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The survey of literature carried out from the point of view of the appli-
cation possibilities of two-dimensional approach in mechanical systems
subject to longitudinal loadings is in the paper. The exact theory as
well as the approximate ones, and problems formulated for semi-infinite
and finite circular cylinders are considered. These problems reduce to
analysis of two equations of motion in two spatial variables according to
the exact theory, and to the discussion of equations in a simplified form
according to suitable approximate theories. The two-dimensional appro-
ach reflects better the physical phenomena in a cylinder than the one-
dimensional approach, however appropriate methods for its application
in discrete-continuous mechanical systems consisting of several rigid bo-
dies and elastic cylindrical elements have not been claborated yet. Many
mathematical difficulties are overcome in the onc-dimensional wave ap-
proach. So, in the final part of the paper an ellective method based on
the utilization of the one-dimensional longitudinal waves is described.

1. Introduction

Mechanical systems represent various mechanisms and machines. They
usually consist of many elements of diverse shapes, dimensions and mechani-
cal properties. Mechanical systems are subject to different loadings, periodic
as well as nonperiodic. They may be longitudinally, torsionally or transver-
sely deformed. The deformations can be elastic or inclastic, small or large;
however large and inelastic deformations are neglected in the present paper.
In the technical literature, the discussion of mechanical systems is conducted
using discrete models, models with continuously distributed parameters and
discrete-continuous models. The discrete models are most popular.
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In the paper we confine ourselves to the discussion of the application po-
ssibilities of elastic waves to dynamic investigations of mechanical systems
subject to longitudinal loadings. It should be pointed out that the application
of elastic waves in systems torsionally deformed is studied by Piclorz (1992).

Elements subject to longitudinal loadings appear in many machines and
mechanisms exploited in various branches of the industry, e.g. in engineering
industry, metallurgical industry, mining industry and in the transport. Inve-
stigations into such elements reduce to solving one-, two- or three-dimensional
dynamic problems. The way of the application of one-dimensional longitu-
dinal waves is worked out and employed, e.g. by Piclorz (1980) and (1986),
Mioduchowski et al. (1983), Piclorz and Nadolski (1989), Nadolski and Pie-
lorz (1990). However, the problem of the use of two-dimensional and three-
dimensional descriptions of mechanical systems subject to longitudinal loa-
dings remains still not overcome. Elastic elements in mechanical systems have
often the shape of a cylinder, for this reason the survey of hitherto results
concerning two-dimensional problems for cylindrical elements subject to lon-
gitudinal loadings can appear to be useful.

The review contains the exact theory (cf Love (1944), Kolsky (1963), Graff
(1975)) as well as the approximate theories (cf Mindlin and lerrman (1950),
Mindlin and McNiven (1960)) and problems for a semi-infinite and a finite
circular cylinders studied by Davies (1948), Miklowitz (1957), Miklowitz and
Nisewanger (1957), Skalak (1957), Bertholf (1967), Saito and Chonan (1976),
Saito and Wada (1977a,b). Below, the results given in these papers are brielly
presented from the point of view of the possibilities of their application to
mechanical systems consisting of cylindrical elements. In the final part of the
paper a one-dimensional wave approach is presented.

2. General equations of motion

Structural elements being subject to various loadings can be considered
as one-dimensional, two-dimensional and three-dimensional elements. From
the literature it follows that two-dimensional and three-dimensional dynamic
problems for structural elements are rather feebly investigated. In the case
of an elastic isotropic homogeneous medium with small displacements and
small deformations, i.e. for the strain tensor e;; and the stress tensor o;; in
the rectangular coordinates zp,z;,z3 expressed by (cf Love (1944), Kolsky
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(1963), Graff (1975))
l((?u,' 4 Oﬂ)

= 3\95; * oul
Oij = /\ekk‘sij + QGGU

equations of motion take the form

2,
oij; + Xi = P%;l
where
Uy - displacement components
l - time
A, G — material constants
p — density
X; — mass forces
bi; ~  Kronecker delta

and the comma denotes partial differentiation.
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When solving specific problems, one has to add to the above equations

appropriate initial and boundary conditions.

Depending on the geometry of considered body it may be convenient to
employ Egs (2.1) + (2.3) in cylindrical coordinates. Namely, in the case of

circular cylinder the equations of motion in the coordinate system

neglecting mass forces take the form (cf Love (1944))

0%u, _ o, 1009 do,, Orr — 099

P = or "7 08 " o2 ;
82wy _ Jorg 1o Do 20,4
P T or Tr 00 T oz T 7
*u, _ Jar, 1009, D03,  0rs

Por T o Yioe Yo T

r, 0,z

(2.4)

where wu,,ug,u, are the displacement components, and the components of the

stress tensor are

o0 = AA 42605

or

190up  u,
0., = AA + QGauz

0z

(2.5)
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1 au, aug UQ)
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where A is the dilatation which in the cylindrical coordinates is expressed by

Ju, u, 10ug OJu,
R T T

The equations of motion (2.4) can be written using the dilatation A and
rotation components w,,wyp,w, or in terms of potentials. In the first case kqs

(2.4) take the form (cf Love (1944), Kolsky (1963))

(2.6)

(')zu, 8A QG sz awg
g = A0 G0 - Ty H 205
O%uy 10A Ow, Ow,
p0l2 =(A+2G)- 7 2G_07+2G0_1‘ (2.7)
0?%u, 0A  2G O(rwg) | 2G dw,
% _ oy e s
rar =2 G - T Y T
where
9 10u, Jug 9 Jdu, Ou,
r = T 7 - A 9 = - -
r 00 0z dz M (2.8)
_ 110(rug) Ou,
2wz = T [ Jr a0 J
and w,,ws,w, satisly the identity
10(rw,) 10wy N ow, _0 (2.9)

r 9r | rd8 " 9z

On the other hand, employing the scalar potential ¢ and the vector potential
H, with displacement components given by

