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Critical loads of laterally loaded shallow shells are sensitive to tempe-
rature changes. The paper estimates this dependence. The analysis is
carried out within the geometrically nonlinear range. The equilibrium
equations are derived from the principle of virtual displacements. Ma-
terial of the shell is isotropic, linearly elastic and its properties do not
depend on temperature. Changes in mechanical and thermal fields pro-
ceed statically. The general algorithm allowing to construct the load-
displacement nonlinear equilibrium path at given temperature is presen-
ted. This general procedure is applied to shells. The dependence of the
critical load on the temperature change is found. The problem is solved
numerically by FEM. An illustrative example is given.

1. Introduction

A typical large deflection analysis of flexible structures is confined to struc-
tures carrying an external load. Obviously this factor is of the greatest im-
portance as far as the stability is concerned but other factors can violate the
stable equilibrium and cause a serious failure of the structure. The tempera-
ture change is such a factor.

The load — deflection characteristic in the nonlinear range is dependent
on the temperature. The critical force determined from the nonlinear equi-
librium path analysis is also temperature sensitive. The problem addressed
in the paper is to find the critical loads for the same structure at different
temperatures.

The attention will be focused on laterally loaded shallow shells, but the
approach will be more general. Structures of this class are highly sensitive to
temperature changes. For a given value of the temperature change, the critical
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value of the external load must be known. The paper shows how to find it
when large displacements occur.

It will be assumed that linear strain — stress relations hold. The material
characteristics are not temperature dependent and the temperature distribu-
tion is uniform. In the finite element model the five parameter shell theory
(on the element level) will be adopted.
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Fig. 1. Typical nonlinear response of a laterally loaded shell; B - bifurcation point,
U - upper limit point, L — lower limit point, T' — turning point

Typical nonlinear response of a flexible structure is presented in I'ig.1. Po-
int B stands for the bifurcation point, points U and L - upper and lower
limit points, respectively. We assume that the structure is first subjected to
temperature changes and then loaded by a load proportional to parameter A
(only one parameter loading will be considercd). The load — displacement cha-
racteristic at this new temperature and, particularly, the value of the critical
load are sought.

A review dealing with thermal buckling of plates and shells appeared re-
cently, Thornton (1993). Most of the papers have dealt with cylindrical shells
supported at the ends. The critical temperature elevation was found by solving
an eigenvalue problem to which the problem can be reduced. This approach
was adopted also by Chen and Chen (1990) where many other references are
provided. The procedure allows to find the critical temperature elevation.
This linear stability approach, called also the initial stability, is true only
when the displacements remain small in the prebuckling state. It results in
significant errors in the case of structures for which the prebuckling displa-
cements are highly nonlinear. Laterally loaded shell panels are examples of
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such structures. They are very flexible and {rom the very beginning to the
buckling configurations one obscrves large displacements. In such a case the
linear stability approach must be replaced by the [ull geometrically nonlinear
analysis. It means that the critical configurations must be determined in the
construction process of the nonlinear equilibrium path with all its singular po-
ints. Studies of Sivakumaran (1990) and of Meyers and Ilyer (1991) deal with
large deflections of plates due to temperature changes. Chen and Chen (1991),
Huang and Tauchert (1991) deal with laminated cylindrical panels. In both,
the finite element method was adopted. Marcinowski (1994) analyzed large di-
splacements of shells subjected to external loadings and temperature changes.
The external forces were applied first and established on a definite level. Then
the shell was subjected to the action of temperature. In the present paper,
the inverse loading process will be considered, i.e. after temperature changes
an external load will be applied to the desired value. From the practical point
of view, both cases are equally important.

2. Governing equations. General case

The derivation presented below is similar to that given by Marcinowski
(1994). Tt is repeated here due to essential differences in tlie loading processes.

The nonlinear equilibrium path is the set ol equilibrium configurations
in the N 4+ 1 dimensional (N is the number of degrees of frcedom of the
discretized system) load-displacement space. Each configuration (a point on
this space curve) is the solution to the nonlinear equilibrium equations. These
equations can be obtained, in general, as follows.

