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AbstractGrowth in air passenger flow has caused severe congestion at the airport check-in counter, posing a significant problem for airportmanagement. Particularly during the check-in process, the necessary authorities must coordinate sufficient facilities with adequatestaffing levels. The airport check-in counter problem (ACCAP) is a field concerned with establishing the optimal number of check-incounters to balance operating expenses and passenger wait times in order to reduce airport congestion. Expanding the numberof counters and staff to a minimum operating cost is able to prevent the congestion problem from escalating without incurringfurther operating expenses. This paper focused on proposing optimal scheduling of airport check-in counters operations, includingstaffing. A dynamic model with multi-period principles is adapted to address the aforementioned problem by balancing the trade-offbetween service performance and operational cost. As a case study, data from Singapore Changi International Airport was utilized.The findings are also discussed in terms of the flow of passengers throughout the airport check-in procedure and operations. As aresult, the number of activated counters is minimized throughout all shifts by applying the dynamic model at the average servicetime. At the same time, there are fewer passengers in the queue.
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1. INTRODUCTION

Airport congestion and delays are caused by rapid air trans-
port demand growth (Zografos et al., 2017) . However, due
to an unprecedented crisis due to the outbreak of the Covid-
19 pandemic in 2020 (although some countries experience
Covid-19 in late 2019), almost all airports have been paralyzed
(Dabachine et al., 2020) . The number of passengers remained
relatively consistent before Covid-19 until plummeting dra-
matically due mainly to the pandemic from 2019 to 2020.
Nevertheless, the situation is showing a steady recovery path
and the number of passengers is likely to increase.

Increased passenger numbers would initiate airport con-
gestion problems (Bruno et al., 2019; Parlar and Sharafali,
2008), especially in crucial areas such as check-in counters.
The inability to accommodate passenger demand within ca-
pacity usage would incur delay costs to the airport terminal
management (Pita et al., 2013) . For this reason, it is important
for airport management to sustain and maintain the availability
of infrastructure (Rajapaksha and Jayasuriya, 2020) . How-
ever, increasing the airport capacity is not an option because

that would require additional funding (Xu et al., 2014) yet
the airport terminal management must reduce congestion to
guarantee that all passengers may board their flights on time.

Proper organization of the staff at these check-in counters
directly influences passenger congestion and delay (Xin et al.,
2014) . In terms of the length of the queue and waiting periods,
this setup achieves a balance between operational costs and
the passenger’s level of acceptable service (Bruno et al., 2019) .
Moreover, better service, shorter queues, and quicker check-ins
for passengers will all result from more effective use of check-in
counters (Lalita and Murthy, 2022) . In the case of restricted
financing sources, increasing the number of counters and staff
would incur more operating expenses; therefore, improving
the current system at the minimum costs is the most effective
way to handle this scenario.

Looking at this issue, this paper improves the airport’s op-
eration of check-in counters at the Singapore Changi Interna-
tional Airport, by applying a multi-period model specifically
for solving the operational problem as proposed by Bruno et al.
(2019) . Using this model, we can determine the appropriate
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number of active check-in counters for departing aircraft in
order to reduce operating expenses. In addition, we noticed
that the presence of mathematical modelling for addressing
the problem for the airport check-in counter allocation (or in
short, ACCAP) was rather challenging, despite being one of
the most crucial phases of air travel. Consequently, utilizing a
mathematical modelling approach to solve the corresponding
issue is a significant advantage. The remainder of the paper is
structured as follows: Section 3 reviewed the relevant literature
of the study area, Section 4 describes the dynamic multi-period
model and the data acquisition, and Section 5 discussed the
results. Finally, the entire work of this paper is enclosed in
Section 6.

2. EXPERIMENTAL SECTION

2.1 Past Related Studies
The ACCAP study focuses on allocating an adequate num-
ber of check-in counters so that the passenger waiting time
is minimized and satisfactory service can be provided to the
passengers over a given planning horizon with respect to cer-
tain constraints (Nandhini et al., 2012) . The ACCAP involves
the optimization procedures in the decision making of service
management.

