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In this paper there is analyzed a certain general modelling procedure
for the investigation ol non-stationary processes in periodic composites.
The resulting macro-models take into account the effect of the micro-
structure length dimension on the dynamic behaviour of the body aud
are simple enough to be applied to the analysis ol enginecring problems.
The modelling procedure under consideration was recently applied in
a series of papers to some selected composile materials and structures.
The aim of this study is to generalize the obtained partial results and to
formulate the above macro-models within a ltamework of the nonlinear
continuum mechanics for an arbitrary simiple material.

1. Introduction

The formulation of different modelling approaches in composite mecha-
nics is motivated by the well known fact that the exact analysis of periodic
heterogeneous materials within the {ramework of solid mechanics (viz. the
micromechanics of periodic composites) can be carried out only for a few spe-
cial problems. In gencral, the cquations of micromechanics, due to the non-
continuous and highly oscillating form of functions describing material pro-
perties of a composite body, cannot be taken as the basis for obtaining useful
information on most of the problems met in engineering practice. That is why
in composite mechanics we deal with a variety ol macro-modelling methods
leading to different approximate mathematical models of periodic heteroge-
neous materials and structures. Mathematical models of this kind are olten
called the macro-models and describe the eflects of constituents only as avera-
ged apparent properties of a body within a [ramework of the macromechanics
of composite materials. Nevertlieless, many macro-modelling procedures make



268 C.WOINIAK

it possible to detect also the micro-mechanical behaviour of a composite on
the basis of solutions to problems of macromechanics. The list of contem-
porary and updated macro-modelling approaches is very extensive; in order
to interrelate the macro-modelling procedure developed in this contribution
with the existing methods we outline below some trends in the formulation of
approximate theories for periodic composite materials.

Generally speaking, the known methods of macro-modelling can be separa-
ted into two main groups. To the first belong the gencral procedures, in which
there are no restrictions imposed on distribution of constituents within the
periodicity cell. The second group consists of methods developed independen-
tly for special types of composite materials, namely for laminated composites,
fibrous composites and for solids with inclusions and cavities of various shapes
(i.e., for particulate composites). Thus, we can deal with general and special
macro-modelling procedures. Obviously, the general macro-models have the
practical meaning if they can be applied to the analysis of special types of
composites. In this contribution the main attention is concentrated on the
macro-modelling of nonstationary processes in periodic composites, where the
effect of the length dimensions of the periodicity cell on the dynamic beha-
viour of a body plays an important role. That is why we discern below the
length-scale macro-models and the local macro-models, in which this effect is
neglected.

The main eflorts in constructing the macro-models in dynamics of com-
posites were posed on the special macro-mnodelling procedures. The list of
references to this subject is very extensive. We can mention here the effec-
tive stiffness theories for periodically laminated elastic composites, ¢f Sun,
Achenbach and Iermann (1968), Achenbach and Hermann (1968), Grot and
Achenbach (1970), the investigations into dynamics of fibre-reinforced compo-
sites, cf Aboudi (1981), Tolf (1983), and those related to media with voids,
cf Nunziato and Covin (1979). In the framework of this paper we shall re-
strict our considerations to the general models; for the discussion of special
models in the framework of elastodynamics, cf the forthcoming review paper
by Baczyniski (1995).

