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The solution to the problem of stress-deformation state of hollow thick-
walled laminated cylinders within the framework of 3D anisotropic ela-
sticity theory is proposed. The author studies the influence of non-
homogeneity and anisotropy of elastic properties of materials on the
stress level and deformability of wound cylinders. Different layer conju-
gations, types of loading and cylinder boundary conditions are taken into
account. A rational scheme of reinforcement can be found by changing
properties of the material.
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1. Formulation of the problem

Many structural elements in modern technology have the form of cylinder
made of layers of composite materials, which are composed through winding,
due to the necessity for receiving products with smaller weight and still the
required strength and stiffness. Diflerent applied shell theories are used to so-
lve these problems (cf Bolotin and Novichkov (1980); Grigolyuk and Kulikov
(1988); Kominar (1981); Malmeister et al. (1980); Pankratova (1992)). It is
important to find a rational scheme of reinforcement for such a thick-walled
cylinder. Changing this scheme we will be able to influence strength and stiff-
ness of the product. When determining the stress level and deformability of
composite cylinders their characteristics as, for example, anisotropy and non-
homogeneity of mechanical parameters, types of layer conjugations, types of
loading, etc. should be taken into account. As our experience indicates we
can be provided with a deeper insight into the stress-deformation state of the
layered cylinder basing on the equations of 3D anisotropic elasticity theory.
Among the available methods of solution to problems in 3D formulation we
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should point out the method for calculating stresses in the body made of ani-
sotropic materials which have one plane of elastic symmetry (cf Pankratova
(1992); Vasilenko and Pankratova (1984), (1990); Grigorenko et al. (1991)).
Its practical significance consists in a possibility of using the obtained solu-
tion for orthotropic materials when the principal directions of anisotropy do
not coincide with those, that take place in the structural elements made by
winding.

2. Stress-deformation state of the anisotropic non-homogeneous
cylinder

In this paper the equations of the 3D elasticity theory are used to study the
influence of non-homogeneity and anisotropy of elastic properties of material
of each layer of a cylinder exerted the choice of a winding scheme and types
of layers conjugation, types of loading and boundary conditions, on the stress-
deformation state of laminated cylinder. The non-homogeneous cylinder is
described in cylindrical coordinate system z, @, r. There is one plane of elastic
symmetry tangent to each point of cylindric surface r =const (cf Vasilneko
and Pankratova (1984)) or perpendicular to the axis of rotation z =const (cf
Vasilneko and Pankratova (1990)). The Hook generalized constitutive law for
the ith layer (r; < 7 < 7i41,1=1,2,...,N) has the form

¢ =B+ f (2.1)
where

[ez’ee’er’ 207 r0’ rz]

o' =[U 60’0 20’ rt9’ rz]

B = ||bL, (1)l Lp=1,2,..,6
bma = bms = by = b =0 (m = 1,2,3,6) for r = const
bins = byms = bsym = bgm =0 (m=1,2,3,4) for z = const

f = [ai’T’ ati9T’ a;"T7 a‘izBTv ai‘BT, aizT]

T
are stress tensor components. Elastic constants b}p, coefficients of
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linear thermal expansion o}, ap, a, in the corresponding directions z,6,r,

coefficients of temperature shift oy, al,, ai, are functions of the coordinate r.
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This makes it possible to take into account arbitrary variability of the material
properties through the thickness of the elastic cylinder.

Eqs (2.1) are also valid for an orthotropic cylinder principal directions of
elasticity of which are turned about the normal to the surface r =const or
z =const through the angle ¢. In this case the elastic constants appear from
the known equations (cf Lehniskii) through the corresponding characteristics
of an anisotropic material.