Simulation approaches had gained attention from several
studies. Van Dijk and Van Der Sluis (2006) projected a combi-
nation of simulation and integer programming (IP) to solve the
counters for check-in at Brisbane Airport Corporation (BAC)
and Dutch airport Schiphol. The BAC was also utilized by
Paloma Garcia (2017) as case study, but using only on the
simulation approach to analyze all the possibilities of different
situations on BAC such as variability in demand, services work-
ing, queuing type or redirection between areas. Meanwhile,
Bevilacqua and Ciarapica (2010) integrated queueing theory
into the proposed simulation model. The simulation showed
that optimization of average queuing times was preferred in a
common check-in.

A deterministic approach was adapted in solving ACCAP,
such as Hsu et al. (2012) which utilized binary integer pro-
gramming (BIP) to minimize the total service time for the
assignment of passengers. The authors indicated that a much
wider network, such as the inclusion of check-in counters in the
solution process, must be considered to ensure a faster passen-
ger check-in process. Meanwhile, Al-Sultan (2015) integrated
IP and stochastic approach to propose the schedule for the
check-in counter at the international airport in Kuwait so that
the total counters and staffing periods at these counters can
be reduced. Meanwhile, the stochastic approach was used to
allocate the operational and staff scheduling at these counters.

Araujo and Repolho (2015) applied three version of mixed
integer linear programming (MILP) formulation to a case study
in Amsterdam Airport Schiphol using the simulated and dy-
namic model. The MILP formulations were applied to two
check-in systems in ACCAP which are the common ACCAP
(CACCAP) and the dedicated ACCAP (DACCAP). Both pro-
posed deterministic models are able to find the total counters of

check-in per time interval, but DACCAP is able to compute the
solution for each flight. Stochastic elements were also found
in dynamic models’ approach in solving the ACCAP such as
study by Parlar and Sharafali (2008) . The proposed model was
based on the multi-server queue by computing and generating
the transient queueing probabilities. The study aimed to op-
timize the opening of the number of counters for passengers
check-in over a specific period. Meanwhile, dynamic opening
and closing of counters approach was being used by Nandhini
et al. (2012) . The authors provide a satisfactory service level
to passengers by reducing the average queuing time. Simi-
larly, Marintseva (2014) focused on the problem of check-in
technologies at the Boryspil airport in Ukraine. The authors
adapted queuing theory of M/M/s model to find the optimal
check-in counter operating periods. As a result, the waiting
time at the check-in area could be minimized by almost one
hour.

Focusing on parallel queuing, Parlar et al. (2018) focused
the problem of ACCAP for a single flight. The authors found
the optimal counters for check-in by deploying a real-event
dynamic method. In 2018, Parlar et al. (2018) analyzed the
suitable number of counters for check-in at Singapore Changi
International Airport using the event-based dynamic program-
ming model. Meanwhile, Bruno and Genovese (2010) devel-
oped a dynamic mathematical model for both static and dy-
namic airport check-in problems by minimizing the expenses
associated with the check-in service via optimal resource allo-
cation. In 2014, Bruno et al. (2014) developed supplemen-
tary variants of the dynamic model. The authors proposed
a dynamic capacitated lot-sizing model and applied it to sev-
eral practical logistic applications, including ACCAP. In 2019,
Bruno et al. (2019) integrates staff scheduling within the pro-
posed dynamic ACCAP model. The authors applied the model
in Italy.

Our work focused on improving the facility operation, in-
cluding providing an optimal number of staff at the counters for
check-in. Hence, the dynamic multi-period model proposed
by Bruno et al. (2019) is applied to solve the problem of the
check-in counter operation at the selected case study, i.e., the
Singapore Changi International Airport. Next section presents
the dynamic multi-period model.