Jo¢ 10H, 0l

R TR F

19¢ 0ll, 0l,

(2.10)

“=3Ta " 9. " or
_ ng) d(rlly) OII,
U = 9z + r[ or 06 J
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Eqs (2.4) are satisfied if the functions ¢ and H satisfly the wave equations

1 0% 1 0%°H
2, 1 2 _ L
Vi = R V2H SR (2.11)
where
9% 104 10% 0%
2 i it -y ¥ v ¥
Ve et T roe T an
1 2 91l
2 _ 2 - -7
VIH = (V= Sl = S et (2.12)
I
+ (V2119 - Tl?no + %0(,)[0’)6’0 +V2ile,
and A+ 2G G
et = == 2.13
1 p 1= (2.13)

represent the velocities of a dilatation wave and of a distorsion wave, respec-
tively, while e,,eg, e, are versors in the cylindrical coordinates system.

The equations of motion (2.3), (2.4), (2.7) or (2.11) with appropriate initial
and boundary conditions are the base for the determination of displacement
components in structural elements, in rectangular or cylindrical coordinates,
respectively. However, the use of these equations in practical problems usually
involves serious difficulties of the mathematical nature and it may not be
useful because many problems can be reduced to solving specilic cases of these
equations.

For example, for a cylindrical element with a circular cross-section under-
going only torsional deformations (u, = u, = 0, ug = up(r,z,1)) Lqs (2.4)
reduce to the following single equation of motion

O%ug  10ug _wg  O'wo _ %02“0 (2.14)
art v Jdr r? 022 ¢ 012
with two nonzero components of the stress tensor
dug  ug Jug
=G— — — =G— 2.15
oo ( ar T ) 7z0 0z ( )

On the other hand, for the cylindrical element subject to longitudinal loadings
(ur = u(r,2,1), ug = 0, u, = u,(r,2,t)) Lqs (2.7) take the form

2
p——aa;’ =(\+ 2@)—%‘; + 20“88“;0
(2.16)
*u, ~OA  2G O(rwy)
P = Ao - =5

4 — Mechanika teoretyczna i stosowana
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Utilizing the potentials ¢ and 3 = Hy, for which

_0¢ 9y _9¢ Oy
equations of motion (2.11) reduce to the lollowing two equations
¢ 109 0% 109
ort " rdr 92t o
(2.18)

b 10y ¢ I 10%
I T i Tl

The case of a circular cylinder upon a bending loading is more complicated
than problems for torsional and longitudinal waves in the cylindrical element.
In the latter cases the motion is symmetrical about the axis of the cylinder and
nonzero displacements are independent of 6. For flexural waves, however, all
three displacement components must be considered, and all three involve 6.

All three cases of waves in the cylindrical element are important in the
dynamic analysis of mechanical systecms because clastic elements in these sy-
stems very often have the shape of a circular cylinder. Morcover, one should
realize that in mechanical systems, apart from clastic cylindrical clements, also
rigid bodies may occur.

Depending on geometrical dimensions and loadings, the determination of
displacements, strains and velocities in elastic elements of mechanical systems
is reduced to solving one-dimensional, two-dimensional or three-dimensional
problems, respectively.

Below, the two-dimensional approach in dynamic investigations of cylin-
ders subject to longitudinal loadings is discussed. A one-dimensional approach
utilizing longitudinal waves will be presented in the final part of the paper.

The dynamic analysis of the circular cylinder subject to a longitudinal
loading is performed in the literature using I5qs (2.16) or (2.18) resulting from
the exact theory of elasticity or using approximate theories.

In the present paper, the frequency equation for a circular cylinder will
be discussed first, next the approximate theories most often applicd to the
circular cylinder subject to longitudinal loadings will be presented. Studying
selected examples we shall get to know methods for investigations ol cylinders
using elastic waves. The examples concern an impact or a step-function type of
loadings for semi-infinite cylinders (cf Davies (1918), Skalak (1957)), and the
analysis of a finite rod with a rigid body situated on one end, connected with
an elastic half-space (cf Saito and Chonan (1976), Saito and Wada (1977a,b)).
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3. The Pochhammer equation of frequency

Consider an infinite elastic circular cylinder with the radius of cross-
section a, the surface of which is free from stresses. The analysis is carried
out in cylindrical coordinates (7,6, z) with the z-axis overlapping the axis of
the cylinder. If the corresponding displacement components are denoted by
u,, Ug, U,, then in the case of longitudinal waves wug vanish everywhere, u,,u,
are independent of 6, and tlie equations of motion for an elastic medium (2.7)
reduce to two Egs (2.16) with boundary conditions

Opr = Op; =0 for r=a (3.1)

In order to derive the equation of frequency for the considered cylinder the
displacements u, and wu, are sought in the form

ur(r,2,1) = U(r) expli(yz — wt))
(3.2)

u,(r,z,1) = W(r)expli(yz — wt)]

where
5 - wave number
w — phase frequency
U,W — unknown functions of the coordinate r.

Upon substituting Eqs (3.2) into (2.16) we obtain appropriate Bessel equ-
ations for A and wy. From these equations it follows that A is proportional
to the Bessel function Jo(h'r), and wy is proportional to the Bessel function
J1(K'r) where

w? w?
h? = = -yt e (3.3)
q €3

Substituting next Eqs (3.2) into (2.6) and (2.8)2 we get the following formulae
for the functions U(r) and W(r)

U(r) = A Jo(H'r) + C71,(K'7)
g (3.4)

1
W(r) = AiyJo(h'r) + Ci;%[rJl(k’r)]

where A and C are constants. Upon substituting formulas (3.4), using
Eqgs (2.5) and (3.2), into boundary conditions (3.1) we obtain the equation of
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frequency in the form (cf Love (1944), Kolsky (1963))

9*Jo(Wa) Aw
d0a? c?

dJo(h'a) 0]y (K a)
Jda Jda

w2

i Jo(h'a)] (‘272 -2 )Jl(k'a) - 4~2G

26

=0
(3.5)
where 9/0a denotes [0/07T]r=q-

From Eq (3.5) the phase velocity ¢ = w/7 for sinusoidal waves propagating
along an infinitely long cylinder for any wave length A = 27/y may be
determined. The solutions sought in the form of Eqs (3.2) are not exact for a
cylinder of finite length with ends free from stresses. However, when the length
of cylinder is great compared with the radius a, the appropriate stresses on
the cylinder ends become very small (c[ Love (1944)).

