933,920 \\ 27,867,840\end{array}\right]$

By solving this system of equations we get: $\alpha_{6}=\frac{30,160}{720}, \alpha_{5}=$
$-\frac{633,360}{720}, \alpha_{4}=\frac{5,278,000}{720}, \alpha_{3}=-\frac{22,167,600}{720}, \alpha_{2}=\frac{48,979,840}{720}$,
$\alpha_{1}=-\frac{53,202,240}{720}$, and $\alpha_{0}=\frac{21,715,200}{720}$.

Thus

$$
\begin{aligned}
Q_{5}(m)= & \alpha_{6} m^{6}+\alpha_{5} m^{5}+\alpha_{4} m^{4}+\alpha_{3} m^{3}+\alpha_{2} m^{2}+\alpha_{1} m^{+} \alpha_{0} \\
= & \frac{30,160}{720} m^{6}-\frac{633,360}{720} m^{5}+\frac{5,278,000}{720} m^{4}-\frac{22,167,600}{720} m^{3} \\
& +\frac{48,979,840}{720} m^{2}-\frac{53,202,240}{720} m+\frac{21,715,200}{720} \\
= & \frac{30,160}{720}\left(m^{6}-21 m^{5}+175 m^{4}-735 m^{3}+624 m^{2}-1764 m+720\right) \\
= & \frac{30,160}{720}(m-1)(m-2)(m-3)(m-4)(m-5)(m-6) \\
= & \frac{30,160(m-1)(m-2)(m-3)(m-4)(m-5)(m-6)(m-7)!}{6.5 .4 .3 .2 .1(m-7)!} \\
= & 30,160 \times C_{6}^{(m-1)}
\end{aligned}
$$

The following results are obtained by doing the similar manner:
For $m \geq 8, g=8$, is $N\left(G_{7, m, g}\right)_{l}=30,765 \times \mathrm{C}_{7}^{(m-2)}$
For $m \geq 9, g=9$, is $N\left(G_{7, m, g}\right)_{l}=21,000 \times \mathrm{C}_{8}^{(m-3)}$
For $m \geq 10, g=10$, is $N\left(G_{7, m, g}\right)_{l}=28,364 \times \mathrm{C}_{9}^{(m-4)}$
For $m \geq 11, g=11$, is $N\left(G_{7, m, g}\right)_{l}=26,880 \times \mathrm{C}_{10}^{(m-5)}$
For $m \geq 12, g=12$, is $N\left(G_{7, m, g}\right)_{l}=26,460 \times \mathrm{C}_{11}^{(m-6)}$
For $m \geq 13, g=13$, is $N\left(G_{7, m, g}\right)_{l}=20,790 \times \mathrm{C}_{12}^{(m-7)}$
For $m \geq 14, g=14$, is $N\left(G_{7, m, g}\right)_{l}=10,290 \times \mathrm{C}_{13}^{(m-8)}$

For $m \geq 15, g=15$, is $N\left(G_{7, m, g}\right)_{l}=8,022 \times \mathrm{C}_{14}^{(m-9)}$
For $m \geq 16, g=16$, is $N\left(G_{7, m, g}\right)_{l}=2,940 \times \mathrm{C}_{15}^{(m-10)}$
For $m \geq 17, g=17$, is $N\left(G_{7, m, g}\right)_{l}=4,417 \times \mathrm{C}_{16}^{(m-11)}$
For $m \geq 18, g=18$, is $N\left(G_{7, m, g}\right)_{l}=2,835 \times \mathrm{C}_{17}^{(m-12)}$
For $m \geq 19, g=19$, is $N\left(G_{7, m, g}\right)_{l}=210 \times \mathrm{C}_{18}^{(m-13}$
For $m \geq 20, g=20$, is $N\left(G_{7, m, g}\right)_{l}=21 \times \mathrm{C}_{19}^{(m-14)}$
For $m \geq 21, g=21$, is $N\left(G_{7, m, g}\right)_{l}=\mathrm{C}_{20}^{(m-15)}$
Note that the multiplier for $g=6$ is the same as the multiplier of $t=6$ in Ansori et al. (2021), as well as $g=7$ with $t=7$, and so on until $g=21$ with $t=21$. However, the formulas are different because in Ansori et al. (2021) the formula are for connected vertex labeled graph without loops while in this study is for connected vertices labeled graph without parallel edges. For example, for $g=8, N\left(G_{7, m, g}\right)_{l}=30,765 \times \mathrm{C}_{7}^{(m-2)}$, while in Ansori et al. (2021), for $t=8, N\left(G_{7, m, 8}\right)=30,765 \times \mathrm{C}_{7}^{(m-1)}$.

4. CONCLUSIONS

Based on the above reasoning, we may conclude that the number of vertices in a labeled connected graph of order seven with no parallel edges is $N\left(G_{7, m, g}\right)_{l}=6,727 \times \mathrm{C}_{6}^{m}$ for $g=6$, while for $7 \leq g \leq 21, N\left(G_{7, m, g}\right)_{l}=k_{g} \mathrm{C}_{g-1}^{(m-(g-6))}$, where $k_{7}=30,160, k_{8}=$ $30,765, k_{9}=21,000, k_{10}=28,364, k_{11}=26,880, k_{12}=26,460$, $k_{13}=20,790, k_{14}=10,290, k_{15}=8,022, k_{16}=2,940, k_{17}$ $=4,417, k_{18}=2,835, k_{19}=210, k_{20}=21, k_{21}=1$.