2.2 AMulti-period Model for Airport Check-in Counters
Allocation Problem

Let the planning horizon,T be divided into a finite number N
indexed by t(t = 1, 2, ..., N ). Each t is assumed to be identical
periods of length l. Each departing flight f ( f = 1, 2, ..., F )
in such time horizon is characterized a time window, in which
check-in operations can be performed. Assuming that check-
in counter service times are consistent and passenger arrivals
increase over time, a queue will undoubtedly form. Hence,
these passengers in the queue, with notation If t , is assumed will
be served during the subsequent period. Thus, the dynamic
multi-period model proposed by Bruno et al. (2019) is con-
suming this scenario as the conservation flow of passengers.

© 2023 The Authors. Page 117 of 122



Alimuddin et. al. Science and Technology Indonesia, 8 (2023) 116-122

The remaining indices, sets, parameters, and decision variables
of the model are as follows:

T Planning horizon;
N Number of periods in which the planning horizon is

subdivided, indexed by t;
l Length of single period;
J Set of shift types that can be selected for check-in

counters operators;
F Index of departing flights in the considered planning

horizon;
q f Average service time to process a single passenger of

flight f at check-in counters;
d f t Arrival of passengers of flight f during period t;
𝛾 Service level to be guaranteed i.e., minimum number of

passengers to be accepted expressed as percentage of
arrivals;

C j Cost for shift type j in J ;
a jkt Binary parameter equal to 1 if and only if the shift j in

J , activated in the period k covers the period t (with t >
k);

𝛽 f t Binary parameter equal to 1 if and only if the check-in
time window for flight f is closed in period t;

x jt Number or operators starting the shift type j at the
beginning of period t;

q f t Passengers of flight f accepted at the check-in counters
in period t;

If t Passengers of flight f in queue at the check-in counters
at the end of period t;

The dynamic multi-period model as follows:

Min Z =

J∑︁
j=1

N∑︁
t=1

c jx
j
t (1)

where

𝛽 f tIf t = 0;∀f = 1, 2, ..., F , ∀t = 1, 2, ..., N (2)

If t = If (t−1) +d f t−q f t;∀f = 1, 2, ..., F , ∀t = 1, 2, ..., N (3)

∑︁
f ∈F

If t ≤ (1 − 𝛾)
∑︁
f ∈F

d f t;∀t = 1, 2, ..., N (4)

∑︁
f ∈F

p f q f t ≤ l
∑︁
f ∈F

∑︁
k=1

a jktx
j
t ;∀f = 1, 2, ..., F , ∀t = 1, 2, ..., N

(5)

x jt ≥ 0;∀ j ∈ J , ∀t = 1, 2, ..., N (6)

q f t , If t ∈ {0, 1};∀f = 1, 2, ..., F , ∀t = 1, 2, ..., N (7)

The objective function of the model as shown in (1) aims to
minimize the total cost for the activated counters at all times
and across all shifts. Equations (2)-(5) present the constraints of
the model. Constraint (2) dictates that passengers of each flight
f will only be attended to during their designated check-in time
windows. Additionally, this constraint guarantees that no queue
forms outside of the flight f check-in time windows. Con-
straint (3) sets passenger flow conservation limits, i.e., within
the check-in time windows, passengers are served or else wait
in a queue. Therefore, guarantees that all passengers are served
within the operational times of the check-in counter. Inequal-
ities (4) restrict the queue to a specified percentage based on
the arrival of passengers. Inequalities (5) represent the level of
service capacity. Finally, constraints (6) and (7) characterize
the decision variables of the model.

2.3 Data Acquisitions
Singapore Changi International Airport has become a global
leader in the airport industry in less than 30 years, according to
the prestigious publication Business Traveler (Bok, 2015) and
has become a global leader in the airport business (Lee et al.,
2014) . The airport has been the Skytrax Airport of the Year
winners since 2013 (Wu and Tsui, 2020) . Prior to Covid-19,
Changi Airport handled around 68.3 million passengers in
2019, representing a 4.0% growth over the previous year, via
100 airlines serving 400 cities in approximately 100 countries
and territories worldwide (Lee et al., 2022) . Airport passenger
traffic has increased significantly since the pandemic ended,
and this trend is expected to continue.