Expanding the Bessel functions Into power serics, one can find from
Eq (3.5) that for small a (ie. for Jo(Wa) 2 1, dJo(h'a)/da = h’a)2,
Ji(K'a) = K'a/2 etc.) the phase speed ¢ = w/vy approaches the velocity of
longitudinal wave in a rod ¢2 = E/p. Taking into account the terms with a?
in the power series representing the Bessel [unctions a better approximation
for the first dispersion curve may be obtained

) 27242

Co A2

where v is the Poisson ratio. The corrective curve of Pochhammer, described
by Eq (3.6), is marked by a broken line 14 in Fig.1.

(3.6)

Taln

Fig. 1. The first three dispersion curves for longitudinal waves in an elastic cylinder

The Pochhammer equation was published in 1876, however numerical re-
sults for dispersion curves according to I5q (3.5) have been known since 1941,
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Namely, Bancroft (1941) determined the first dispersion curve for longitudinal
waves in the cylinder for several values of the Poisson ratio v, and Davies
(1948) found the first three dispersion curves for v = 0.29. These curves are
shown in Fig.1. In this figure are also marked the values of ¢,/co, ¢2/¢o and
¢s/co, respectively, where ¢, is the velocity of Rayleigh surface wave which
for ¥ =0.29is ¢z = 0.5764c¢p.

From Fig.1 it follows that for long wavclengths, a/A < 0.1, the phase
velocity of longitudinal waves differs only slightly from the velocity of a lon-
gitudinal wave in a rod ¢¢ and from the velocity represented by the Rayleigh
curve 1A (Eq (3.6)). However, the difference between the velocities ¢ and
co increases with the growth in a/A. It means that accuracy of the classical
wave theory for the rod decays with the decrcase in the wavelength. Tor great
values of a/A the phase velocity ¢ approaches asymptotically the velocity
of Rayleigh wave ¢,. I'rom Fig.1 it also follows that the Rayleigh corrective
curve 1A describes quite adequately the first dispersion curve for a/A < 0.7.

In the above considerations, Iq (2.16) was employed in order to derive the
equation of frequency. In a slightly dillerent way the equation of lrequency for
longitudinal waves in a cylinder was obtained by Onoc et al. (1962) using Eqs
(2.18) and assuming potentials ¢ and % in the form

¢ = AJo(h'r)expli(yz — wi)]
(3.7)

Y = ~-DBJ (K'r)exp[i(vz — wi)]

Detailed analysis of the frequency equation derived substituting Iqs (3.7) into
the boundary conditions (3.1) is performed by Onoc et al. (1962) taking iuto
account real, imaginary and complex wave numbers, respectively.

4., Approximate equations of motion

In the literature, apart from Eqs (2.16) and (2.18) obtained from the theory
of elasticity, i.e. the exact theory, one can also find approximate equations
describing the motion of a cylinder subject to longitudinal loadings. Such
equations are developed using strenght-of-material relations (¢ Love (1944)),
or introducing some simplifications into the equations of motion (2.16) (cf
Mindlin and Herrmann (1950), Mindlin and McNiven (1960)).

The examples of equations derived [rom the strength-of-material relations
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are the classical wave equation

O _ 0%

0[2 60—5;1;—2 =0 (41)

where u is a longitudinal displacement and the Love equation presented below
which completes the equation (4.1) by a term representing the eflect of lateral
inertia. In the both cases it is assumed that the z-axis coincides with the axis
of the rod.

As it is shown in Section 3, Rayleigh assessed the eflect of lateral inertia on
longitudinal vibrations for a cylinder employing the exact theory of clasticity.
This effect was also assessed by Love using, however, the 1lamillon’s principle.
Namely, as a result of the longitudinal displacements u and the Poisson eflect,
lateral displacements » and w will occur at a certain point of the cross-section
having coordinates y and 2. The lateral strains existing in the cylinder are
determined from the Ilooke’s law as

€p = E[or —v(oy + 0,))
€y = %[Uy"’/(ar'f'o'zn (4.2)

€, = %[U‘" —v(o, + 0,)]

In the case of the uniaxial stress so that o, = o, = 0, from Eqs (4.2) we have

€y =€, = ——=0p = =V — (4.3)

E
and the lateral displacements v and w are given by

Ju du
V= yey = vy W= —vies (4.4)

Applying the amilton’s principle, upon taking into account Eqs (4.3) and
(4.4) in expressions for the kinematic and potential energy, and after applying
numerous mathematical transformations the Love equation of motion can be
derived in the form (cf Love (1944), Gralf (1975))

O*u v OYu 1 0%

9z " T2 022012 202 (4.5)

where k? is the polar radius of gyration of the cross-section.
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In order to constitute the inflluence of the lateral inertia on the dispersion
curves of the rod, the solution to the Love equation (4.5) is sought in the form

u = Aexpliy(z — ¢t)] (4.6)

where ¢ is the phase velocity. Substituting Eq (4.6) into (4.5) gives

27.2 2.2

vek ~<e

- 72 + —- 74(:2 + T — =0 (4.7)
Co L43]

Upon introduction ol the nondimensional quantities

i= < ¥ = kvy (4.8)
o

the relation (4.7) becomes
1

¢ i (4.9)
If 7 =0, from Eq (4.9) we obtain the inertialess result for the classical wave
equation (4.1). The dispersion curve corresponding to Eq (4.9) is shown in
Fig.2 together with the dispersion curves for the classical wave equation and
for the exact thecory, i.e. for the frequency cquation (3.5) for longitudinal
vibrations of the cylinder having a circular cross-scection.