I éd; (i =1,2,...,N, where N is the number of degrees of freedom)
denotes the virtual displacements of the discretized three-dimensional system,
then the principle of virtual displacements can be expressed as follows

/aekok AV — FPéd; = 0 (2.1)
|4

where é¢F is the variation of the kth strain component due to the nodal
displacement variation, o is the kth stress component, FF denotes the
generalized nodal force which corresponds to the nodal displacement. These
forces are staticaly equivalent to other forces and loads sustained by the struc-
ture and are obtained by the standard FEM approach (cf Zienkiewicz (1972)).
The integration is spread over the undeformed original volume V.
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Here and below the summation convention holds. Every time when the
same index (regardless of being sub- or superscript) appears twice, it means
a summation and its limits are specified separately. In Eq (2.1), it is spread
over all degrees of freedom.

For an isotropic llookean material, the stress strain relation adopts the
Duhamel-Neumann form (cf Wempner (1981)) (in tensor notation)

oi; = 2Ge;; + perrbi; — a(3p + 2G)ATS;; ,75,k=1,2,3 (2.2)
where

1, G — Lame constants

bij — Cronecker delta

a — coefficient of thermal expansion

AT — temperature change.

This relation for our purposes can be written as follows
o' = D (eF — &) Lk=1,..,M (2.3)

where e* are the total strains and &4 are the strains duc to temperature

change only. M stands for the number of stress (strain) components and is
equal to 6 in the general case. Each of components which appear in Eq (2.3)
can be identified with stress and strain components from Iq (2.2). In the
three dimensional case
e = =P = aAT (2.4)

are the only nonzero terms of the thermal strain state. D!* is the symmetric
matrix of material constants which follows from Eq (2.2).

The strain-displacement relations (components of Green’s tensor) have the
form (cf Wempner (1981))

1 ..
&ij = i(u‘hj +uj7i +Uk i uk»j) 27]7k: 17273 (25)

At an arbitrary point of a finite element for the three dimensional case it
can be written as (cf Marcinowski (1989))

e* = (BF + WEd;)d; k=1,..M ij=1,..,N®  (2.6)

and N°€is the number of degrees of freedom in the finite element.

The terms B¥ and Wi’; do not depend on nodal displacements. Their
forms depend on the shape functions and dilferential operators which appear
in Eq (2.5). The term Wilfj is symmetric with respect to the pair 1,5 of
subscripts.
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From the Eq (2.6) one can obtain
e = (B + Wkd;)sd; (2.7)
Now, from Eq (2.1) one obtains

Z{ [](im'{"(Gimn+Cinm+]]ijmndj)dn] dm_]:‘iT'—Nng—_’\F‘zP}édz =0 (28)
(e)

where
K = / BYDMBL av Cimn = / BEDMWE  qv
Ve Ve
Cinm = 2 / wED* B! av Hijmn = 2 / WEDHWE av o (2.9)
Ve Ve
B = [ BipHeh av NG =2 [whDHeh dv
Ve Ve

Here the integration over the whole volume V was replaced by integrations
over the initial volumes V, of the finite elements and the appropriate summa-
tion (aggregation, Zienkiewicz (1972)) of the results for consccutive elements.

The symbol 3 stands for this operation.
(e)
The following thermo-mechanical process is considered. First the uniform

temperature is elevated or dropped to a desired level. The accompanying de-
formations are determined from the nonlinear analysis procedure described
elsewhere (cf Marcinowski (1994)). Then the one-parameter (A) mechanical
loading is applied. The deformation process for a given temperature change
and for the mechanical loading defined by A is considered giving the equili-
brium path in the load - displacement space.

The terms defined in Eq (2.9) are independent of current displacements.
This feature was employed in the code. These terms are calculated once and
stored for later use.

Eq (2.8) must be true for any virtual displacements, so the following set
of equilibrium equations results

U(d, ) = Y {[Kim+(Gimn+Cinm + Hijmnd;)dn| d — T = Nd; ~AFF } =

®
(2.10)

Its solution for a given value of a control parameter yiclds the point on the
nonlinear equilibrium path. In this work a displacement will be taken as the
control parameter.
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The set (2.10) is solved by the Newton-Raphson algorithm with the stra-
tegy proposed by Batoz and Dhatt (1979). Tle same approach was adopted
by Marcinowski (1989).