Table 1 provides information from Parlar et al. (2018)
regarding airport check-in counters, including the total number
of counters used, the number of available counters for each 5-
minutes duration, and the number of passengers (M ). As seen,
M has an average of 149 passengers for every flight, ranging
from 81 to 261 passengers. With a range of 1 hour 8 to 2 hours
45 minutes, the average operation time for the check-in counter
is 1 hour 34 minutes. It is observed that the minimum counter
needed for the check-in process is one, while the maximum is
four. The total number of counters used reflects the assumption
that each counter has the same amount of staff allocation. The
operation of these counters for every five minutes, as shown in
the final column of Table 1. In general, as time increases, the
number of operational counters in 5 minutes period decreases.
Although these numbers are consistent with the operation of
check-in counters but are highly dependent on the quantity of
passengers arriving at each time interval. Parlar et al. (2018)
discovered that around six passengers arrived at the check-in
counter, with the average waiting time for each flight ranging
from 57 seconds to 16 minutes and 28 seconds.

Instead of the number of passengers in each queue, Parlar
et al. (2018) assigned enumerators to each activated counter for
observing the system operation. Therefore, the pattern used to
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Table 1. Details of the Operation of Counters of 14 Randomly Selected Flights (Source: Parlar et al. (2018) )

Flight, f M Check-in Counter Operational Times Duration (hour:min) Number of Counters Used

F01 81 03:59-05:28 01:29 1
F02 156 04:00-05:20 01:20 3
F03 121 03:48-05:58 02:10 2
F04 131 05:06-06:28 01:22 2
F05 111 08:35-10:00 01:25 4
F06 137 10:35-11:50 01:15 3
F07 145 10:57-12:22 01:25 2
F08 185 12:55-15:15 02:20 2
F09 151 14:55-16:03 01:08 4
F10 167 15:50-17:15 01:25 3
F11 131 16:45-18:05 01:20 2
F12 138 18:45-20:05 01:20 3
F13 261 18:58-20:32 01:34 4
F14 172 21:25-00:10 02:45 2

Table 2. Total Activated Check-in Counters for Each Shift
( ∑T

t x
j
t
)
, for Three Scenarios

Scenario
Total Number of Check-in Counters for All t for Each Shift j

( ∑T
t x

j
t
)

Morning Afternoon Night

Actual 26 40 26
p f = 1.5 24 40 25
p f = 4.0 32 42 29

distribute the total number of passengers for each time period
follows the International Air Transport Association’s (IATA)
distribution, as obtained from Ahyudanari (2003) . To suit
the model of Bruno et al. (2019) , information of Table 1 was
modified according to 10-minute time interval (as presented
in Figure 1).

The time periods were classified into three shifts, namely
morning, afternoon, and night shifts. Figure 1 illustrates the
arrival of passengers regarding the shift and the flight. Flights
F01 through F05 are covered during the morning shift, which
is between 00:10 and 9:50. Check-in activities for the after-
noon shift occur between 10:00 and 18:00, covering flights
F06 to F11. Finally, the night shift is from 18:10 to 00:00 and
includes flights F12 to F14. Meanwhile, the number of acti-
vated counters for check-in of each shift is depicted in Figure 2.
The morning shift has a maximum of two activated counters,
the afternoon shift has one activated counter, and the night
shift has a maximum of two activated counters. Please note
that each activated counter is expected to have one working
staff. Meanwhile, for this study, it is assumed that the cost of
staffing the counter is constant throughout shift j.