Wave equation (4.1)

1.0
a \\
0-8( \ Love theory
\
0.6 N
Exact theory
0.4
0.2
L L [ [
0 1 2 3 4 S

Fig. 2. Dispersion curve for the Love equation for a rod

From relation (4.9) it follows that for low frequencics and long wavelengths
the wave in the rod described by the Love equation (4.5) propagates at the
speed being close to ¢p. With the increase in the wavenumber the dispersion
curves shown in Fig.2 diverge rapidly. It concerns especially the classical wave
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theory with 5 > 0.3, while the Love theory quite well approximates the exact
theory to the vicinity of 4 = 2.

On the basis of dispersion curves shown in Fig.2 one can assume 5 < 0.3
as the wavenumber limit for the classical wave theory. Tor ¥ = 0.3 we
have ¢ 2 1, and the frequency © = wrk/cog = 0.3. As an example, for
the steel rod with a circular cross-section of the diameter d = 0.0254 m
and for ¢ = 5080 m/s, v = 0.29, k = d/V23 we obtain: the ra-
dial frequency w = @co/(vk) = 5.85-10% rad/s, the cyclic frequency
f = w/(27) = 93186.0 llz, the wave number v = 3/(vk) = 115.19 m~1,
the wave length A = 27/y = 0.0545 m. Fromn the above it follows that
the classical wave theory can be employed in the discussion of dynamic pro-
blems for a circular rod if the cyclic frequency is lower than 90000 Iz and
the wavelength A is greater than 0.05 m.

The classical wave theory can be also applied to the study of mechani-
cal systems consisting of rigid bodies and rods undergoing longitudinal de-
formations. As an example, in the case of a rod having the finite length

{ = 0.254 m, one end of which is frec and the other is rigidly fixed,
the first radial frequency and the waveclength are (cf Kaliski et al. (1966)),
wi = weo/(2l) = 31917 rad/fs, fi = w/2r = 5.1-10° Iz,
71 = wifeo = w/(21) = 628 m~', A, = 2r/y, = 1.0 m. On

the other hand, for the rod having one end frce and the other end con-
nected to a rigid body with the mass Af from the equation of frequency
wtan(wl/ecg) — Kocg/l = 0, where Ko = Apl/M, we have (cf Kaliski ct al.
(1966))

— for Kg =10.25

w = 0.48519 — 9.75- 10%rad /s fi = 15531112 A = % = 3.2m
—for Kg=1

Wy = 0.8661—0 — 1.74-10%rad/s £ = 278211z A = % = 1.8m

In an analogous way one can determine cyclic frequencies and wavelengths for
systems consisting of several rods and several rigid bodies.
Other approximate theories for longitudinal waves in rods are given by
Mindlin and Herrmann (1950), Mindlin and McNiven (1960) (cf Grall (1975)).
Mindlin and Ilerrmann (1950) assumed that the components of cylinder
displacements have the form

U, = Cu(z,t) up =0 U, = w(z,1) (4.10)
a
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Then, after using the rclation between energy and work and employing the
equations of motion for the theory of elasticity (2.16) taking into account
(4.10) we obtain the following two equations

2 . 92
azﬁzG%—lé— —8r3(A 4+ G)u — 4(LH%)\((?)—L5 = pazg—:
‘ : (4.11)
du =, ?w , 0%w

where k, k1 are the constant correction coeflicients. The [irst equation is
mainly associated with the radial shear and inertia effects. The second equ-
ation, after omitting the first term, is similar to the classical wave equation
with the speed of dilatational wave instead of the longitudinal wave speed in
a rod. However, for long wavelengths the phase speed determined from the
dispersion relation for Eqs (4.11) approaches the longitudinal wave speed in a
rod: ¢? — E/p. Correction coefficients in Eqs (4.11) are selected in such a
way that the dispersion curve for Egs (4.11) is a good approximation of the
first dispersion curve obtained from the exact theory, IFig.2.

Mindlin and McNiven (1960) assumed the components of cylinder displa-
cement in the form of the following series

ur(r, 2,1) = Z Un(g)un(z,t) g =0
n=0 (4.12)

uy(r,2,t) = i W, (2) wy(z,t)
n=0

where U, and W, are the Jacobi polynomials. Conliniug ourselves to three
displacement functions wg,wg,w; (Mindlin and llerrmann (1950) took only
two displacement functions into account) and performing appropriate trans-
formations we obtain the following three equations of motion

(ug — dw}) — 8(A + G)rlup — 4k wy = pa’riug
()\ -+ QG)’LUg + 2)\n1u6 = pa2w0 (413)
(A + 2G)wY + 6GK2(uy — 4wy) = pa’riw,

where k; are the correction coeflicients being so selected that suitable disper-
sion curves differ insignificantly from the first three dispersion curves for the
exact theory of elasticity.

From the above considerations it follows that in approximate theories lor
the circular elastic cylinder one, two or three displacement functions are used.
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The dispersion curves obtained for the simplified equations of motion are close
to the first or to the first three dispersion curves for the exact theory within
a limited range of variability of the wavenumber.