Let us assume that the approximate solution d°, A® at a given point on
the path is known. The improved solution will be sought in the form

d=d° +Ad A=A+ AN (2.11)

The linear set of algebraic equations in the unknown increments Ad, AA
will be obtained from the requirecment
o 1%'4

W(d,)) = ¥(d,N) + SoAd+ TEANZ 0 (2.12)

differentiating Eq (2.10). The resulting ¢th equation Las the form

> (926,Ad, — AXFP) = —u¢ (2.13)
(e)

where
24 = Kim + [2Gimn + Cinm + Cimn + (2lijmn + Himjn)dS]dS, — NI (2.14)

Here the superscript e indicates that the given value was calculated at the
point d°, A®.

The set (2.13) is solved iteratively and the new improved solution is cal-
culated from Eq (2.11). When the ratio

|Ad, AN
|d°, A¢|

is smaller than the assumed accuracy (usually 10~*), the iterative process
is terminated. Here the norms are lengths of vectors in N + 1 dimensional
space.

To discuss the solution strategy of the set (2.13) for unknown increments
of the Newton’s iterations, let us rewrite this set in the matrix form

KrAd, ~ AMNF = —¥,_, (2.15)

where i stands for the iteration number at a given step. It is noteworthy that
K7 depends on current displacements and the temperature change (see (2.14)
and (2.9)) and the vector F depends on external forces. The temperature
factor is embedded also in ¥ (see (2.10) and (2.9)).
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For a linear set like Eq (2.15) it is admissible to decompose the vector Ad
as

Ad; = Ad; + ANA; (2.16)
Now the set (2.13) reduces to the following sets
KTA(_L' = -V,
(2.17)
KrAd; = F

or, strictly speaking, to one set with two right-hand sides. We have at our
disposal the constraint condition

Adp; =0 (2.18)

where d,, is the displacement chosen as the control parameter. From this
condition and from Eq (2.16) it follows

3 Adpm,

AN = -2
Ady,

(2.19)

This approach conserves the symmetry and bandedness of the system ma-
trix (2.15).

3. Calculation of the equilibrium path. General strategy

The nonlinear equilibrium path to trace is composed of many equilibrium
points in the load-displacement (or temperature change-displacement) space.
Let us assume that all equilibrium points up to the point £ are known (see
Fig.2). An estimated solution for the next point is required for an assumed
in advance step of the control parameter. This solution will constitute the
start to the Newton’s iterations at this step. The approach introduced by
Marcinowski (1989) will be utilized here with appropriate modifications. In
this approach derivatives of vector d and the parameter A at the point
k (Fig.2) with respect to the control parameter are nceded. To obtain the
consecutive derivatives one proceeds as follows.

Differentiating both sides of I'q (2.10) with respect to the control parameter
(the dot denotes this differentiation) gives the following relation

U,(d,2) = Y [26ndm — AFT] =0 (3.1)
(e)

3 — Mechanika teoretyczna i stosowana
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Fig. 2. Tracing strategy of a nonlinear equilibrium path

or in matrix form

Krd— AF =0 (3.2)

This is the set of equations for unknown d, A (d, A arc known at this
stage). The set is solved in the manner similar to the solution to the set
(2.15): the vector d is resolved into

d=d+ \d (3.3)
and the set (3.2) reduces to the following two scts
Krd = 0 Krd = F (3.4)

The solution to the first set is trivial and the sccond was alrcady solved

(see Eq (2.17)). From the constraint condition d,, = 1, and from Eq (3.3),
the first derivatives result

g d=Ad (3.5)

To obtain the second derivatives, let us differentiate Eq (3.1) once more.
The result is
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ii(dv ’\) = Z{ [Qfm‘.jm - ’\szJ +
m (3.6)

+ [2Gimn + Cim'n. + Cinm + (4I[imjn + 21[ijmn)djdndm} =0

or, in matrix notation )
Krd — AF = 0, (3.7)

where 6, follows from Eq (3.6) and is known. To solve this set, let us resolve
d in the manner proposed earlier

d=d+\d (3.8)

From the Eq (3.7) now two sets are obtained

KTé =6, K'ffi =F (3.9)