Among the general macro-modelling procedures we can mention those ba-
sed on the asymptotic homogenization approach, c¢f Bensoussan, Lions and
Papanicolaou (1987), Sanchez-Palencia and Zaoui (1985), and the extensive
list of references therein. The resulting macro-models are described by equ-
ations involving constant cocflicients (called the cffective modulac) and time
dependent functions (for nonstationary processes). These malhematical ob-
jects have to be determined independently for every periodic structure by
obtaining solutions to certain variational problems posed on the periodicity
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cell as well as certain initial value problems for materials with a memory (e.g.
for visco-elastic materials). llence, the formulation of macro-models by the
asymptotic homogenization methods for any specific composite materials re-
quires rather lengthy numerical computations. For this reason tlie asymptotic
approach, as a rule, is restricted only to the first approximation. Within this
approximation we deal with the local macro-models, in which the effect of
the size of the periodicity cell on the behaviour of the body is neglected. To
describe length-scale phenomena (i.e. to formulate the length-scale macro-
models) by the asymptotic homogenization approach, the higher steps in the
formal asymptotic procedure have to be considered. This line of procedure is
not accepted by most of researchers interested mainly in engincering applica-
tions of the resulting theories, due to considerable difficulties on the stage of
formulation of governing equations of macromechanics for a selected composite
body. Free from this drawback are general macro-modelling methods, based
on theories of material continua with microstructure suggested by Mindlin
(1964), Eringen and Suhubi (1964) and others; for the thermomechanics of
microstructural materials cf also Wozniak (1967), (1968). Models of this kind
are called the microstructural models and belong to the length-scale macro-
models. They can be formulated without any reference to the boundary-
value problems on the periodicity cell. The pertinent modelling procedures
are specified by certain a priori assumptions related to the expected class of
micro-deformations and a certain smoothing operations. [or the elastic ma-
terials they lead to systems of the second-order partial differential equations
for three fields representing macro-kineinatics and for extra unknown fields de-
scribing the micro-kinematic behaviour of a composite. The existence of many
unknown independent kinematic variables results in serious difficulties related
to a complicated form of boundary-value problems. Moreover, we can also
deal with essential discrepancies between the number of boundary conditions
required by the mathematical structure of the theory and the number of these
conditions describing the boundary interactions for composite materials from
the viewpoint of engineering applications of the theory. For example, on the
boundary interfaces of laminated inaterials only three displacement conditions
have the physical sense. The microstructural models were successfully applied
to the investigations of the wave propagation in unbounded media. A certain
alternative of microstructural models constitute nmacro-models based on the
mixture and interacting continuum theories, developed by Green and Naghdi
(1965), (1966) and (1967), Green and Steel (1966), Steel (1967) and (1968),
Bedford and Stern (1971) and (1972), Hegemicr (1972), Tiersten and Jahan-
mir (1977) and others. We deal here with the length-scale macro-models which
are often oriented towards the investigations of selected dynamic problems.
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In investigations of nonstationary processes for composites, we are often
interested only in certain aspects of the micro-dynamic behaviour of periodic
solids. In these cases we deal with certain special space distributions of expec-
ted micro-deformations caused by the heterogeneity of the medium. We are
also interested in the length-scale macro-models which are physically reasona-
ble and simple enough to be applied to an analysis of engineering problems.
The aim of this study is a general description of the macro-modelling procedure
satisfying these requirements. The macro-models of this kind were recently
applied to selected dynamic problems in a series of papers by Wozniak (1993)
and (1994), Wozniak et al.(1993) and (1994), Wierzbicki (1994), Mazur-Sniady
(1993), Baron and WoZniak (1994), Michalak and Wozniak (1994), Wagrowska
and Wozniak (1994), Konieczny and WoZniak (1995), Jedrysiak and WozZniak
(1995), Cielecka (1995), Matysiak and Nagdrko (1995). In the above references
mainly linear elastic and linear viscoelastic composite materials and structu-
res were analyzed. In this papcr the pertinent modelling procedure will be
formulated within a framework of tlie nonlinear continuum mechanics and for
an arbitrary simple material. Moreover, the analysis will be carried out in the
general abstract form without any exact physical specification of the fields and
processes under consideration.

The results of the macro-modelling procedure previously applied in the
aforementioned papers, were referred to as the refined macrodynamics ol pe-
riodic materials and structures. The term refined is related to the fact that
the obtained equations describe in the explicit form the effect of the micro-
structure length parameter (i.e. the maximum characteristic length dimen-
sion of the periodicity cell) on the dynamic behaviour of the body. In order
to evaluate this ellect there were introduced also local models, obtained from
the refined macrodynamics by scaling the microstructure down. These lo-
cal models coincide with the macro-models analyzed within the framework of
theories with microlocal parameters, developed by Woiniak (1987), Matysiak
and Wozniak (1987), Jakubowska and Matysiak (1987), Wagrowska (1987),
Naniewicz (1987), Lewiiniski (1987), Kaczyriski and Matysiak (1988), Matysiak
and Nagérko (1989), Wozniak (1991), Matysiak (1992), Kaczyniski (1993) and
others.

The refined macromechanics hias some advantages compared to the general
macro-models outlined above. First, it is able to describe nonlincar problems
related to the finite deformations of an arbitrary simple material. Secondly,
the formulation of governing equations of the pertinent refined macro-models
does not require any solutions to the boundary-value problem on the basic cell
as well as solutions to the initial-value problems (if we deal with viscoclastic
materials). Thirdly, the extra unknown fields in the refined macromechanics
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(i.e., the ficlds which do not have their counterparts in solid mechanics of Lete-
rogeneous media) are governed by relations involving exclusively time deriva-
tives and/or time dependent functionals. It follows that the extra unknowns
do not enter the boundary conditions and play a role of certain dynamical
internal variables. This fact is very essential in the applications of the theory,
since the boundary-value problems of the refined macrodynamics are similar
to those met in solid mechanics. At last, using the refined modecls we are able
to evaluate a posteriori the relation between the size of the periodicity cell
and the accuracy of the obtained solution. The refined macro-models can be
formulated on the various levels of accuracy and hence are useful for modelling
procedures of the adaptive type. The main drawback of the refined macro-
models is the restriction of microdynamics to the postulated a priori class of
micro-motions.

Denotations. Index o runs over 1,2,3 and is related to the materials
coordinates. We shall also introduce a non-tensorial superscript A which runs
over 1,..., N. Summation convention holds for both kinds of the aforementio-
ned indices.