Various approaches concerning the description of composite materials have
been developed recently (cf Christensen (1979), Aboudi (1986) and (1987)).
For example Aboudi (1986) and (1987) propose a high-order continuum theory
for the analysis of harmonic and transient waves in three-dimensional media
taking into account anisotropy. This theory covers longitudinal waves as a
particular case. Aboudi (1986) and (1987) study a model consisting of cells
having the form of a rectangular parallelepiped. Cells are divided into subcells.
In the analysis the high-order continuum theory is employed which is based
on the expansion of the displacement vector at a point in a subcell of the
representative cell in terms of the coordinates of that point with respect to the
local system. This expansion is expressed in terms of the Legendre polynomials
permitting the modelling of increasing complex deformation patterns within
the subcell. Such an approach enables one to determine assumed functions for
displacements in the range of the orthogonality of the Legendre polynomials
and to derive the appropriate dispersion relations. It should be pointed out
that mathematical formulas obtained in the case of dilatational waves are very
complicated.

The classical wave equation (4.1) also belongs to approximate equations
of motion for a circular cylinder. The simple form of this equation in the
comparison with Eqs (4.5), (4.11) and (4.13) enables one to use it in the
dynamic analysis of mechanical systems consisting of several rods and rigid
bodies subject to longitudinal deformations (cf Piclorz (1980) and (1986),
Mioduchowski et al. (1983), Pielorz and Nadolski (1989), Nadolski and Piclorz
(1990)). The application of equation (4.1) will be shown in the final part of
the present paper. The classical wave theory for rods is, moreover, a useful
and efficient tool for determination of the mechanical properties of materials
(cf Lundberg and Blanc (1988), Lundberg et al. (1990)).

5. Solutions to selected problems

In the foregoing considerations the equations of motion according to the
theory of elasticity as well as to appropriate approximate thecories for the cir-
cular cylinder subject to longitudinal loadings are given. The equations of
the theory of elasticity are employed, e.g. by Skalak (1957), Bertholf (1967),
Saito and Chonan (1976), Saito and Wada (1977a,b), Svardh (1984), Downey
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and Bogy (1987), the Love equation by Davies (1948), Conway and Jakubow-
ski (1969), and the approximate theory of Mindlin-Iferrmann by Mindlin and
Herrmann (1950), Miklowitz (1957), Miklowitz and Nisewanger (1957), Min-
dlin and McNiven (1960). Below, the results ol some of these papers are briefly
reviewed focusing attention mainly on the methods for solution of appropriate
equations.

The paper by Skalak (1957) concerns the impact of two semi-infinite elastic
circular cylinders with the radius @ and having lateral surfaces free of traction.
After impact at instance ¢ = 0 the cylinders are assumed to behave as a
single, solid, infinite cylinder. The problem of strain determination reduces
to the solution to two equations of motion (2.16) with the lollowing boundary
conditions

) Avg/ey for —cit<z<et
orr(a,2,1) = { 0 for |z| > et
(5.1)

orz(a,2,1) =0

where v is the impact speed.

The solution to Eqs (2.16) with (4.14) is obtained by mecans of the me-
thod of double-integral transforms. Evaluation of the solution is given using
approximations which are valid for significant values of the time alter the im-
pact. Namely, after applying numerous transformations connected with the
Fourier-Laplace transforms, the following formula for the strain e, = du,/9z
is derived for large values of time

_Ou, oyl T ) 1 “ .
e=Gr =2 +0/A1(a) dot +0/A1(a) dal (5.2)

where Ai(a) is the Airy integral and

’ ” 2,2

, 2 o = 2 . - Ve
V/3et V3et 4
(5.3)
2 =2z —cot 2" =~z —cot

The diagram of the function —¢,co/vo versus 2’/ Vet is presented in Tig.3. It
can be seen that 2’ = 0 corresponds to the occurence time of the disturbance
caused by an external Joading according to the classical wave theory. The
analysis carried out by Skalak (1957) shows that the strain {unction begins
to rise earlier, attaining the maximum amplitude Jater than it is predicted
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1.6
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Fig. 3. Strain —¢,co/vg versus 2’(et)~!/3

by the classical theory. Next, the strain function oscillates with a decreasing
amplitude about the solution for the classical wave theory.

Analogous results are obtained by Davies (1918) employing the Love equ-
ation (4.5) in the case when the end of the rod is subject to a step pulse. The
solution is derived by means ol the Laplace transforms. IFrom the both papers
i.e. Davies (1948) and Skalak (1957) it follows that the lateral inertia effects
are the main reason for the oscillatory behaviour of the solution according to
the exact elasticity theory about the solution predicted by the classical wave
theory. It appears that they are the only eflects taken into account in the Love
theory for the rod by the incorporation them into the classical wave equation
(4.1). These conclusions concern significant values of the time. The oscilla-
tory character of the solution about the solution for the classical theory is also
obtained by Conway and Jakubowski (1969) in the case of the axial impact of
circular cylinders with finite lengths analyzed using the Love equation.

A semi-infinite cylinder described by Eqgs (4.11), i.e. by the equations de-
rived from the approximate theory of Mindlin-llerrmann, the end of which is
subject to a step loading is considered by Miklowitz (1957) using the Laplace
transforms. Theoretical results are compared with experimnental results pre-
sented by Miklowitz and Nisewanger (1957). The behaviour of the formulae
for strains is similar to that obtained by Davies (1948) and Skalak (1957).

The case of a semi-infinite and a finite elastic cylinders subject to a step-
function loading is also discussed by Bertholf (1967). In his paper equations
of the theory of elasticity (2.16) are used and they are solved by means of the
method of finite differences. A direct numerical integration of the equations of
motion for a cylinder enables one to obtain information about displacements
and strains within the cylinder as well as on its surface, at points close to as
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well as for far from the loaded end of the cylinder. It is shown that theore-
tical results remain in an agreement with experimental results presented by
Miklowitz and Nisewanger (1957).