The 𝛽 f t is based on the estimated departure time for each
flight f . It is assumed that the check-in counter would be
open for three hours. Subsequently, the departure time was
set 30 minutes after the counter closing time. For instance, the
departure time for flight F01 is 6.30 a.m., hence it is assumed

Figure 1. Passengers’ Arrival Distributions Based on IATA
Arrival Distribution (Source: Ahyudanari (2003) )

that the check-in counter will be open three hours prior, at 3.30
a.m., and close 30 minutes prior, at 6.00 a.m. It is presumed
that all passengers could check in before the flight’s departure.
The value of p f parameter was set to 1.5 and 4.0 minutes.
The average service time is 1.5 minutes, while the maximum
service duration is 4 minutes. The service level, 𝛾 , denotes the
guaranteed service level as the expenses of check-in processes
that must be minimized by taking queue length into account,
i.e., the number of passengers who are still in line. The value of
𝛾 is set consistently at 0.2 or 20% of service level is guaranteed
to passengers, it is regarded that less than 80% of passengers
are still in queue at the check-in counters at the end of time
t. The problem is solved by CPLEX solver using a PC with
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Figure 2. Actual Operating Counters for Each Shift Within a
10-minutes Interval

configuration: Intel Core i5 CPU 3.1 GHz, RAM 12.00 GB,
and 64-bit Windows 10 operating system

3. RESULT AND DISCUSSION

The check-in counter operators were assigned based on the
optimal number of counters to be opened in each shift. Some
of these counters may be unused due to the unpredictable
arrival pattern every flight. During off-peak hours, the number
of unused counter(s) or operational capacity can be minimized.
This can be identified by modifying the number of counters
based on value 𝛾=0.2 and p f at 1.5 and 4.0.

The optimal number of activated counters is shown in Table
2 for three scenarios, which are, the actual, p f =1.5 and p f =4.0.
From Table 2, for the morning shift, for actual scenario, from
12:01 a.m. and 10:00 a.m. there are 26 check-in counters are
activated (with a 10-minute interval) for all five flights F01,
F02, F03, F04, and F05. When p f =1.5, the optimal number
of activated counters is reduced to 24, and when p f =4.0, this
number increased to 32. This indicates that additional counters
must be activated to serve airline passengers when the service
time increases. Figure 3 illustrates the activated counters for
each shift for better understanding.

Figure 3. Total Number of Check-in Counter for Each Shift
Within a 10-minute Interval, Under Three Different Shifts

Figure 4 depicts the total number of passengers served by
the activated counters by shift, using p f values of 1.5 and 4.0.
Figures 4(a) and 4(b) show that for both p f values, some pas-
sengers served for each 10-minute time interval for each flight
are slightly different. Figure 5 is derived from both Figures
4(a) and 4(b) that highlight the number of passengers served by
flight F13. For each value of p f , the highest number of passen-

gers served by the activated counter occurs at a different time.
When pf is 1.5, 78 passengers are served at 19:40, however
when p f is 4.0 only 60 passengers are served at 19:30. When
the maximum service time, p f is used, fewer passengers will be
served. It could be noted that the average service time required
to process a single flight passenger at the check-in counter has a
substantial impact on the total number of passengers in queue.
In addition, for our study, because a single check-in counter is
activated for each flight during the night shift, it is anticipated
that this situation may occur. This is investigated further uti-
lizing the decision variable of the number of passengers in the
queue (If t).

Figure 4. Total Number of Passengers Served for Each Shift
Within a 10-minute Interval, Using Two Service Times

Figure 5. Total Number of Passengers Served for F13 Within a
10-minute Interval, Using Two Service Times

Table 3 depicts the number of passengers in queue for p f
values of 1.5 and 4.0 while keeping a service level, 𝛾 at 0.2.
The actual number of passengers for each shift is shown in the
same table. It is found that for p f = 1.5 and 4.0, the highest
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Table 3. Number of Passengers in the Queue at Check-in Counters
( ∑T

t
∑F
f If t

)
Shift

Actual Number
of Passengers

(M )

Passengers of All Flight f in Queue at Check-in Counters at the End
of Period t

( ∑T
t
∑F
f If t

)
p f =1.5 p f =4.0

Morning 600 227 (38%) 254 (42%)
Afternoon 916 132 (14%) 220 (24%)