Taking into account the equilibrium equations, the strain-displacement re-
lations and the Hook law for a non-homogeneous anisotropic body, the system
of partial differential equations describing the stress-deformation state of la-
minated hollow elastic bodies may be derived. The functions o' are taken as
the basic ones with the help of which we can formulate in stresses o, 7, Trg
and in displacements u,, u,, ug the conditions for limiting surfaces r = rq,
r = rn and for the surfaces of conjugation of layers r;,. After making a se-
ries of transformations a system of partial differential equations for the ith
cylinder layer is obtained (cf Pankratova (1992))

da' d i i i
r = Z Bio.+ f (2.2)
k=1
where
B}, = (16 ()l pg=1,2,..,6

t_ [yt ot : t o,
o = [ar’Trz’Tr%ur’uzvué’]

fo= U i, £

o =g ai:a"i ai:?ii
! 27 0z 87 08
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74T 9 75 = 9200 %= B2

The solution to the equations must satisfy the following conditions on the
limiting surfaces r =rg, r =ryn

a;7(ro, 2) = f1(2) ol (rn,2) = f(2)
Tro(r0,2) = f3(2) th(rn,2) = f1(2)
(70, 2) = f3(2) o (rn,2) = [ (2)

Additionally the conditions for the surfaces of conjugation of layers and boun-
dary conditions at the cylinder ends must be satisfied. The author takes into
consideration the fact that different conditions imposed by layered material
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can be formulated on the surfaces of conjugation of layers. In the case of rigid
conjugation of layers, when layers work together without slipping and breaking
off, the continuity conditions aj- = aj-“,j =1,2,..,6,i=1,2,..., N — 1 are
formulated for all & vector components. Sometimes these conditions can be
violated, for example, when at the layers conjugation some of the components
of &' can break, i.e. a} # a}“. In particular, in the case of layers slipping,
tangential stresses 7,,, Tr¢ on the conjugation surface are known and can be
arbitrarily specified. In that case the tangential displacement components are
discontinuous 6} # uitl, uj # uyt!. For the normal displacement compo-
nents the continuity condition wu: = wit! is met. When this condition is not
satisfied, separation of layers takes place.

Here we consider the case when at the cylinder ends z = 0, = ! such axial
stresses o, and tangential stresses 7,9 are applied that the ends of cylinder
neither shift in the axial direction nor rotate

ul =uh=0 i =0 (2.3)

Expanding all the fields into series of orthogonal trigonometric functions
allows one the strict separation of the variables in Eq (2.2). Then the boundary
problem is exactly transformed into a set of one-dimensional problems. The
requirement of taking into account an arbitrary type of the layers conjugation
leads to the necessity of solution of a multi-point boundary problem. As a
result, for each ¢th layer we use the method of reduction of the boundary
problem to the Cauchy problems. According to this method the solution is
assumed in the form

li
oi= Y uidl, (2.4)
v=1

Here [; = n — p? 4+ 1 (for this problem n = 6) is the number of solutions to
the Cauchy problems for the ith layer, ajv is the solution for the ith layer of
the non-homogeneous body of the vth Cauchy problem for the components of
o' with numbers j = 1,2, ...,p’ using the formulated initial conditions, and
for the components of o' with numbers j = p/ + 1,...,n with the following
initial conditions

Here

oy =1 (2.5)
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Using the stable numerical method of discrete orthogonalization for in-
tegration of the constructed Cauchy problems, we obtain solutions with the
required accuracy level. As a result, the solutions to the problem lead to eva-
luation of coefficients u!. These coefficients arc found from the solution to the
system of linear algebraic equations. This system can be derived taking into
account Eq (2.5), the continuity conditions for the m components of o, when
crossing the surface between the ith and (i + 1)th layers, the formulated s
conditions on the external surfaces for each :th layer of the elastic cylinder
for o‘j- j =1,2,..,s and the conditions on the cylinder limiting surface rpy.
Having defined ui, values of the resolving functions 0'§ at the required points
of integration within the interval 74 < r < rn are found in accordance with
Eq (2.4). Then, using the obtained functions we calculate all factors of the
stress-deformation state of the considered non-homogeneous hollow elastic cy-
linder. Since the general solution to a three-dimensional problem is written in
terms of double trigonometric series automatic summation subroutines were
used in the algorithm. These subroutines enabled calculation of the values of
stress and displacement fields in thiree mutually orthogonal directions at any
point of the considered efastic cylinder.