5. ACKNOWLEDGMENT

The Research Center Universitas Lampung funded this study under Postgraduate research grant project No. 815/UN26. 21/PN/2022, and the authors gratefully acknowledge the funding.

REFERENCES

Agnarsson, G. and R. Greenlaw (2006). Graph Theory: Modeling, Applications, and Algorithms. Prentice-Hall, Inc.
Al Etaiwi, W. M. (2014). Encryption Algorithm Using Graph Theory. Journal of Scientific Research and Reports, 3(19); 25192527
Álvarez, M. C. and D. Ehnts (2015). The Roads Not Taken: Graph Theory and Macroeconomic Regimes in Stock-Flow Consistent Modeling. Working Paper
Amanto, A., N. Notiragayu, L. Zakaria, and W. Wamiliana (2021). The Relationship of the Formulas for the Number of Connected Vertices Labeled Graphs with Order Five and Order Six without Loops. Desimal: Jurnal Matematika, 4(3); 357-364
Amanto, A., W. Wamiliana, M. Usman, and R. Permatasari (2017). Counting the Number of Disconnected Vertex Labelled Graphs with Order Maximal Four. Science International Lahore, 29(6); 1181-1186
Ansori, M., W. Wamiliana, and F. Puri (2021). Determining the Number of Connected Vertex Labeled Graphs of Order

Seven without Loops by Observing the Patterns of Formula for Lower Order Graphs with Similar Property. Science and Technology Indonesia, 6(4); 328-336
Bogart, K. P. (2004). Combinatorics Through Guided Discovery. LibreText
Bona, M. (2007). Introduction to Enumerative Combinatorics. McGraw-Hill Science/Engineering/Math
Brandes, U. and S. Cornelsen (2009). Phylogenetic Graph Models Beyond Trees. Discrete Applied Mathematics, 157(10); 2361-2369
Burch, K. J. (2019). Chemical Applications of Graph Theory. In Mathematical Physics in Theoretical Chemistry. Elsevier, pages 261-294
Cayley, P. (1874). LVII. On the Mathematical Theory of Isomers. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 47(314); 444-447
Gramatica, R., T. Di Matteo, S. Giorgetti, M. Barbiani, D. Bevec, and T. Aste (2014). Graph Theory Enables Drug Repurposing-How a Mathematical Model Can Drive the Discovery of Hidden Mechanisms of Action. PloS One, 9(1); e84912
Holmes, T. D., R. H. Rothman, and W. B. Zimmerman (2021). Graph Theory Applied to Plasma Chemical Reaction Engineering. Plasma Chemistry and Plasma Processing, 41(2); 531-557
Hsu, L. H. and C. K. Lin (2008). Graph Theory and Interconnection Networks. CRC Press
Huson, D. H. and D. Bryant (2006). Application of Phylogenetic Networks in Evolutionary Studies. Molecular Biology and Evolution, 23(2); 254-267
Kannimuthu, S., D. Bhanu, and K. Bhuvaneshwari (2020). A Novel Approach for Agricultural Decision Making Using Graph Coloring. SN Applied Sciences, 2(1); 1-6
Kawakura, S. and R. Shibasaki (2018). Grouping Method Using Graph Theory for Agricultural Workers Engaging in Manual Tasks. Journal of Advanced Agricultural Technologies, 5(3); 173-181
Mathur, R. and N. Adlakha (2016). A Graph Theoretic Model for Prediction of Reticulation Events and Phylogenetic Networks for DNA Sequences. Egyptian journal of Basic and Applied Sciences, 3(3); 263-271
Ni, B., R. Qazi, S. U. Rehman, and G. Farid (2021). Some Graph-Based Encryption Schemes. Journal of Mathematics, 2021; 1-8
Priyadarsini, P. (2015). A Survey on Some Applications of Graph Theory in Cryptography. Journal of Discrete Mathematical Sciences and Cryptography, 18(3); 209-217
Puri, F., M. Usman, M. Ansori, and Y. Antoni (2021). The Formula to Count the Number of Vertices Labeled Order Six Connected Graphs with Maximum Thirty Edges without Loops. Journal of Physics: Conference Series, 1751(1); 012023
Singh, R. P. (2014). Application of Graph Theory in Computer Science and Engineering. International Journal of Computer Applications, 104(1)
Vasudev, C. (2006). Graph Theory with Applications. New Age

International
Wamiliana, W., A. Amanto, M. Usman, M. Ansori, and F. C. Puri (2020). Enumerating the Number of Connected Vertices Labeled Graph of Order Six with Maximum Ten Loops and Containing No Parallel Edges. Science and Technology Indonesia, 5(4); 131-135

Wamiliana, W., A. Nuryaman, A. Sutrisno, and N. Prayoga (2019). Determining the Number of Connected Vertices Labelled Graph of Order Five with Maximum Number of Parallel Edges is Five and Containing No Loops. Journal of Physics: Conference Series, 1338; 012043

