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There is a strong need for new approaches to non-stationary signal ana-
lysis. These signals call for advanced time-frequency analysis techniques
(see References). The recurrence procedure for calculating the Fast Fo-
urier Transform, which enables calculations to be made several times
faster, especially in the case of precise time-frequency approach, has
been establish in the present contribution. This method was invented
in the course of transient signal analysis carried out i the Institute of
Aviation upon the aircraft impulse response m flight.
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1. Introduction

One faces significant limitations when applying an ordinary spectral ana-
lysis to highly non-stationary signal. These are: speech, music, noise of si-
gnificant variation with time, rapidly decaying signal of the aircraft impulse
response in flight (Fig.1), etc. Information about the transients cannot be
extracted from traditional spectral analysis techniques based on the Fast Fo-
urier Transform; i.e., one cannot determine time-varying properties of a spec-
trum. The aforementioned information refers to e.g., flutter properties of the
aircraft in flight, concert hall quality or noise sources detection possibilities.

Lenort (1989) applied the signal decay in time to determination of the
system damping coefficient, using the Fourier Transform (I'ig.3).

For proper graphical presentation of the timne-frequency analysis results
an additional, third coordinate is to be introduced. Lenort (1989) used the
T-axis representing the shift of analysis window of time duration 7, (Fig.3).
The diagram presented was fairly clear since the shilt A7 ol analysis window
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Fig. 1. Sample impulse aircraft wing response in flight
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Fig. 2. The response ol Fig.1 after traditional spectral analysis

Fig. 3. Time-frequency analysis applied to determination of a damping coeflicient.
For the first vibration component of the frequency f; we have A; = 7,1—ln %'l
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was equal to 7., with 7, representing the period of the analysed component
vibration.

The analysis window shift should be as small as possible i.e., equal to At
(period of the signal sampling) when analysing the signal of speech-type or
other highly non-stationary acoustic ones. Such compact presentation of spec-
tral patterns makes the diagram nearly illegible. Briel & Kjzer put therefore
forward [5,6,7] the concept of contour plots (I'ig.4).
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Fig. 4. Simplified contour plot of the results obtained after the time-frequency
analysis of the signal of I'ig.1. The frequency variation with time may prove the
object non-linearity

As in the music score, vertical axis represents the vibration frequency,
while the horizontal one is time axis. The intensity of black colour reflects
respective spectral component magnitude. The computer set supplied with
colour monitor and printer enables the spectral characteristics to be presented
in the form similar to that used in geographical maps. The resolution of
analysis method both in time and frequency domain should be as high as
possible since it affects the precision of these contour plots. The following
product enables the analysis method resolution quality to be assessed

r=T,Af
where
T, - analysis window time duration
Af - resolution in frequency domain.

The smaller the value of r is, the more precise analysis is being performed.

In general, the following three method [5,6,7] are applied when performing
the time-frequency analysis: Short Time Fourier Transform (STI'T), Wavelet
Transform (WT) and Wigner-Ville distribution.

The Author put forward the concept of introducing the Discrete Fourier
Transform (DFT), as being already tested in practice and revealing high re-
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solution for close sampling of time-dependent signals, into solution to the
aforementioned problems (cf Lenort (1995)).

When calculating the STEFT, usually the FFT algorithm is to be used with
a relatively small number of samples, i.e., N =256 or N = 128 [5,7].

A comparison between characteristics of the STFT and the DFT
being proposed is given in Table 1 for the signal sampling frequency
fs = 25600samples/s.

When using the DFT approach it was assumed that T, = T..

Table 1

f [iz] 100 | 500 | 1000 | 5000

STFT (FFT) Af [ilZ] 100 | 100 | 100 | 100
N = 256 Af/f[%]| 100 20 10 2
T.Af 1 1 1 1

DFT Af[llz] | 0.39 | 9.76 | 39.0 | 976

T, =T. Af/FI%)| 039 | 1.95 | 3.9 | 195

T.Af 0.0039 | 0.0195 | 0.039 | 0.195

A comparison between the analysis window time duration imposed in
SFTF and DFT methods, respectively is shown in Fig.5.

A _ STFT A DFT
T, =const (FFT) "J T,=var
_ Taf;
Tapy
|
7y ]Tz t 3} [Tl t

Fig. 5. Demonstration of the signal time duration. In contrast to the FFT
properties in the DI'T method the analysis window time duration is
frequency-dependent and it can be assumed that Tyy = ey, n=1,2,...

The FFT procedure deals with the vibration segment of T, time duration,
encompassing one cycle of vibration at the first frequency, i.e., T, = T,
despite the vibration frequency range.

On the contrary, when employing the DI'T method it is possible to analyse
the vibration segment duration of which is frequency-dependent. The best
possible resolution in time domain is achieved for the vibration segment of
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time duration equal to the vibration period at a given frequency f, i.e.,
Toy=Tey.