3. Analysis of the cylinder fabricated by winding

On the basis of the approach presented above, let us study the influence
of the choice of a winding scheme, modelled here by non-homogeneity and
anisotropy of elastic material properties, on the stress state of the laminated
cylinder (Fig.1). This cylinder is subjected to the surface load which changes
according to o, = ogsin?(nwz/l). The case of smoth layers conjugation is
considered here. The hollow cylinder is made of an orthotropic material (cf
Grigorenko et al. (1991)) with the following elastic constants for the case

T =const

E, =20.1F, Ey=1.6F, E. =1.63F,
v,9 = 0.024 vy, = 0.324 vy = 0.543
Grg = 0.548 Ey Gy, =G, =0.878E

and for the case z =const these elastic characteristics were chosen as
E, =1.63F, Fy =16, E, =20.1F,
v,0 = 0.543 vy, = 0.324 v9 = 0.024

G = 0.548E, G,, =G, = 0.878E,
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Fig. 1. Two-layer cylinder fabricated by winding

Principal directions of material elasticity for the case r =const are turned
about the normal to the face surfaces (for the case z =const to the end
surfaces) of the cylinder by the angle . Calculations are performed for

TN—_—1.27'0 7‘0:1 EO:]_
= 27‘0 P = 9
and for different values : 0; 7/12; n/6; 7 /4; x/3; 57 /12; /2.

Within the limits of unchangeable constant thickness the cylinder was di-
vided into 3, 5 and 7 layers, respectively, with the following winding structure

Layers | Number Winding scheme
number | of the layer number
variant | 1 2 3 4 5 6 7
3 1 o 0 %)
2 0 ¢ 0
5 1 ¢ 0 —¢ 0 ¢
2 0 ¢ 0 - 0
7 1 ¢ 0 = 0 ¢ 0 -—p
2 0 o 0 —¢ 0 ¢ 0

Some of the obtained results for the 3, 5 and 7 layers cylinder for two
variants of the winding scheme are given in Table 1 and Table 2.
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Table 1. Distribution of stresses ¢, gg, 7, and displacements wu, for

the fixed section 2z = 0.5/ and the winding angle ¢ = 7 /4

Layers Number
number| 7 | of the 0./00 a9 /oo T.0/00 | —2—
ooEJ 1o
variant

T =const
3 1.0 1 0.8371 | —3.1403 | —0.0299 | —1.7446
2 0.1994 | —1.8831 | —0.0754 | —1.9233
1.2 1 —3.5346 | —4.6467 | —0.0560 | —1.7439
2 —4.1466 | —4.8179 0.0619 | —1.9233
5 1.0 1 0.9695 | —3.1710 0.0340 | —1.7766
2 —0.0754 | —1.8900 | —0.0270 | —1.8856
1.2 1 -3.6019 | —4.7323 0.0247 | —1.7766
2 —4.0604 | —4.7206 | —0.0260 | —1.8856
7 1.0 1 0.0259 | —3.1906 0.0026 | —1.7931
2 0.0282 | —4.7771 | —0.0145 | —1.8674
1.2 1 —3.6380 | —1.8864 | —0.0249 | —1.7926
2 —4.0191 | —-4.6738 0.0069 | —1.8671

2z =const
3 1.0 1 —2.9358 0.7551 | —-0.0371 | —-2.3212
2 —-2.2761 0.2572 | —0.0650 | —2.1886
1.2 1 —4.3350 | —3.2144 0.0352 | —2.2189
2 —-5.2014 | —4.3173 | -0.0505 | —2.1414
5 1.0 1 —2.8939 0.7585 | —0.0454 | —2.2950
2 —2.3181 0.2422 | —0.0399 | —2.2098
1.2 1 —4.2985 | —3.1550 0.0248 | —2.2042
2 —5.2530 | —4.3286 | —0.0400 | —2.1535
7 1.0 1 —2.8510 0.7462 0.0285 | —2.2661
2 —2.3604 0.2413 | —-0.0353 | —2.2359
1.2 1 —4.2531 | —=3.0776 0.0290 | —2.1816
2 -5.3271 4.4799 0.0153 | —2.1694