It is enough to generate the vector @, and to solve the first set from these
two. It is apparent that the matrix of this set is still the same. This means
that it is enough to triangularize K once, and this feature was employed in
the code. This rule is true for derivatives of any order. So, after solving the
first set and from the constraint condition d,, = 0 onc obtains

f= -

3|3

and the full expression for d results from Eq (3.8).
Higher derivatives are obtained after multiple differentiation of Eq (3.1).
For the third derivative the resulting set is

.W"i(d, ’\) = Z{ ['Qfm.d"m_ /\ ‘F;PJ + [GGimn + 3(Cimn + Cinm)] Jndm +
(e)
(3.10)
+6 Hijmnd;dndm + 6(Iijmn + Himjn)d;dndm + 61 ijmndjdndn } = 0
The solution method and the constraint condition are the same as in the
case of the second derivative. One should only gencrate the counterpart of

O,. Higher derivatives are more and more complicated and their generation
is time consuming.
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As a result of this procedure, d,&,d,/'\,j\,','\', etc. are obtained. On the
basis of these quantities the estimated solution for the given control parameter
increment An = Ad,, (see Fig.2) is constructed as the truncated Taylor
expansion about the point &

. 1. 1 -
d°=d°+d°An+ 541“&772 +od AP ...

AE

Il

. . 1 -
A+ XoAn + %Aomﬂ + 5 N AR 4L

where the superscript o means that the given value was calculated at the last
(0 — old) point on the path.

Taking the estimated solution in such a form enables to adopt comparati-
vely big increments of the control parameter (c[ Marcinowski (1989)).

In zones where the tangent to the path is nearly vertical the procedure fails
because the matrix of the set (2.17) becomes singular. One has to change the
control parameter. A new displacement should be chosen. There always exist
a displacement which enables continuation of the tracing process. In the code
applied the change of the displacement control parameter was introducted
automatically when the convergence suddenly dropped. As the new control
parameter value for which the relative increment in the last step was the
biggest was selected (cf Antoniak and Marcinowski (1994)). This procedure
guarantees that paths like those presented below can be traced in a single run
of the program.

4. Application to thin and thick shell structures

The above algorithm can be adopted without significant changes to shell
structures provided that the degenerated, isoparametric finite element is uti-
lized. The element originally introduced by Almad et al. (1970) and then
completed by Pawsey and Clough (1971), Zienkiewicz et al. (1971) was pro-
perly extended to the geometrically nonlincar range by Marcinowski (1989)
and used with the tracing strategy described above.

The strain vector which appears in Eq (2.3) has five components

€= [5:1:’7 Syt 5r’y’75r’z’75y’z’]

where 2’,%', 2" are the axes of the local coordinate system at any point inside
the element, with the axis 2’ perpendicular to the middle surface of the shell.
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For uniformly distributed temperature change, the vector e7 in Eq (2.3) has
the form
er = ATa[1,1,0,0,0]
All formulas (2.9) were determined by the reduced Gauss integration as
suggested by Pawsey and Clough (1971), Zienkiewicz et al. (1971). Two Gauss
points were used in each of the three integration directions.

5. Illustrative example

a=b=1569.81 mm
1/=140.818 mm
1h=70.968 mm
E=68.94 MPa
R=4445 mm
(=38.1 mm
v=03
a=10"1/°C

Fig. 3. Spherical shell on a square base

As an illustrative example, large displacements of a spherical shell due to
temperature change and concentrated [orce will be examined. The geometry
and material parameters of the shell are shown in I'ig. 3. The shell is hinged
along its four curvilinear edges, i.e. all three displacements and rotation with
respect to the normal to the edge are zero. The rotation with respect to the
tangent to the edge is not zero (see Fig.3). Due to the double symmetry only
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a quarter of the shell was discretized. The division into four finite elements
leads to 105 DOFs. It was sliown by Marcinowski (1994) that such a division
is sufficient as far as this example is concerned.
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Fig. 4. Nonlinear equilibrium paths at various temperatures

In Fig.4, the load displacement curves for various temperatures are presen-
ted. The curve for 0°C was also calculated by Marcinowski (1994). The pro-
cedure {rom that work allowed to calculate temperature change-displacement
equilibrium paths for a given value of the external load. The load-displacement
curve for a given temperature change could be obtained only approximately.
As an example, the path for AT = —10°C was determined. In IFig.4 this
curve is represented by the dashed line. The procedure derived in the present
paper enables to calculate the load-displacement curve for a given tempera-
ture change. All solid-line paths shown in Fig.4 were calculated on the basis
of this procedure. It is apparent that the curve determined approximately by
Marcinowski (1994) for —10°C (dashed line) is in quite a good agrecment
with the solid curve obtained by means of the procedure introduced in this
paper.