2. Preliminaries

Let 2r be a regular region in the physical 3-space occupied by the so-
lid body (or its part) in the reference position. The points of 2p will be
referred to as the material points and denoted by X = (X', X2, X3)
where X%, a = 1,2,3 are the material coordinates. By ppr(X) we de-
note the mass density at X, related to the relerence position. The body is
subjected to a certain process understood as the sufficiently regular mapping
Prx R 3 (X,1) = q(X,t) € R™, where every ¢(-,1) is said to be the
configuration of the body at the time t (we often restrict the domain of ¢ to
a certain time interval (1o,(;)). Setting m = 4 we can interpret ¢(X,1),
i = 1,2,3, as the displacement components ol the material point at time 1
from the reference configuration, and ¢'(X,t) as the values of the temperature
field; in this case ¢(-,1) is the deformation-temperature configuration of the
body. In an arbitrary process the body is interacting with external fields; the
density of these fields (per unit mass of the body) at time ? and for X € f2p
will be denoted by e(X,?). It is assumed that e(X,t) € R™ and e(-,1)is
referred to as the supply field (at time (). Tor m = 4 the values ¢;(X,1),
i = 1,2,3, can be interpreted as the body forces and e (X, t) stands for a
density of the internal heat sources. The interactions inside the body at every
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t are assumed to be uniquely described by the flux field s%(-,¢); the intensity
of these interactions is given by sp = 83(X,1)npa(X), where ngpo(X) is a
unit normal determining the oricnted area element at the material point X,
X € g Inthe case m = 4 we can interpret s9(X,t),i = 1,2,3, as
the components of the first Piola-Kirchhofl stress tensor and s}#(X,1) as the
components of the heat flux vector (related to the reference position of the
body). The boundary interactions are given by tr(X,t) = $%(X,t)npa(X),
X € 0f2p, where npy(X) is the unit outward normal to df2p at X.

Let Apr be an arbitrary regular subregion of 2p. Define by
dap = dagp(X) the element of 04Ap at X € 9Agr and let
dvr(X) = dX'WX2?dX3. Tor the time being let us assume that the com-
ponents of the fields ¢(-,¢) are independent for the class of processes under
consideration. In this case the flux and supply ficlds, for every instant i, are
interrelated by the genecral balance equations

1
3 / kg dvg = -7{ 8GRy dap + /epR dvp (2.1)
Ar AR An

which hold for every Ap and where the values of the balanced quantity kg,
kr(X,t) € R™, are interrelated with the processes by the relation

kr(X,t) = kp (X,('](_X,i),q(X, 0, Vq(X, 1)) (2.2)
In Eq (2.2) ER() is the known function defining the balanced quan-
tity., For m = 4 we can assume that k;}(X,l) = pr(X) (X, 1),
¢'(X,1) being the velocity of the material point X, ¢ = 1,2,3, and

FR(X,1) = 05pp(X)i(X, i (X, 0) + pr(X)e(X, V', *), where e(X,-)
is, for every X € {2p, the strain cnergy function. The material properties
of the body are assumed to be determined by the constitutive rclation for a
simple material

sH(X,0) = 35 (X, Vg(X,t - 7).q(X 1 - 7)) r>0  (23)
where 3p(X,-) is the response [unctional. I'or clastic mate-
rials, under the aforementioned interpretation of  ¢(X,t), we have
se(X,t) = 51 (X,V(/i(X,t),q"(X,t)), where 3¢(-) are the known [unc-

tions.
From the condition (2.1), which is assumed to hold for every Ap, we

obtain the local form of the balance equation

d
Ekn(X,t) = 8%,a (X, 1)+ e(X,1)pr(X) (2.4)
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which holds for almost every X € (2p. Let us multiply the above equa-
tion by an arbitrary regular vector function ég(-) defined on (2g, such that
6g(X) € R™; thescalar product in R™ will be denoted by a dot. Integrating
the obtained result over {2p, introducing the boundary interactions tp(X,1),
X € 0§2r and bearing in mind Eq (2.2), we arrive at the weak form of the
general balance equation, represented by the condition

d [~ .
E/’:R(q,q, Vq)-éqdvp = f tp-bqdap +
2

9l
(2.5)

= [ 560 dvr+ [ e bapndon
.QR -OR

On the assumption that the components of lields ¢(-,1) are independent, Eq
(2.4) is assumed to hold for an arbitrary regular trial vector function &q(-).
However, if components of fields ¢(-,7) are constrained by certain given a
priort conditions, then instead of the general balance equation in the form
(2.4) (or in the equivalent form of condition (2.1) which holds for every Ag)
we have to postulate the balance equation in the form (2.5), which is satisfied
for trial functions é&q(-) restricted by conditions similar to those constraining
the components of the fields ¢(-,1).