For almost stationary signals it can be, ol course, assumed that
Toy = 3Ty

putting aside the resolution aspect.

It follows from Table 1 that the FI'T method suits better when analysing
signals of higher frequency, while the DFT method being put forward works
better for low frequency signal analysis purposes.

The analysis window of time duration 7T,, originating from the point
71, alter the analysis has been performed is shifted to the point 7. Ior
the reasonable results to be obtained this shift should be equal to At, with
At representing the signal sampling period. With this window shilt there
arises the possibility for speeding up the Fourier Transform computing since
the results of signal processing made at a previous calculation stage can be
exploited, at least partially, at the successive ones.

2. Recurrence method for the Fourier Transform calculation

The continuous Fourier Translorm of a time-dependent signal of definite
time duration T, can be represented as follows

Ta
2
YD =5 [s(t)esp(-j2m 1) di (2.1)
‘0
where j = +/—1 and
y(t) - signal being analysed
Y(f) - complex function in frequency domain.

The Fast Fourier Transform can be computed aflter introducing the follo-
wing time-discretization of the function f()

t = nAt n=0,1,.,N-1 (2.2)

In result of which the discrete values of the function Y{(f) calculated at the

points
[ =kASf k=0,1,...,.N -1 (2.3)
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are obtained according to the following formula

N-1
Y(kASf) = ﬁ Z y(nAt)exp(—j2rkA fnAt)At k=0,1,.,N-1
n=0
(2.4)
where
At - sampling period of the time-dependent signal y(t)
Af - resolution in frequency domain, being equal for the FFT
1 1
Af = - = —— .
f =5 = ¥a (2.5)

where N represents the number of samples in the signal segment under inve-
stigation.

Generally, the function y(t) may take complex values, but for the sake of
transformations legibility let us assume that this function has only real values,
which is really true in the case of the vibration signal under investigation
(Fig.1).

Upon substituting Eq (2.5) into Eq (2.4) we have

N-1
2
Y(EAS) = % >~ y(nat) exp (=i kn) E=0,1,..N—1 (2.6)
n=0

Let us focus our attention on the problem of finding the way of fastest
possible calculation of the above sumi, utilising the results obtained for the
previous analysis window position. Assume we have obtained Yy(kAf) and
now, after shifting the analysis window by At we have to calculate the value
of Yi(kAf) for the same value of £.

Applying some simplifying transformations to Eq (2.6) yields the following
clear form

N-1 N-1 N-1
Z Yn eXp(—jon) = Z Yn COS Oty — | Z Ynsina, = Yo, +jYo,,, (2.7)
n=0 n=0 n=0
where 5
™
Yn = Y(nAL) oy = (Fk)n (2.8)

For the initial and first positions, respectively, of the analysis window we can
write the following formulae for the real parts of transformations
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N-1
Z Yn COS Oy, = Yo COS Qp +

n=0 (2.9)

(y1cosay + ypacosay + ... + yny—1 cosan—_1)

N
Z Yn€OSan_1 = (Y1 cOSag + Y cosay + ... + yn—1 cosan_2) +
n=1

(2.10)
YN COSaN_1

And similarly for the imaginary parts we have

+

N-1
Z Yn sin o, = yp sit ag +

n=0
(2.11)
(misinag + yasinag + ...+ yny_1sinan_1)

N
Z YnSiDay_; = (y1sinap + y2sinag + ... + yy_ysinany_2) +

n= (2.12)

YN sinan_q

By virtue of Eq (2.8); we can write

cosag =cos0 =1 sinag =0
COSapN_] = COS O] sinay_1 = —sinaq

Substituting the above formulae into Eqs (2.9)+(2.12) yields

N-1
Yo, = Yocos ap + Z Yn €COS Oy, = Yo + Wo, (2.13)
n=1
N-1
Yip = Z Yn €COSOpn_1 + YN cOsay_1 = Wi, + yn cosag (2.14)
n=1
N -1
~Yo,. = Yosinap+ Y Ynsinan, = Wo,,, (2.15)
n=1
N-1

-Yi,,. = Z YnSinan_1 +ynsinay_y =Wy, —ynysinog (2.16)

n=1
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Upon introducing the above formulae into the equations given above we have

N-1 N-1 N-1
Wop +iWo,,. = Z Yn COS @y + ] Z Yo Sin ¢, = Z Yn Xpljo,) =

n=1\ n=1 n=1

N-1 N-1
(2T . C[.f2m _
= n; ?/nexp[J(—N—L)n] = exp(jar) nZ:‘: yne)q)[J<ﬁk)(7z — 1)] =
(2.17)
N-1
= exp(ja1) ) ynexp(jan_1) =
n=1
N-1 N-1
= exp(jon)( 32 Y cos @umr +3 Y Yesinanny) = exp(jar (Wi +W1,,.)
n=1 n=1
And then
Wig +iWh,,, = (Wo, + W, )exp(=jai) = (Wo, + jWo,, Jcosa; — jsinay)
(2.18)
Therefore one obtains
LV]R = ‘VOR Ccos ] + ‘/Volm sin a (2]9)
Wi, = Wy, cosan — Wog sineg (2.20)

Instead of calculating the values of W, and Wy, from Eqs (2.10)and (2.12)
(sums of relevant products in brackets) one may use the values of Wy, and
W, .. calculated at the previous step.