It is noteworthy that, in this example the value of the critical load (the
first extremum on the load-displacement curve) strongly depends on tempe-
rature changes. It is also interesting that at temperatures below —25°C, the
curves do not display an extremum. This means that the transition between
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the initially stable configuration and the [inal inverted shape proceceds smo-
othly without sudden snapping. All confligurations along the -32.34°C and
—41.69°C paths are stable.

Fig.5 shows deformed configurations for P = 2.5 kN (approximately) on
the initially stable, unstable and final branches, respectively, ol the path for
AT = +33.48°C. In Fig.6 the deformed configuration for the high value of
force for AT = —32.34°C is shown. Due to signilicant shrinkage of the shell
the total deflection of central zone is comparatively small.

There is another interesting feature of the results presented here and by
Marcinowski (1994). The same solution is obtained for given temperature
change AT and load P regardless which of these two was applied first.

6. Final remarks and conclusions

Temperature change is a very important factor in shell stability. For shells
carrying transverse loading and undergoing variable environmental conditions
the problem is of the highest importance. The smallest change in gecometry
induced by the temperature change can lead to a significant stiffness loss.

Only nonlinear, large displacement analysis scems to be the proper appro-
ach to this problem and such an approach was applied in the paper. The al-
gorithm presented here enables construction of load-displacement equilibrium
paths for a given value of the temperature change. I'rom these paths one can
estimate the critical load for a given temperature change.

As far as the numerical aspect is concerned the following conclusions can
be drawn:

o The convergence of the problem with external loads and temperature
changes considered in the manner shown above is slower then the co-
nvergence of the problems with solely external loads

o The finite element utilized by Marcinowski (1989) for mechanical fields
proves adequate also for thermo-mechanical problems

o For purposes of the performed analysis a comparatively small number
of finite element was suflicient (it was confirined carlier by Marcinowski
(1994)).

The assumptions of isotropy, linear elasticity and material properties in-
dependence of temperature are practically not confining the problemn. The
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most interesting phenomena, from an enginecring point of view, take place in
a comparatively small (£100°C) temperature range. In such conditions all
material parameters can be treated as temperature independent because their
values vary less than 10%. The presented algorithm is however general eno-
ugh to include temperature dependent material parameters without serious
difficulties.

It is worthy to mention that due to rather small number of degrees of
freedom adopted in the presented example all calculations were able to made
on PC of 386 and 486 families.

10.
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Nieliniowa stateccznosé powlok w jednorodunych polach temperatury

Streszczenie

Krytyczna wartosé obciazenia powlok malo wynioslych obciazonych poprzecznie
zalezy od temperatury. W pracy rozwaza sie problem oszacowania tej zaleznosci. Ana-
liza jest prowadzona w zakresie geometrycznie nicliniowym. Réwnania réwnowagi
problemu zostaly wyprowadzone z zasady przemicszczen wirtualnych. Prazyjgto, ze
material rozwazanych powlok jest izotropowy, liniowo splgzysty, a jego wlasnosci nie
zaleza od temperatury. Zmiany w polach mechanicznym i termicznym zachodza qu-
asi statyczme Przedstawiono ogélny algorytm pozwalajacy skonstruowad mellmowa,
zaleznosé obciazenia od parametru przemieszczeniowego przy ustalonej zmianie tem-
peratury. Procedura ogdlna zostala zastosowana do powlok. Znaleziono zaleznosé
obciazenia krytycznego powloki od zmiany temperatury. Zadanie rozwiazano nume-
rycznie metoda elementéw skoiiczonych. Zamicszczono przyklad.

Manuscript recetved May 13, 1994; accepted for print Oclober 3, 1994