Let Vg = (=0/2,11/2) x (=12/2,13/2) x (=I3/2,13/2) be the region in
the physical 3-space. Setting I = /{I})? + (I2)? + (I3)% and denoting by L
the smallest characteristic length dimension of {25, we shall assume that the
ratio A = [/L,{from a numerical viewpoint, can be treated as negligible small
compared to 1. In the sequel we restrict considerations to heterogeneous solids
for which there are known: the refercnce position (and hence the region 2p)
and the volume element Vg, such that pp(-), IA:R(-,q,q, Vgq) and 3%(+,Vq,q)
are Vg-periodic functions. Bearing in mind that A <« 1, we shall refler
these solids to as the micro-periodic composites and [ as the microstructure
length parameter. In this case Eqs (2.1)+(2.5) describe the micromechanics
of micro-periodic composites made of simple materials. The right-hand sides
of Eqs (2.1), (2.2) as well as the mass density pp(-), met in engineering
problems, are highly-oscillating piecewise constant (constant for every material
constituent) Vp-periodic functions of material coordinates X°. Ilence, the
micromechanics does not constitute the basis for the computational analysis of
special problems, and has to be replaced by a certain approximate model of the
micro-periodic composite. Various examples of these models were discussed in
Introduction.
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3. Modelling concepts

The macro-modelling procedure, leading to the general form of the refined
models of composites, will be based on certain modelling assumptions. In
order to formulate these assumptions we shall introduce in this Section two
modelling concepts. From now on we shall tacitly assume that 2r and Vg
(and hence also /) are known.

Let h4(:), A = 1,..,N, N > 1, be a system of continuous linear inde-
pendent Vg-periodic functions (and hence depending on the microstructure
length parameter [) having piccewise continuous first order derivatives and
satis{ying conditions

(i) <hi>=0
(i) hA(2Z) € O)
(iii) h*6(2) € O(1)

for A =1,...,N and for almost every Z; by (1) we have denoted a set
of functions (depending on the parameter /) the maximum value of which
remains constant with ! — 0. Every N-tuple (R!(:),...,AN(+)) will be called
the micro-shape funclion system. As the example of this systein we can take
N-tuple of real or imaginary parts of functions h(X) = lexp[iga(A4)X?],
A = 1,..,N,where g,(A) = 2mn,s(A)/(1tal) (no summation over a); pq
are arbitrary constants from the interval (0,1)and ny(A), @ = 1,2,3,1s the
triple of positive integers assigned to the index A. It has to be remembered
that the microstructure length parameter ! (maximum characteristic length
dimension of Vp) is known for every periodic composite material; hence,
setting | — 0 we deal with a certain class ol these materials in which the
microstructure is scaled down.

Let F(-) be a real valued function defined on 2p; in the sequel we tacitly
assume that F(:) can also depend on time coordinate ¢. Let us introduce
the positive real ep as computation accuracy of the values [F(X) at every
X € 2p. F(-) will be called the macro-function (related to the computation
accuracy ¢p and to the microstructure length parameter ) if lor every
X,Y € f2g, the condition || X = Y| < limplies [F(X)—- F(Y)| < eF.
If F(.) is sufficiently regular and conditions of the above form hold also for
all derivatives of F(-) (as well as for all time derivatives) with the pertinent
accuracy parameters €vp,&f, ..., then I(-) will be called the regular macro-
function. The choice of parameters ¢p,cyp, &) depends on the accuracy of
calculations. Roughly speaking, oscillations of regular macro-functions and all
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their derivatives within an arbitrary but fixed cell Vi(X). Vp(X) = X + Vp,
Vr(X) C 2g, from the computational viewpoint can be neglected. Every
class of macro-functions under consideration has to include functions which
are constant on f2g.

Let f(:,a) for every « € R be an integrable Vg-periodic function
of Z = (Z',Z2,Z3) and [(Z,-) for every Z be a continuous function.
Moreover, let F(-) stands for a continuous macro-function defined on 2p.
Let us approximate the region 2p by a sum |JVga(X), X € A, of mutually
disjointed cells Vgp(X), where A is a lattice of points on {2z such that
VrR(X) C 2 for every X € A. On these assumptions we obtain the
formulae

[ (X PCO) donx) = ¥ [ 1(2.7(2)) ava(2) + 003)
2r Xed Va(X)

3 /f(z,F(Z)) dvr(Z) = / <[> (X) dvp(X) + O(A) + O(eF)

XeA ypix) fn

(3.1)
/ /(2. F(2)) dop(Z) = / 1(2.F(X)) dop(2) + Oter)
Vr(X) VR(X)
where we have denoted
<f>(X [12[3 / S Z I( X) rlvn (Z) (3.2)

Vr(X)

It has to be remembered that all manipulations carried out inside the brackets
< + > (such as the differentiation < f,,> (X)) hold for constant X € f2g.
Moreover

<f>(X)=<[>(2Z)+O(cF) V Z € Vp(X) (3.3)

If fis independent of the sccond argumeut then

1
<f>= Wv/ () dvr(Z)

is the averaged (constant) value of a Vp-periodic function f(-). The for-
mulae of the forms (3.1)+(3.3) also hold if f = f(X,F(X)), where
F(X) = (Fl(X),...,F"(X)) and  F!(-),..., F*(-) are continuous macro-

functions defined on 2y (related to accuracy parameters €pi,...,&mn, respec-
tively); in this case O(sp) = O(ep )+ ... + O(epn). Morcover, if F(-) and



276 C.WOiNIAK

V F(-) are macro-functions and h(-)is an arbitrary micro-shape function, then
V[(X)F(X)] = F(X)VR(X) + Ofcr) (3.4)

since A(X)VEF(X) € O(er). In the sequel reals A = /L ,cp,evp, .,
where F(+) is an arbitrary regular macro-function, will be treated as certain
small parameters.