Night 571 247 (43%) 221 (39%)

Table 4. Comparison Between the Actual and Predicted on the Total Activated Counters at All Time t and for All Flight f for
Each Shift j

( ∑T
t x

j
t
)
Shift Actual p f = 1.5

Difference
(%)*

Actual p f = 4.0
Difference

(%)*

Morning 26 24 -7.70% 26 32 23.10%
Afternoon 40 40 - 40 42 5%

Night 26 25 -3.80% 26 29 10.30%
*Note:- Difference (%) = (Predicted – Actual)/Actual × 100%

number of passengers in the queue during the night shift was
247 (43%) and 221 (39%), respectively. The afternoon shift
has the most passengers despite being the shortest queue, i.e.,
p f = 1.5 is 132 (14%) and p f = 4.0 is 220 (24%). As indicated
earlier, the night shift is most likely to have the longest queue
length because each flight has just one activated counter. From
Table 2, we can see that the total counters that were activated
for all times t and flight f during the night shift for both p f
values are the least ones. Meanwhile, the afternoon shift has
the highest number of total activated counters; hence, this shift
is expected to have the shortest queues.

Table 4 provided a summary of the findings based on the
actual, projected, and difference percentage values. For service
times of 1.5 minutes, the model underestimates the total num-
ber of activated counters during the morning and night shifts.
For maximum service times, i.e., 4.0 minutes, the model over-
estimated the total number of activated counters throughout
all shifts. The average absolute percentage difference between
actual and predicted outputs is 8.4%. From the findings, the
model’s suitability for system operation monitoring, particu-
larly for the cause-and-effect analysis, has been demonstrated.
Clearly, less counters for check-in were activated at time t due
to a shorter average service time to process a passenger. Thus,
more passengers can be accepted at time t in the designated
capacity level. The model can estimate the optimal check-in
counters based on system capacity and service availability.

This study utilizes two service times, namely, the average
service times and the maximum service times that guarantee a
service level of 80%. When the service time is relatively short,
only 24 counters should be activated during morning shift,
40 counters during afternoon shift, and 25 counters during
night shift. Meanwhile, extended service times requires more

counters, specifically 32 counters for the morning shift, 42
counters for the afternoon shift, and 29 counters for the night
shift. Consequently, the utilized multi-period model was able
to identify the appropriate number of total activation counters
for Changi Airport, precisely for the corresponding airlines.
Our study shows that there is a direct correlation between the
optimal number of active check-in counters, the total number
of passengers served during each 10-minute interval, and the
total number of passengers waiting in the queue are existing.

4. CONCLUSION

This study focuses on optimizing the facility’s operations, in-
cluding supplying the optimal number of check-in counters,
so that overall demand can be served at a maximum level at
the minimum cost. This paper utilized the dynamic multi-
period model developed by Bruno et al. (2019) to solve the
check-in counter operation problem at the selected case study,
i.e., Changi International Airport in Singapore. The applied
model demonstrates that the number of passengers in the queue
increases in relation to service level guarantees. The results ob-
tained clearly minimize the total cost for the activated check-in
counters at all times and throughout all shifts, especially when
the average service time is 1.5 minutes. Clearly, there is a di-
rect correlation between the optimal number of active check-in
counters and the total number of passengers served during each
10-minute interval, as well as the total number of passengers
waiting in the queue. Utilizing the dynamic model, the airline
check-in flow at the counters can be optimized. Furthermore,
the results show any adjustments would have direct effects on
airport operations. If a more comprehensive dataset is used,
airport operations will undoubtedly become more productive
and economical. Additionally, this study shows a decision-
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making model that employs the dynamic characteristics of a
multi-period model can provide insights on management’s
decision-making solutions. Further enhancements to the math-
ematical model presented in this paper could be constructed
to replicate the real-world scenario, such as integrating specific
measurements for counter activation for each time period and
flight or imposing a limit on the total number of employees
working at activated counters.
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