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The aim of this paper is to propose and investigate a new modelling
approach to thin elastic plates having micro-periodic structure in pla-
nes parallel to the midplane. The main feature of this approach is that
it describes the effect of the microstructure length dimensions on the
macro-behaviour of the plate. This effect is neglected in the asymptotic
homogenization approaches leading to the known effective stiffness mo-
dels. It is shown that in micro-dynamic problems the aforementioned
length scale effect plays a crucial role and cannot be neglected.

1. Introduction

The composite plates having a micro-periodic structure in their midplanes
are usually described using homogenized models. These models {rom a formal
point of view represent certain homogencous plate structures with constant
effective stiffnesses and averaged mass densities; the pertinent modelling ap-
proaches were investigated by Duvaut and Metellus (1976), Caillerie (1984),
Kohn and Vogelius (1984), Matysiak and Nagérko (1989), Lewiniski (1991)
and others. In this paper it will be shown that these effective stiffness plate
theories are not able to describe some important features of the dynamic plate
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behaviour. To this end we propose a certain new refined theory of periodi-
cally structured thin elastic plates, which takes into account the microstruc-
ture length scale effects on the dynamic plate response and hence is able to
describe both macro- and micro-dynamic plate behaviour. The approach is
based on the refined method of modelling for micro-periodic elastic materials
and structures, given by Wozniak (1993), Wozniak et al. (1993) and deve-
loped in a series of related contributions (cf thie papers by Wierzbicki and
M.Wozniak in this issue).

The considerations will be based on the Kirchhoff plate theory assump-
tions and carried out within a framework of the linear elasticity theory. An
alternative refined model of a plate, in which the Reissner-Hencky — type hy-
potheses are used, will be presented separately in the forthcoming paper by
Baron and WozZniak.

Denotations. Throughout the paper subscripts «,f,... run over 1,2
being related to the orthogonal cartesian coordinates z;,z, parametrizing
the plate midplane. Non-tensorial superscripts a,b,... run over 1,...,n and
are related to the postulated a priori micro-shape functions, the meaning of
which will be explained in the subsequent section. Summation convention
holds for all aforementioned indices. Setting z = (x1,%2) and denoting by =z
the cartesian coordinate in the direction normal to the midplane, we assume
that the plate under consideration in its underformed configuration occupies
the region 2 := {(2,z): —h(z) < z < l(z), z € I}, where II is the region
of midplane and 2h(z) is the plate thickness at a point z € II. Denoting by
A :=(0,1)) x (0,13) the region on 0x,z; plane, where [y,l; are the length
dimensions sufficiently small compared to the minimum characteristic length
dimension of IT, we shall assume that /() is the A-periodic function of =z.
All material and inertial properties of the plate are also A-periodic functions
of z. For an arbitrary integrable A-periodic function f(:) we shall denote by

<f>= i/f(x) da da = deydas
A
A

its averaged (constant) value. Moreover, the time coordinate will be denoted
by 7. Setting z3 = z we introduce the cartesian coordinate system 0z zoz3
in the physical space; subscripts i, j related to this system run over 1,2,3.

2. General formulation of the Kirchhoff plate theory

The starting point of analysis is a general formulation of the Kirchhoff plate
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equations. Let wu;, ¢;;, 0y; stand for displacements, strains and stresses, p¥,
p~ be tractions (in the z3-axis direction) on upper and lower plate boundaries,
respectively, t be tractions on the plate cross-sections along the boundary 91T
of the midplane IT and b be the constant body force (in the 23-axis direction).
Moreover, by p = p(z,z) and Cjiju = Ciju(z,2) we denote mass density and
elastic modulae of the plate material and assume that z =const are material
symmetry planes; at the same time p(-) and Cjyju(-) are assumed to be even
functions of z and A-periodic functions of z.

The formulation of the linear elastic plate theory is given by the strain-
displacement equations

&y = U(,'_j) (21)

by the stress-strain relations for o,g restricted by the plain strain assumption
033 = 0 and hence given by

Oapp = Dapyseqs (2.2)
where Dggns i= Capys — CapazCas33(Cazaz) ™!, and by the virtual work prin-

ciple

h
/ / 0036U(a,3) + 20036U(q, 3)) dzda = /(p+6u3|h + 1)"6u3~_h) da +

I —h n
(2.3)
h h h
+b//p6u;; dzda—//pii,-&u,- dzda + j{ /t&u;; dzds
I —h T —h a1 —h

which has to be satisfied for every admissible virtual displacement field éu;.
Moreover, within the framework of the Kirchhoff kinematic hypothesis we

assume that
uz = us(z,7) Uy = —2U34(Z,T) (2.4)

and hence duz = busz(z), du, = —zbuzy(z) in Eq (2.3). As it is known,
Eqs (2.1) + (2.4) lead to the Kirchhofl plate theory in which wus(z,7) has to
satisly the known partial differential equation of the fourth order. However,
for the micro-periodic plates under consideration, this equation involves hi-
ghly oscillating coeflicients which are A-periodic functions of z = (241, 22).
Equations of this form do not constitute the proper analytical basis for a com-
putational analysis of special problems. That is why dilferent homogenization
macro-modelling approaches have been proposed in order to approximate the
problem and describe the behaviour of the pertodic heterogeneous plates in
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terms of partial differential equations with constant coeflicients. The known
macro-modelling approaches are often based on the scaling the microstructure
down by the formal asymptotic assumption that /; — 0 and I, — 0 but {;/;
holds constant. Hence the resulting equations neglect the effect of the size of
microstructure (described by the length parameters [;,{;) on the plate beha-
viour. In order to retain this effect we shall propose the alternative approach
which will be referred to as the refined macro-modelling of the plates under
consideration.