By virtue of Eqs (2.13) and (2.15) we have

WOR = )’OR - yo ‘lvolm = _)l’olm
Substituting the above formulae into Eqs (2.19) and (2.20) yields

‘/VlR = (),OR - yO) Cosal - ),Olm Sin al (2.21)
Wi, = —Yo,,, cosay — (Yo, — yo)sin (2.22)

While from Eqs (2.14) and (2.16) it follows

Wi, =Y, —yncosa (2.23)
Wi = =Y, +ynsina (2.24)

After substituting Fqs(2.23) and (2.24) into Eqs (2.21) and (2.22) we have

Yip —yncosay = (Yo, — yo)cosay — Yo, sina

=Yy, + ynsinay = =Yy, cosay — (Yo, — yo) siney
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And finally we have

Yig = (Yo, — o+ yn)cosay — Yy, sina (2.25)

Y1, = (Yog —yo + yn)sinay + Yo, cosay (2.26)

In general, for an arbitrary taken analysis window position [+ 1 it is possible
to utilise the results of calculations made for the previous position /[, i.e.

Yusnye = (Vg — v+ ynyjcosaq = 17, sinay (2.27)
Yiusy,, = Yig — v+ ynyr)sinag +Y),,, cosaq (2.28)

Therefore it can be easily seen that when using the recurrence method
being put forward four products should be calculated. The number of mul-
tiplications made is assumed to represent an approximated measure of the
transform calculation time (cf Brighain (1974)). Wlen applying the FFT me-
thod to calculation of the N transform values (N points of a spectrum) one
should, for the real signal y(7) calculate 2(N/2)log, N products, respectively
(cf Brigham (1974)). It is well known that the numnber of N/2.56 points of
spectrum obtaiued is assumed to be calculated accurately. So for one point of
spectrum to be calculated one should make

‘2% log, N

N
256

= 2.56log, N (2.29)

multiplications on the average.

For N = 256 (usually taken in the STI'T with the use of I'I'T) we have
20.48 products, while when applying the recurrence method the time of cal-
culations is approximately 5 times shorter.

The dilference between respective calculation times becomes even more
apparent for calculations ol higher accuracy, e.g., for closer sampling, i.e., at
greater values of N. It can be easily shown that for N = 2048 the results
can be obtained 7 times faster when using tlie proposed method. It can
be achieved, however only for the time-frequency analysis with the analysis
window shifted by At.

Shifting the analysis window by 2At calls for 8 multiplications to be
made, while the 3Az shift involves 12 multiplications, respectively, ete. It is
therefore obvious that the application of recurrence method is reasonable only
to calculations with the At window shift. The initial spectrum is obtained
using the FFT and the recurrence approach is taken for further time-frequency
spectrum calculation.
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Table 1 proves that better resolution of time-frequency analysis is to be
obtained when using the DFT method being proposed, especially for the fre-
quency range below 10kIz.

The initial spectrum can be found with the use of DFT method, and then
in result of the recurrence approach, Eqs (2.27) and (2.28), the successive
spectra can be obtained. In this case, however, N is frequency-dependent
(Fig.5), i.e., the higher frequency is analysed the smaller number of sampled
can be accepted in calculations.

In the presented approach the signal segment being analysed has not been
pre-processed (e.g., using the Hann or Gaussian window). Therefore no signal
distortion is introduced within the analysis window time duration.

3. Conclusions

e The recurrence method being put forward enables the time-frequency
analysis of non-stationary signals to be performed several times faster in
comparison with the other methods.

e The recurrence method supplied with the schemes of the DFT being
proposed enables shorter calculation times and better resolutions to be
obtained in comparison with the STI'T method.
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Jak liczyé szybciej szybka transformate Fouriera — metoda rekurencyjna
Streszczenie

Analiza sygnaléw niestacjonarnych wymaga nowych metod postepowania. Do
tych celéw opracowano metody analizy czasowo-czestotliwosciowe] (patrz Literatura).
W pracy wyprowadzono wzdr do rekurencyjnego obliczana transformaty Fouriera,
ktdry kilkakrotnie przyspiesza obliczenia w przypadku dokladne) analizy czasowo-
czestotliwosciowej. Metoda powstala w zwiazku z prowadzonymi w Instytucie Lot-
nictwa analizami sygnaldw odpowiedzi impulsowych samolotu w locie.
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