All linear dimensions are referred to the unit of length 7. In Table 1
there are results for stresses o,, oy, 7,9 and displacements wu, on the limiting

surfaces 7, r in the middle section 2z = 0.5{.
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Table 2. Distribution of stresses T7,,, T and displacements ;u,, ug for
the fixed section z = 0.4/ and the winding angle ¢ = 7 /4

Layers Number
number| 7 of the Tr2/ 00 79/ 00 Ool‘;;:lro aogglro
variant

r =const
3 1.07 1 —0.4756 0.0470 | —0.1570 | —0.0070
2 —0.4197 0.0236 | —0.1766 0.0160
1.13 1 —0.4118 | -0.0072 | --0.0011 | —0.0076
2 —0.4618 0.1214 | —0.0238 | —0.0117
5 1.08 1 —0.4634 | —0.0104 | —0.1206 | —0.0087
2 —0.5002 0.0043 | —0.1470 | —0.0097
1.12 1 —-0.4771 | —0.0091 | —-0.0423 0.0084
2 —0.4748 | —0.0064 | —0.0436 | —0.0102
7 1.09 1 —0.5004 | —0.0033 | —0.1087 0.0074
2 —0.4869 | —0.0044 | —0.1130 | —0.0070
1.12 1 —0.4640 0.0032 | —0.0362 0.0076
2 —0.4884 | —0.0037 | —0.0497 0.0064

z =const
3 1.07 1 —0.4320 0.0171 | —0.1984 | —0.0330
2 —0.4306 0.0226 | —0.2008 0.0213
1.13 1 —0.3869 0.0011 | —0.0157 | —0.0345
2 —-0.4577 0.0209 | —0.0314 | —0.0380
5 1.08 1 —0.4566 | —0.0075 | —0.1617 | —0.0273
2 —-0.4722 0.0107 | —0.1650 | —0.0253
1.12 1 —0.4654 | —0.0089 | —0.0566 0.0077
2 —0.4558 0.0005 | —0.0643 | —0.0260
7 1.09 1 —0.4804 | —0.0041 | —0.1369 0.0890
2 —0.4740 0.0013 | —0.1384 0.0430
1.12 1 —0.4503 | —0.0001 | —0.5940 0.0090
2 —0.4696 | —0.0012 | —0.0618 | —0.0144

In Table 2 there are results for stresses T,,, 7.4 and displacements wu,,
ug on the surface of layers conjugation r; in the section 2z = 0.4/ for the
winding angle ¢ = m/4. As follows from the given results, choice of the first
variant of the winding scheme lowers the level of the maximal absolute values
of stresses o,, op more than by 10% + 40%. We should note that when
the winding angle lies within the range w/12 < ¢ < 57/12, circumferential
displacements ug and tangential stresses 7,4, 7,9 appear, values of which are
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Fig. 2. Distribution of displacements wug through thickness versus winding angle ¢

comparable to displacements w, and stresses 7,.,. Distribution of wuy and
Tr¢ through the thickness of the five-layer cylinder for the first variant of the
winding according to the winding angle ¢ in section z = 0.8/ are shown
in Fig.2 and Fig.3. Displacements wug reach their maximal values when the
winding angle is ¢ = /4.