The problem of propagation of longitudinal clastic waves in a semi-infinite
and a finite hollow elastic cylinders with radia a and b is investigated e.g. by
Fitch (1963), Heimann and Kolsky (1966), Nigul (1967), Chong et al. (1971),
Sviardh (1984). As an example, Svirdh (1984) using a double integral trans-
form technique obtained the asymptotic solutions of equations of motion (2.16)
for a semi-infinite hollow cylinder in two cases of boundary conditions, i.e.,
when axial pressure is applied to a radially clamped end and when a prescri-
bed axial velocity is applied to an end being free from shear stress. [rom the
discussion presented by Svardh (1984) it follows that the influence of the radia
ratio @/b is not great and dispersion curves depend on the distance from tlhe
end of the cylinder.

Davies (1948), Miklowitz (1957), Miklowitz and Nisewanger (1957), Ska-
lak (1957), Bertholf (1967) consider semi-infinite and finite circular cylinders.
Elastic cylindrical elements having a finite length can be parts of mechanical
systems, however mechanical systems usually cousist of more than a single
element. Systems which can be included to mechanical systems are discussed
by Saito and Chlonan (1976), Saito and Wada (1977a,b), Downey and Bogy
(1987). Investigations carried out by Saito and Chonan (1976), Saito and
Wada (1977a) concern a finite rod connected to an clastic half-space with the
other end being f{rce or being attached to a rigid body loaded by a variable
external loading. Saito and Wada (1977b) consider a rigid body connected to
an elastic half-space by a spring. Saito and Chonan (1976), Saito and Wada
(1977a,b) assume that the half-space can represent the planc surface of an
elastic element of suflicient width and thickness. During vibrations the clastic
waves are reflected and refracted at the interface between a half-space and a
rod or a spring, and dissipation of energy by the waves radiating to infinity
produces a damping of the motion of the system. At the interface between the
rod and the half-space two kinds of specific boundary conditions are assumed,
i.e. uniform normal stress distribution over the interface and uniform normal
displacement distribution over the interface. Below, as an example, the main
results of Saito and Wada (1977a) are presented.

Consider an elastic circular rod of length [ and radius a, one end of
which is attached to a rigid body with the mass A{ and the other end to
an elastic half-space, as it is shown in Fig.4. The rigid body is subject to
a harmonic longitudinal external loading Pexp(wt) acting in the direction
coinciding with the rod axis direction, where w is the loading frequency. The
rod axis is taken as the z-axis of cylindrical coordinates (r,0,z), and the
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plane z = 0 is the boundary of the half-space. It is assumed that the rod
undergoes only longitudinal deformations, each plane cross-section of the rod
remains plane during the motion and the stress distribution over it is uniform.
In that case the equation of longitudinal vibrations of the rod is the classical

wave equation
0%up 0*up
)

012 =Cp 022 (54)
where
UR — rod displacement in the z direction
Egp, pr ~— elastic modulus and the density of the rod, respecti-
vely, and ¢4 = Eg/pn.
The solution to Eq (5.4) is sought in the form
up(z,1) = Up(z) exp(iwt) (5.5)
Upon substituting Eq (5.5) into (5.4) we have
Ur(z) = D, cos[i(l — z)} + D sin [i(l - z)] (5.6)
CR CR

where D and Dj are unknown functions of w.

The deformation of the half-space is symmetrical with respect to the z-
axis, so any variables are independent of 4. If u, and wu, are the displacement
components of the half-space in the r and =z directions, respectively, then
equations of motion for the half-space take the form (2.18) in the potentials ¢
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and 1, where all constants E, G, p, ¢;, ¢z concern the considered half-space.
Solutions to equations (2.18) arc sought in the form

¢ = exp(iwt)/A(E) exp(az)Jo(§r)€ d€
0

¥ = explivt) [ B(E)exp(82)]:(€n)€ de
0

where

2 2
=073 F=-=
¢ c2

Jn(€r) is the first kind and nth order Bessel function, and A(£), B(£) are
unknown functions of £.
To Eqs (5.4) and (2.18) boundary conditions have to be added:

—for z=1{
2up(l ‘

MO“TRZ(QJ—) — Pexp(iwt) + mﬂEnau—g(z—l’—t) =0 (5.8)
—for z=0

0, (7,0,0) =0 for 0<r< ™ (5.9)

Oup(0,1
ooy = BRI or 0<r<a o)
0 for a<r
u,(r,0,1) = ur(0,t) for 0<r<a (5.11)

It is, however, impossible to satisfy the boundary conditions (5.10) and
(5.11) simultaneously when the stress and the displacement in the cross-section
of the rod are assumed to be uniform. For this reason Saito and Wada (1977a)
consider two kinds of extreme boundary i.e. uniform normal stress distribution
over the interface and uniform normal displacement in the interface. In the
last case the stress at the interface is maximum at r = @ and minimum at
r=20.

In the first case, i.e. for the uniform normal stress distribution over the
interface, boundary conditions (5.10) are applicable, however instead of (5.11)
we write

uy(1) = upr(0,1) for 0<r<a (5.12)
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where wu; is the approximate mean displacement

ui(t) = %2—/271'7"112(1',0,1) dr (5.13)
0

In the case of the uniform normal displacement over the interface analysis pre-

sented by Saito and Wada (1977a) is confined to the static problem (w — 0).

Substituting the formulas (5.6) and (5.7) into the appropriate boundary
conditions, the unknown quantities D;, Dy, A(£), B(£) can be determined.
They are expressed by very complicated formulas (cf Saito and Wada (1977a)).
Numerical results given by Saito and Wada (1977a) are prescnted for three
kinds of rod and half-space material combinations: (a) the rod is plastic and
the hall-space is aluminium, (b) the rod and the half-space are of the same ma-
terial, (¢) the rod is aluminium and the half-spacc is plastic. These results are
obtained for the both cases of boundary conditions, i.c. for the uniform nor-
mal stress distribution as well as uniform normal displacement in the interface
between the rod and the half-space.