4. Modelling hypotheses

Using the concept of regular macro-function and that of the micro-shape
function system, we shall introduce tlirce macro-modelling hypotheses. These
hypotheses are formulated on the extra assumption that to the set of all admis-
sible configurations ¢(-,?) (at a certain time ) belong the constant mappings:
q(X,1) = const for every X € 2p.

o Macro Localization Hypothesis (MLIL). The configurations ¢(-,t) in
every class of processes under consideration can be restricted by the con-
dilion

(X, 1) = Q(X,1) + WM (X)WA(X,1) X € g (4.1)

where components of Q(-,1), WA(-,'I.) are arbitrary independent regular
macro-functions and hA(:), A = 1,..,N, is the postulated a priori
micro-shape funclion system.

The term macro-localization in the above hypothesis has to be understood
as the representation of an arbitrary configuration ¢(-,t) of the body by a
system of m(N + 1) independent macro-functions (components of ¢(-,1) and
WA(-,1)). The choice of micro-shape functions h#(-) from the qualitative
point of view determines the space distribution of micro-disturbances hAW#,
which can be expected during every process under consideration. Eq (4.1)
describes the superimposition of these disturbances on macro-configurations
Q(-,1) of the body. They can be caused cither by a periodic heterogeneous
material structure of the composite or by a certain initial configuration, which
can be postulated in the form (4.1) for ¢ = {y. lence, the ficlds WA(- 1)
describe, from the quantitative point of view, distribution of disturbances in
2gr. The fields @(-,t) and PVA(-,t) represent the new basic unknown fields
which will be referred to as the macro-configurations and macro-variables,
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respectively. Let us also observe that by increasing the number N of micro-
shape functions (and hence, also the number of macro-variables) we can obtain
more detailed descriptions of the investigated processes. It will be shown
that specifications of micro-shape functions in Fq (-1.1) lead to certain macro-
models of the periodic composite under consideration.

Under the MLH configurations ¢(-,t) of the hody are not independent;
hence, in the forthcoming analysis we have to use the balance cquation in the
weak form (2.5) (cf the remarks at the end of Section 2). This fact will be
noted by the second modclling hypothesis.

o Macro-Balance Assumption (MBA). The balance equation (2.5) is assu-
med to hold for

§g(X) = 6Q(X) + W (X)WA(X) Xen (42

where components of 6Q(-) and §W4A(-) are arbitrary linear independent
reqular macro-functions defined on (2p.

The form of MBA is implied by that of MLH. Components of 8Q(-),
§WA(.) are related (as macro-functions) to accuracy parameters £qQ, ew of
components of Q(-), WA(.), respectively.

After substituting the right-hand sides of Iqs (4.2) into the formula (2.5)
we obtain the condition in which components of 6Q(-), 5W‘4(-) are lincar
independent trial macro-lunctions.

The modelling hypothesis that lollows is strictly related to the concept
of a macro-function and to the fact that the length dimensions of the perio-
dicity cell Vg are negligible small compared to the minimum characteristic
length dimension of the region f2p. For the sake of simplicity we assume,
that the components of supply fields e(-,1) are macro-functions. In the sequel
we use the denotation W = (Wl,...,WN). Moreover, €Q,Sw,EvQ, ..
stand for calculational accuracy paramcters related to the components of

Q(-,1),W(-,1),VQ(-,1),..., respectively.

o Macro-Modclling Approximation (MMA). In the course of the macro-
modelling procedure there will be neglected:

(i) Terms O(X), Olsp) in formulue of the Jorm (3.1), where F runs
over Q,VQ,Q, W, VW W

4 — Mechanika teoretyczna i stosowana
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(ii) Terms O(ef) in formulae of the form (8.83), where I runs over
Q. Ve, Q W VW, W

(iii) Terms O(er) in formulae of the form (3.4), where F runs over

W, VW.

If ¢ — 0 then the macro-function F(-) tends to a constant mapping
defined on {2g.

5. Modelling procedure

The modelling procedure, leading from Iqs (2.2) + (2.4) of micromechanics
to the refined macro-model of a composite body, will be based on Eqs (2.2),
(2.3) and (2.5) combined with the modelling hypotheses MLII, MBA, MMA.
Substituting the right-hand sides of Eqs (4.1) into IEqs (2.2), (2.3) and denoting

ER(2,Q.W.Q.W) = kr(2.Q + 1'(2)W".Q + 1" (2)W*)
3(2,VQ,Q.W) = 3%(2,VQ + Vi Z)W*,Q + ' (2)W )
we obtain for Z = X

kr(X,) = Fr(Z,Q(X,0),Q(X,0,W(X,0),W(X,1)

s%(X,1) s;(z, VQ(X,1-7),Q(X,1 - 1), W(X,1- 7))+ (5.1)

+ Olew) + Oevw) >0

In Eq (5.1); we lave taken into account the formula (3.4), setting
(hAWA),, = RA LW + Olew) + 1O(sviy). On the right-hand side of Eqs
(5.1) both kg and 3% are Vp-periodic functions of the first argument; com-
ponents of all remaining arguments are macro-functions related to the com-
putation accuracy parameters €qQ, €4, W, €vQ. Bearing this in mind and
using Eqs (3.1), (3.4), (4.1), (4.2), we arrive at the following formulae for the
integrals over {2 in the balance equation (2.5)