Tangential stresses 7,, change across the cylinder thickness obeying the
square parabola law reaching their maximal values near the center of the
section for z = 0.4[. Stresses 7,9, T,s and displacements wug change across
the cylinder thickness in a non-linear, non-monotonous manner, revealing the
character of distribution of the formulated winding scheme, reaching their
maximal values at the cylinder length 2z = 0.25/. Radial displacements wu,
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Fig. 3. Distribution of stresses 7.4 through thickness versus winding angle ¢

across the cylinder thickness change insignificantly. Stresses ¢, change in
amonotonic way along the cylinder length, and the stresses gy near the section
z = 0.25] change their sign relative to the values at z = (. Stresses 7,4 reach
their maximal values at 2z = 0.4(.

4. Solution for the cylinder with free ends

Let us solve the problem of an anisotropic non-homogeneous cylinder with
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free ends, where
gi:T:z:T;.g:O z=10 Z-_—l (41)

We use the solution to the problem of tension of an anisotropic multi-layer
cylinder subjected to the axial force P (cf Vasilenko and Pankratova (1984)),
based on the solution with the boundary conditions (2.3) at the ends. This
allows one to satisfy the boundary conditions for o, and 7.9 in the averaged
form. Cylindrical surfaces for the stretched cylinder are free from stresses, and
the boundary conditions at the ends have then the form

Z/ardr_—

=17

(4.2)

N T

Z-/T;gﬁdr:ﬂ T =0

i=l7‘i—1 2r
As it was shown by Vasilenko and Pankratova (1984), the solution to the
problem of tension of the anisotropic cylinder subjected to the axial force is
described by the system of ordinary differential equations of the second order.
The right-hand side of this system includes unknown constants C and D,
which are calculated from the boundary conditions (4.2) using methods of
the mean square approximation and changeable directions for minimization
of the function of two variables. Following these methods the criterium of

minimization is written as follows

min C, D [P QWZ / oi(C, D)r dr] + [M ZWZ / i,(C, D)r2dr]

i=1

=1 Ti—1 Ti—1

with the help of which the values of constants C and D are obtained (Fig.4).
Influence of the winding effect in the cylinder with free ends is studied on the
example of a two-layer hollow cylinder. Cylinder layers are wound by oriented
fibres with equal and opposite angles relative the longitudinal axis. Principal
directions of elasticity are turned towards coordinate axes z and 6 through
the angle ¢ in the inner layer and the angle —¢ in the outer layer. Material of
the element is orthotropic and has the following characteristics (cf Grigorenko
et al. (1991))

all =E0_1/07 (L22:(L33=E61/1.4
a12 = a;3 = —0.068E;'/1.4  ay3 = —0.4E5'/14
asq = E51/0.5 ass = age = £51/0.575
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Pressure o, = ggsin®(nmz/l)is applied at the outer surface of the cylinder.
The inner cylinder radius is 7g, the outer one is ry = 1.2r5. Each layer has
the same thickness. Calculations were made for

T m T ®w™ Om W
" e Ty
The results of calculations are given in Fig.5 (for the boundary conditions
(2.3), (4.2) and (4.1)) in the form of distribution of stresses o, oy, 7.4 over
the outer cylinder surface in the section 2z = 0.5/ according to the winding
angle ¢. As follows from the obtained results, stresses 7, arising in the
wounded cylinder are comparable with the stresses o,, gg and in the area
/6 < ¢ < 57 /12 contribute considerably to the stress-deformation state of
the cylinder. Stresses o, that appear at the ends of the cylinder are smaller
than their values arising far {from the ends.

ro =1 L =2rg =

5. Solution for two-layer cylinder with non-rigid conjugation
of layers

Let us consider the stress-deformation state in a two-layer anisotro-
pic cylinder with non-rigid conjugation of layers. Local surface loading
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Fig. 5. Distribution of stresses &, o9, 7,5 versus winding angle ¢; (a) — for
a cylinder with boundary conditions (2.3), (b) - for a cylinder under axial force,
(c) - for a cylinder with free ends

g, = oosin®(nrz/l) is applied at the external cylinder surface and the lo-
ading o, = ogsin(nrz/l) is applied at the internal cylinder surface. The
internal cylinder layer is made of orthotropic material with the following elastic
characteristics (cf Pankratova and Mukoed (1994))

an =Eo‘1/138 a22=a33=E0_1/9.7
iz = a13 = —031E0_1/138 93 = —-05E0_1/97
a44:E0“/3.2 a55:a66:E0‘1/6.9