Exemplary amplitude-frequency curves for the displacements of the rigid
body |ur(l,t)kr/P|, where kr = ma?ER/l, arc plotted in Fig.5 for [ = 20a,
K = prma®l/M = 0.1, 1.0, 10, oo, for the rod made of plastic and for the half-
space made of aluminium. They concern the case of the unilform stress in the
interface. Other diagrams concerning both cases of the boundary conditions
are given by Saito and Wada (1977a). I'rom these diagrams it follows that the
effect of boundary conditions for z = 0 is greater when the rod is made of
aluminium and the half-space of plastic.

Downey and Bogy (1987) consider the problem of the normal impact of
an elastic rod on an elastic hall-space. It is assumed that a circular rod has
the length much greater than its diameter, and the upper end of the rod
is connected with a rigid body. The motion of the rod is described by the
classical wave equation and for the elastic half-space Eqs (2.16) are used. The
displacement of the rod in the contact region is assumed to be the mean
displacement of the hall-space analogously as in the paper by Saito and Wada
(1977a). In analytical considerations the Laplace and the Hankel transforms
are employed. Numerical results are presented by Downey and Bogy (1987)
for various half-space materials, rod lengths and masses of the rigid body,
respectively. It is found that in the absenuce of the rigid body the maximum
contact stress depends entirely on the rod material, but with the rigid body
added the contact stress can become much greater and depends on the rod
material, the half-space material and on the mass of the rigid body. The
contact time for rods without a rigid body is dependent mainly on the length of



APPLICATION OF TWO-DIMENSIONAL APPROACH... 65

102:! : ! — K=

g C o ' | ——— K=10

= Fl | s K=

= I: | —-= K=0.1
B |
10k | |
’ A

107!

(ul/cR
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the rod, and in all considered cases the contact of the both bodies is terminated
before a second reflection from the free end occurs.

6. Two-dimensional and one-dimensional descriptions in
mechanical systems

The approach employed by Davies (1948), Mindlin and Ilerrmann (1950),
Miklowitz (1957), Miklowitz and Nisewanger (1957), Skalak (1957), Mindlin
and McNiven (1960), Fitch (1963), lleimann and Kolsky (1966), Bertholf
(1967), Nigul (1967), Conway and Jakubowski (1969), Chong et al. (1971),
Saito and Chonan (1976), Saito and Wada (1977a,b), Svardh (1984), Aboudi
(1986) and (1987), Downey and Bogy (1987) for the investigation of two-

5 — Mechanika teoretyczna i stosowana
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dimensional problems for the semi-infinite and finite cylinders has rather limi-
ted practical application, for instance in mechanical systems subject to longitu-
dinal loadings. These systems usually consist of several cylindrical clements of
finite lengths having various mechanical properties and variable cross-sections
which may be connected by means ol elements with high stilluess treated as
rigid bodies. Thus, the limitations of the two-dimensional approach in me-
chanical systems are connected not only with the solutions having the form of
complicated integral expressions but also with the possibilitics of taking into
account several elastic elements and rigid bodies.

Difficulties of such a type do not occur when the clementary wave theory
can be applied. From the papers by Davies (1948), Miklowitz (1957), Miklo-
witz and Nisewanger (1957), Skalak (1957), Bertholl (1967), Saito and Chonan
(1976), Saito and Wada (1977a,b) it follows that the solution for this theory
has a fundamental meaning because the solutions for various two-dimensional
problems oscillate about the solution predicted by the classical wave theory.
Moreover, in order to avoid mathematical difliculties, Saito and Wada (1977a),
Downey and Bogy (1987) discussing the rod with the rigid body confine their
considerations to the case when the motion of the rod is described by the clas-
sical wave equation. It is supposed that two-dimensional descriptions better
than one-dimensional ones describe physical phenomena in the circular cy-
linder subject to longitudinal loadings; however, the appropriate methods for
their applications to dynamic investigations of discrete-continuous mechanical
systems have not been elaborated yet.

The method using one-dimensional longitudinal elastic waves is presented
by Pielorz (1980), (1986) and (1989), Mioduchowski et al. (1983), Piclorz and
Nadolski (1989), Nadolski and Piclorz (1990). Tt is based on the solution of the
d’Alembert type for the equations of motion and allows one to determine di-
splacements, strains and velocitics in transient as well as in steady states in any
cross-section of mechanical systems consisting of an arbitrary number of ela-
stic elements connected with a suitable number of rigid bodies. Davies (1948),
Mindlin and Herrmann (1950), Miklowitz (1957), Miklowitz and Nisewanger
(1957), Skalak (1957), Mindlin and McNiven (1960), Bertholl (1967), Conway
and Jakubowski (1969), Chong et al. (1971), Saito and Chonan (1976), Saito
and Wada (1977a,b), Svardh (1984), Downey and Bogy (1987) dealing with
two-dimensional problems neglect damping, while using the one-dimensional
approach damping can be easily taken into account by means ol the equivalent
damping (cf Piclorz (1989), Piclorz and Nadolski (1989), Nadolski and Piclorz
(1990)).

As an example, consider the longitudinal impact at the instant ¢ = 0 of
two systems consisting of s; and s, elastic elements having variable cross-



APPLICATION OF TWO-DIMENSIONAL APPROACII... 67

sections A; connected suitably with s;/2 and s3/2 rigid bodies (s;, s
are even numbers). It is assumed that the z-axis coincides with the axis
of elastic elements. The determination of displacements wu;(x,t) of the ith
elastic element is reduced to solving N = s, + s, equations ol motion

!