MICRODYNAMICS: CONTINUUM MODELLING... 279

/kR-éq dvp, = /(< kr> -6Q+ <kph®> 6W*) dup +
.OR -OR
+O(A) + O(e@) + Oew ) + O(eg) + Olsyy )

[ -0 din= [ (<3r> 6@+ <5iht 0> W) dop +

2r 2
(5.2)

+0(A) + Ofevg) + Oeq) + Oesvw) + O(cw)

/e-&qpn dvg = /(<pn> e - 6Q+ <prh”> e-6W‘4) dvg +
.QR 'OR

+O(N) + O(eq) + O(sw)

where the averages < - > are taken over the argument Z of Vp-periodic
functions on the right-hand sides of Eqs (5.1) as well as functions h4(Z),
pr(Z). Let us introduce new fields S%(it), H(it), defined on g for every
t by means of the equations

SH(X,1) =<3%> (VQ(X,t -7),Q(X,1—7),W(X, 1~ T)) 53
5.3

HA(X,1) =<83h* 0> (W(X,1=7),VQ(X,1 - 7),Q(X,t - 7))

Let us observe that the ficlds S%(;t), H(;t) satisfy condition of the form (3.3)
(provided that the response functionals 33(X,-) in Eq (3.3) arc sufficiently
regular) i.e., they are not oscillating within cells Vp(X)N 2r, X € §2pn.
Taking into account Igs (5.2), (5.3) and applying MMA, from Eq (2.5) we
obtain the following weak form of the gencral balance equation

%/(<ER> 6Q+ <i..:RhA> -5WA) dvp = f tp-bqdap +

f)R BDR

- /( %-6Q,G+H;%-6W") dop + (5.4)
2r

+ / (<pn> e-86Q+ <prh”>e- 5W'4) dvp
2r

which has to hold for fields 8Q, §W* defined on 2z, components of which
are arbitrary independent regular macro-functions. ['rom the above condition
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we derive the following local form of the balance equation (restriction of 6Q,
W4 to m-tuples of macro-functions is irrelevant here)

d

o <kp>(Q,W,Q. W)= S§%,a=<pp>e

(5.5)
d ~ ..

o <kph*> (Q,W,Q,W)+ Hff =<prh*> ¢

which holds at every material point and every instant in the time interval we
investigate the process under consideration. This process is now described by
the mappings

QrxR3(X,1)— Q(X,1)€ R™
(5.6)

Qrx R>(X,1) » WA(X,1) e R™ A=1,..,N

where the fields Q(-,t) represent the macro-configurations of the body and the
internal variables W#(-,1) describe the spatial distributions of disturbances
in these configurations, related to the expected form of processes postulated
by the MLI.

Eqgs (5.3) and (5.5) constitute the final result of the modelling procedure
and represent a certain macro-model of the periodic composites under con-
sideration. This statement is implied by the fact that all functions in the
aforementioned equations are either macro-functions, like the components of
Q(-,1), WA(-,t), Q(-,t), WA(-,i.), or are not oscillating within an arbitrary
cell Vp(X)in g, like the components of §%(;t), H(;t) and e(-,1). That
is why Eqs (5.5) are called the macro-balance equations and Eqs (5.3) are
referred to as the macro-constitutive equations. It has to be emphasized, that
Eqs (5.3) and (5.5) describe the whole class of macro-modecls. Every special
model belonging to this class is uniquely specified by the choice of micro-
shape functions. The discussion of the alhove obtained macro-models will be
carried out in Section 7; in the subsequent section we shall pass to a certain
approximation of these models.

6. Passage to the local models

Eqgs (5.3) and (5.5) represent a certain length-scale macro-model of com-
posites, since terms < kg >, < kph? > and < pphA > depend on the
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microstructure length parameter {, h*(X) € O(l). Considering the class of
composites depending on [ and scaling the microstructure down, [ — 0, we
obtain <krhA> = 0, <prh?> = 0 and the macro-balance equations (5.5)
reduce to the form

dit<%R>(Q,W,Q,W)—s%,a:<pn>e Hi=0  (6.1)
Under denotation
B(X,VQ,Q,W) = 53(X,VQ + Ve (X)W, Q)
the macro-constitutive equations read

SHX,1) =<35> (VQX,t-7),Q(X,t— 1), W(X,t - 7)) o
6.2

HA(X, 1) =<83h* 0> (VQ(X,t—1),Q(X, 1 — 1), W(X 1 - r))

The limit passage ! — 0 has to be interpreted as the extra assumption (in-
troduced instead of the MMA) which states that the length-scale effect on
the behaviour of the composite can be neglected. Ifence, Eqs (6.1) and (6.2)
represent the local macro-model of the composites under consideration. Com-
paring Eqgs (6.1)2 and (5.5); it is easy to conclude that the ficlds H% are due
to the effect of the size of periodicity cell on the behaviour of the body. llence,
these fields can be referred to as the gencralized length-scale forces.