The external cylinder layer is made of the material turned through 90 degrees
relative to the material of the internal layer and has the following elastic

5 — Mechanika teoretyczna



746 N.PANKRATOVA

characteristics
an = E51/9.7 ax; = E51/138 asz = E5'/9.7
aiz = —0.31E5'/9.7 a3 = -05E;1/9.7 a3 = —0.31E;'/138
ass = E0_1/32 aq4q4 = dge = Eo_l/Gg

Calculations have been made for rg = 1, r. = 1.1, ry = 1.2, 1 = 2rg, Eg = 1.
The cases of rigid conjugation, slipping and separation of layers are considered.
Some of the results are given in Fig.6 in the form of stress distribution o,
across the thickness of the cylinder in the section z = 0.125l.

i 1

30/
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.30 "
3
-40 : .
0 02 04 06 08  ~—L
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Fig. 6. Distribution of stresses ¢, through the thickness in section z = 0.5

The results corresponding to the rigid conjugation, slipping and separation
of layers are shown by solid, dashed and dash-doted lines, respectively. Tan-
gential stresses o, change almost linearly across the thickness. Non-perfect
bonding of layers increases the jump of o, to the order of one on the inter-
faces, when jumps in the values of circumferential stresses o4 do not exceed
30% in the case of slipping and 60% in the case of layers separation. This
can be explained by the layers material structure. From the results it follows
that radial stresses o, change in the nonlinear nonmonotonous manner along
the cylinder length within the internal layer, reaching their maximal absolute
values at the distance equal to the cylinder thickness from its end. This can
be explained by specifics of the applied load. Here, tangential stresses 7., are
equal to zero on the whole surface of layers conjugation for the cases of their
non-rigid conjugation. In the case of rigid conjugation and slipping of layers,
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radial displacements u, change insignificantly through the thickness of layers
package, reaching 10% in their distribution.

In the case of layers separation displacements wu,, as we expected, have
leap while going through the whole surface of layers conjugation, reaching
a difference almost of the order of one in the section 2z = 0.125/, that is
preconditioned by changing the character of o,. Displacements wu, change
linearly across the thickness of cylinder layers. In the case of slipping and
separation of layers these displacements change their sign, when crossing the
interface between the adjoing layers leading to a jump of an order two relatively
to their absolute values.

6. Conclusions

The analysis of stress-strain state of the non-homogeneous anisotropic wo-
und cylinders points out the necessity for taking into account the effects caused
by non-coincideness of the principal directions of elasticity with directions of
the coordinate lines with due account of different manners of conjugation of
cylinder layers, types of loading and boundary conditions. It has been shown
that changing material properties we may select a rational scheme of winding
of structural elements of the cylindrical form.

The solution to the problem, obtained here within 3D anisotropic elasticity
with high degree of accuracy, may be applied as a standard in elaborating
various more approximate models.
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Odksztalcenie anizotropowego, niejednoroduego cylindra

Streszczenie

W pracy zaproponowano spos6b wyznaczania stanu naprezenia 1 odksztalcenia
w wydrazonym laminatowym cylindrze grubos'ciennym, w zakresie anizotropowe) teo-
rii sprezystosci. Autorka, biorac pod uwage rézne typy polaczen warstw, obciazen oraz
warunkow br'zegowych bada wplyw wlasnosci sprezystych materialu, me_]ednorodno-
sci 1 anizotropowasci, na poziom naprezen oraz odksztalcalnosé cylmdlow powstalych
przez nawijanie. Z przeprowadzonych badan wynika, ze zmieniajac wlasnosci mate-
rialu mozna otrzymac racjonalny schemat wzmocnienia.

Manuscript received February 21, 1995; accepled for print September 26, 1995