Al
Uig — ct (u,-,m + A—'u,r) =0 for 2=12,..,.N (6.1)

with the following boundary conditions

up =0 for z=0
ung =0 for ==Ly
Miu; EAju; o+ :
. * for z=1L; i=1,3,..,N=1 (6.2)
—EAi1uip1 0+ Di(uiy—v;) =0
Aiti o = Aij1tig1,z for z=L; :=2,4,....N -2
Ui = Uip1 for 2=1L; {=1,2,...,N-1
and initial conditions
ui(z,0) =0 u;(2,0) = vy i=1,2,..,N (6.3)
where
M; - mass of the ith rigid body
l; - length of the ith elastic element
v; — appropriate velocities of elements before the impact
D; - coefficients of the equivalent damping

and comma denotes partial differentiation, L; =, + {2 + ... + ;.
The solutions to Eqs (6.1) in the case when A; = const are sought in the
form

ui(z,1) = fi[co(t—toi)—z+z0i|+9gi[co(t—toi)+z —20;:] i=1,2,...,N (6.4)

where the functions f; and g¢; represent waves caused by the collision propa-
gating in the ¢th element of the considered system in the direction of z-axis
and the opposite one, respectively. The constants tp; and 2p; in the argu-
ments of the functions f; and ¢; denote the instant and the location of one
of the ends of the i{th element at which the first disturbance reaches this
element. Moreover, the functions f; and g¢; are equal to zero for negative
arguments, i.e. before the occurence of the first disturbance. Another form
for the solutions to equations (6.1) is given by Piclorz (1986) and (1989).
The functions f; and g; are the functions of a single argument. Their [orms
are determined by the boundary conditions (6.2). Upon substituting (6.4) into
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(6.2) we obtain for the functions f; and g; a system of ordinary diflerential
equations with a retarded argument of the neutral type. This system can be
solved analytically or numerically by mecans of the method of finite diflerences.
Solutions for specific examples of colliding systeins are presented by Pielorz
(1980) and (1986), Mioduchowski et al. (1983), both taking into account and
neglecting local deformations.

The wave method using a solution of the d’Alembert type can be also
applied to dynamic investigations of systems subject to longitudinal loadings
having different mechanical properties (cf Piclorz and Nadolski (1989), Nadol-
ski and Pielorz (1990)). Moreover, it is employed by Piclorz (1980), (1986)
and (1989), Mioduchowski et al. (1983), Piclorz and Nadolski (1989), Nadol-
ski and Pielorz (1990) for the discussion of systems much more complicated
than the systems analyzed by Vardy and Alsarraj (1989) using the method of
characteristics.

7. Final remarks

From papers reviewed in the present paper it follows that dynamic inve-
stigations of circular cylinders subject to longitudinal loadings or longitudinal
collisions very often require the use of the two-dimensional approach. Only
when the radius ol the cylinder is much smaller than the cylinder length, the
one-dimensional approach is permissible. Tlicoretical results are confirmed
by experiments (cf Davies (1918), Miklowitz and Nisewanger (1957), Kolsky
(1963), Lundberg and Blanc (1988)).

The above conclusion concerns the systenr cousisting ol a single or two
cylinders. Ilowever, the problem of the application of the two-dimensional
description to mechanical systems subject to longitudinal loadings is rather a
difMcult question. From the reviewed literature it follows that this problem is
still not overcome. Davies (1948), Miklowitz (1957), Miklowitz and Niscwan-
ger (1957), Skalak (1957), Fitch (1963), lleimann and Kolsky (1966), Bertholf
(1967), Nigul (1967), Conway and Jakubowski (1969), Chong et al. (1971),
Saito and Chonan (1976), Saito and Wada (1977a,b), Svardh (1984), Aboudi
(1986) and (1987), Downey and Bogy (1987) discuss two-dimensional problems
for a single or two clastic cylinders not showing, however, the way for the use
of the two-dimensional approach in the dynamic analysis of systems consi-
sting, for example, of several cylindrical elements connected with rigid bodies.
Solutions having the form of complicated analytical expressions secin to be
the main reason for that. Moreover, in the case of a rod connected to a rigid
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body, probably to avoid mathematical dilliculties, Saito and Wada (1977a),
Downey and Bogy (1987) describe the motion of the rod by the classical wave
equation.

The one-dimensional wave approach appcarced to be a very uscful and ef-
ficient tool in the investigations of various mechanical systems longitudinally
deformed. In this approach the solution of the d’Alembert type is used and
it can be employed for the discussion of various eclements of machines and
mechanisms subject to longitudinal loadings and collisions (cf Piclorz (1980),
(1986) and (1989), Mioduchowski et al. (1983), Piclorz and Nadolski (1989)).
The elementary wave theory can be also cfflicient for the determination of me-
chanical properties of materials (cf Lundberg and Blanc (1988), Lundberg et

al. (1990)).
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Wykorzystanic podejscia dwuwymiarowego w ukladach mechanicznych
poddanych obciazeniom wzdluznym

Streszczenie

W pracy dokonano przegladu literatury z punktu widzenia mozliwosci zastosowa-
nia podejscia dwuwymiarowego w ukladach mechanicznych poddanych obciazeniom
wzdluznym. Przeglad obejmuje scisla tcorie sprezystosct 1 Leorie przyblizone oraz
problemy dla walcdw kolowych o dlugosci pélnicskoriczonej i skotczonej. Problemy te
sprowadzaja si¢ do rozwiazywania dwéch réwnan ruchu wzgledem dwdch zmiennych
przestrzennych wedlug teorii $cisle] oraz do réwnan w postaci uproszcezonej wedlug
odpowiednich teorii przyblizonych. Podejscie dwuwymiarowe raczej lepicj odzwier-
ciedla zjawiska fizyczne wystgpujace w walcu anizeli opis jednowymiarowy, jednakze
dotychczas nie opracowano jeszcze efektywnych metod wykorzystania podejscia dwu-
wymiarowego w badaniach dynamicznych dyskretno-ciaglych ukladéw mechanicznych
zlozonych z wielu bryl sztywnych i sprezystych elementéw walcowych. Wiele trudnosci
typu matematycznego zostalo opanowanych w przypadku stosowania podejscia jed-
nowymiarowego. W zwiazku z tym, w zakoticzeniu przedstawiono efcktywna metode
oparta na wykorzystaniu jednowymiarowych fal podiuznych.
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