7. Conclusions and final remarks

Macro-models of periodic composites, described by Eqs (5.3) and (5.5)
were specified and discussed for elastic, thermocelastic and viscoelastic mate-
rials in the series of papers [1] + [21]. Models of this kind were referred to
as the refined models being a certain generalization of the previously intro-
duced local models, governed by Eqs (6.1) and (6.2), cf [33] = [38], [40], [48],
[52]. The comparison of solutions to special problems, obtained within the
framework of both refined and local models, made it possible to evaluate the
eflect of the size of microstructure on the behaviour of the body. Carrying out
this analysis we have to specify the refined and the local models, using the
same micro-shape function system. Moreover, introducing different systems
of micro-shape function, we can analyze various aspects of the micro-dynamic
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behaviour of the composite, investigated on different levels of accuracy. Sub-
stituting the right-hand sides of Eqs (5.3) into Eqs (5.5), and assuming that
the supply fields e(-,t) are known, we obtain the system of equations for the
mapping (5.6), which describe the macro-configurations Q(-,1) and macro-
variables W#(-,1) for every time ¢ in the time interval under consideration.
The main characteristic feature of the resulting equations is that the equa-
tions for the macro-variables W*(-,1) (obtained by combining Eqs (5.5)2 and
(5.3)2) do not involve material derivatives of these fields, but exclusively time
derivatives and functionals in W#4(X,-). It means that the macro-variables
WA(-,1) are independent of the boundary conditions and hence can be inter-
preted as certain internal variables. This fact is essential for the applications
of the theory, since for the boundary-value problems formulated within a fra-
mework of the refined models, we deal with boundary conditions immposed only
on macro-configurations Q(-,?). The number and physical sense of these con-
ditions are similar to those met in pertinent problems of solid mechanics. It
has to be emphasized that the solutions to problems formulated for refined
and local models have the physical sense only if configurations and internal
macro-variables are represented by regular macro-functions. This requirement
imposes certain restrictions on the class of problems described by the macro-
models under consideration.

Summarizing the obtained results, we shall outline the general line of mo-
delling procedure in the analysis of special problems. This procedure, applied
to different formulations of refined and local models, has to be carried out in
the following steps:

(i)  Formulation of the weak form of the balance equation (2.5)
for the class of investigated problems

(i) Specification of the constitutive relations (2.3) for the nia-
terial constituents of the body

(iii) Formulation of the MLII by the specification of functions
RA(), A = 1,..,N

(iv) Calculations of the averages < 3% >, <3pht >, < kr >,
< i'RhA >, < pr > and < prh? >, determining the re-
fined model ol tlie composite by means of Eqs (5.3) and
(5.5); functions I;R and functionals 3§ are obtained from
Eqs (5.1)

(v) Passage to the local model, governed by Eqs (6.1) and (6.2),
by neglecting terms O(l) in Eqgs (5.3) and (5.5).

At the end of this paper we shall formulate some final remarks.
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Remark 1. The formula (4.1) and hence also Eq (4.2), have the physi-
cal meaning only in the macro-interior of the periodic hody under considera-
tion; this macro-interior is defined as the set of points X € f2p such that
Va(X) C £2gr. In the macro-boundary layer, i.e., for every X € f2g such
that Vp(X) N 002x # 0, the formula (4.1) as well as the formula (4.2) have
only formal meaning and for X € {2 they cannot be accepted. That is
why the trial functions in the surface integral of Eq (5.4) were not specified
by Eq (4.2). Without this specification we are not able to obtain the natural
macro-boundary conditions for Eqs (5.5).

Remark 2. Introducing into Eqgs (5.4) the boundary conditions of micro-
mechanics tp = 8%{nRp. and using the MBA and MMA, we shall arrive at
the formulae S$%,, = < 3g.0>, H}% = < 3%,a h* > the right-hand sides of
which are functionals in 7 € [0,00) (the second formula is implied by Eq
(5.3)2 and < (3%h"),a> = 0). It follows that Eqs (5.5) can be interpreted as
the averaged (over Vr(X), X € £2g) form of Eqs (2.4) combined with Eqs
(2.2) and (2.3).

Remark 3. It can be shown that rejecting in the MMA condition (iii) and
using the procedure similar to that cstablished above, we obtain the balance

equations

d -

o <kp> -Sh.a=<pr> e

7 <ZRILA > —G}%"’,a +HAR =<pph?>e
where

S% =<38%> G =<3Hh" >

Hf =<3%h4 >

are functionals in VQ(X,t-71), Q(X,t~T), VWYX, t—1), WAX,1- ),
7 > 0. The above equations represent a certain microstructural model of the
periodic composite. We have stated in Introduction that the models of this
kind in most cases are too complicated to he successfully applied to the analysis
of special problems. Moreover, they can lcad to certain physical ambiguities
related to the formulation of boundary conditions.

Remark 4. Setting 6¢ = 6Q in the surface integral of Eqs (5.4), we

obtain
SHX, )npa(X) =tr(X, 1) X €902n
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This formal procedure leads to certain restrictions imposed on the boundary
interactions tp, due to the fact that the left-hand side of the above equation
represcents the boundary values of [ields which are not oscillating within an
arbitrary but fixed periodicity cell Vp(X)in 2p.

Remark 5. Notice, that from the formal point of view the averaging
procedure over Vg(X) due to the Vp-periodicity of functions depending on
Z, Z € R® can be carricd out for every X € Qp since the averages
over Vg are well defined. However, for points X € (2 which belong to
the macro-boundary layer (i.e., satisfy the condition Vg(X)N o2z # @), this
formal averaging operation has not any physical interpretation. It follows that
Eqs (5.5), from a formal viewpoint being defined for every X € 2g, can not
be properly interpreted for X € (25 belonging to the macro-boundary layer.
However, by means of the condition A < 1, this layer occupics a negligible
small part of 2g.

Appendix: macro- and micro-coordinates

The governing equations (5.3) and (5.5) of the refined micro-models can
be also obtained by the formal procedure in which the periodic composite is
treated as a body with the internal structure, [ Wozniak (1969). To this end
let us introduce two kinds of arguments: Z € R®and X € p. Let us
notice, that in Eqs (2.2) = (2.4) as well as in Egs (4.1) and (4.2), we deal with
functions which are Vg-periodic and hence they can be treated as funetions
of an argument Z € R3. At the same time we shall introduce functions
depending on the material coordinates X = (X!, X?% X3) € g, which
are not Vg-periodic. The coordinates X¢, o« = 1,2,3, will be treated now
as the macro-coordinates, i.e., they specily a certain cell Vp(X) in g (or a
part of this cell if Vp(X)NadNRr #®). If Z € Vi then Z%, a = 1,2,3,
will be interpreted as certain micro-coordinates specifying points in the cell
Vr(X). In the subsequent formal procedure we introduce fields depending
bothon X € Rgand Z € R>and weshall treat X and Z as independent
variables. The fields depending both on X and Z, for X = Z are assumed
to reduce to those introduced in Sections 2 + 5. To this end we shall define

*f(Z,X) = f(X)for X = Z; hence
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Under these notations, the local balance equation (2.4) reads

0 d

d L2
oxe " 9ze

T kr(2,X,0) = (
For the fixed X € f2r and Z € VRi(X) the above equation can be treated
as related to the cell Vr(X)N 2g of the body. Using the MIIL, Eqs (4.1) can

be written down in the form

)'sHZ. X0+ e(X,0pn(Z)  (A)

“o(2,X,1) = Q(X, 1) + KN (Z)WA(X, 1)
and the trial functions are
“6q(Z,X) = 6Q(X) + hY(Z)sW(X)
Let us multiply Eq (A.1) by *é6¢(Z,X) and integrate the resulting scalar
product over Vp(X) x 2p. Since functions of Z are Vp-periodic and 6Q(+),

§WA(-) are arbitrary independent macro-functions, then using the MBA and
MMA, after a series of manipulations and bearing in mind that

*$pTégdep(Z) =0

VR(X)
we obtain
d
— <*kp> (X, 1)— <"8p > (X )= <pp>e(X,1) =0
dt .
(A.2)
% <*kphA > (X, t)— <*s{hA o> (X,1)— <pph? > e(X,1) =0

It can be seen that Eqs (A2) combined with Eqgs (5.1) and (5.3), coincide with
the macro-balance equation (5.5).

The procedure outlined in this Appendix emphasizes the role of macro-
and micro-coordinates in the description of periodic inaterial structures. Let us
observe that in the non-asymptotic modelling ol periodic composites proposed
in this contribution, wlere the microstructure length parameter is the known
structural constant [, the concept of macro-coordinates is closely related to
that of the macro-function: arguments X< of an arbitrary macro-function can
be referred to as the macro-coordinates. At the same time it has been tacitly
assumed, that for any fixed triple X = (X1, X?%2,X3) € £z of macro-
coordinates and for an arbitrary instant ¢, the functions under consideration
are Vg-periodic in coordinates Z = (Z1,Z2 %3 € R*. In this case we
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can restrict the domain of Z to the cell V and refer Z!,Z2 Z3 to as the
micro-coordinates, related to a cell Vp(X), where Vp(X) C 5.

This research was supported by the State Committee [or Scientific Research under
the grant No. 333109203.
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Mikrodynamika: ciagle modele kompozytdow z materialdw porowatych

Streszczenie

W pracy podano ogdlny sposéb modelowania niestacjonarnych proceséw w kom-
pozytach periodycznych. Otrzymane makro-nodele uwzgledniaja wplyw wymiaréw
mikrostruktury na dynamike ciala i sa na tyle dogodne by mogly znaleié zastoso-
wanie do analizy zagadnien inzynierskich. Rozpatrywana metoda modelowania byla
Juz ostatnio stosowana do badania pewnych szczegblnych materialéw 1 konstrukeji
kompozytowych. Celem tego opracowania jest uogolnienie otrzymanych poprzednio
wynikéw na dowolny material prosty w ramach nieliniowe) mechaniki kontinuum.
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