3. Refined macro-modelling of Kirchhoff plates

The refined macro-modelling of micro-periodic composite materials and
structures takes into account two auxiliary concepts, cf WoZniak (1993).
The first is the concept of a macro-function, related to the microstructure
length parameter ! (in the problem under consideration we can assume that
I = /(11)? + (I2)?) and to a certain numerical accuracy parameter. Function
F, defined on I (which can also depend on 7), will be called macro-function
if for every z,y € II condition ||z—y|| < limplies |F(z)—I'(y)| < AF, where
Ar is a numerical accuracy parameter related to F. If [ is a regular function
and the similar conditions (with the pertinent numerical accuracy parameters)
hold also for all derivatives of F (including time derivatives provided that F
depends also on time), then [ will be called the regular macro-function.
Generally speaking, by the regular macro-function (related to a certain micro-
periodic structure and suitable numerical accuracy parameters) we understand
the function which together with all its derivatives in an arbitrary but fixed
periodicity cell A(z), A(z) := z + A, A(z) C 11, suffers oscillations which
from the computational viewpoint can be neglected. It is easy to see that
the macro-description of micro-periodic materials and structures have to be
realized by means of macro-functions.

The second auxiliary concept in the refined macro-modelling is the micro-
shape function system. It is a system of n lincar-independent continuous
functions g*(z) which have continuous first and second order derivatives,
are A-periodic and satisly the conditions: < ¢*  >= 0, g*(z) € o),
9% o(2) € O(l), and the values of the second derivatives of ¢* are inde-
pendent of {. Moreover, every lincar combination of micro-shape functions
in an arbitrary but fixed periodicity cell A(z), A(z) C I, has to describe
expected disturbances of the plate deflections wu3(y,7), ¥ € A(z), caused
by the plate inhomogeneity. lHence the choice of micro-shape functions de-



ON THE ELASTODYNAMICS OF THIN MICROPERIODIC PLATES 341

pends on the problem under consideration and accuracy of modelling. As
a simple example of these functions we can take n functions of the form
1?sin(przy/ly)sin(rrzy/lz), where p,r are positive integers.

The refined macro-modelling approach to the Kirchhofl plate theory will
be based on Eqs (2.1) + (2.4) and on the following three hypotheses:

e Macro-Kinemalic Hypothesis. The dellections wz(z,7), 2 € I, of the
Kirchhofl plate with micro-periodic structure can be assumed in the form

uz(z,7) = w(z,7) + ¢%(z)¢* (2, 7) (3.1)

where g¢%(-) are postulated a priori micro-shape functions and w(-,7),
¢*(+, ) are arbitrary linear-independent macro-functions.

o Virtual Work Hypolhesis. The principle of virtual work (2.3), where
Suz = buz(z), bus = —20uj4(2), holds for

dug = §w(z) + g*(z)d¢*(z) (3.2)

where dw(-), 64°(-) are arbitrary regular and lincar-independent macro-
functions.

e Macro-Modelling Approximation. In Eq (2.3) combined with Eqgs (2.1),
(2.2), (2.4), (3.1) and (3.2) terms O(A) can be neglected, where A
stands for the pertinent numerical accuracy parameter related to macro-
functions w, ¢%, dw, 84* and their derivatives.

Macro-functions w, ¢ represent the new basis unknown kinematic fields
of the refined theory of micro-periodic plates and are called macro-deflections
and microstructural variables (or inhomogencity correctors), respectively. The
term g%*(z)g%(z,7) describes the expected disturbances in the plate deflections
caused by the micro-periodic structure of tlie plate subjected to timme depen-
dent loadings or to free vibrations. For more detailed discussion of the refined
method of macro-modelling the reader is referred to Wozniak (1993) and Wo-
zniak et al. (1993).

It can be shown that Eqs (2.1) + (2.4) combined with the three afore-
mentioned modelling hypotheses lead to the system of equations in w and
g®. Setting aside rather lengthy calculations we shall confine ourselves to the
final equations representing the proposed relined macro-theory of Kirchhoff
plates with micro-periodic structure. It has to be emphasized that this theory
has a physical meaning only for micro-periodic plates in which stresses and
deformations can be described (with a suflicient accuracy) by the Kirchhoff
assumptions (2.2) and (2.4), respectively. Assumptions of this form may not
hold for the plates with rapidly varying discontinuous thickness.

8 — Mechanika teoretyczna i stosowana
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4. Refined theory

In order to write down governing equations of the refined macro-theory
of plates with periodic structure we shall introduce the following A-periodic
functions

h(x) h(x)
M(z) = / p(z, 2) d= Bugys(z) = / 22 Dogas(z, 2) dz
—h(z) —h(z)

For the sake of simplicity we shall also neglect the rotational inertia terms
involving the A-periodic function

h{x)
J(z) = / 22p(z,2) dz
—h(z)
Under this approximation, the macro-modelling procedure based on the as-

sumptions formulated in sections 2 and 3 yiclds the following system of cqua-
tions in macrodeflections w(z,7) and microstructural variables ¢°(z,7)

<Baﬂ'y8 > Whapys + < Baﬂ’y$ga”y5> qamﬂ +<M>w+< A{.{/a>f-ja =

=<p>+b<M>
(4.1)

< Baﬁ'yégayaﬂ> Woys + < Baﬂ—y&.(/aw& .(/byoﬁ> (Ib + < A]f/a >w +
+< Mg®g® > = <pg®> + b< Mg®>

where p:=pt +p~.

Thus, we have arrived at the system of n + 1 dilferential equations with
constant coefficients. Hence Eqs (4.1) can be used as a basis for computatio-
nal analysis of the micro-periodic plates under consideration. The values of
underlined terms in qs (4.1) depend on the size of the microstructure (on the
microstructure length parameter /) and hence describe the scale length eflfect
on the plate behaviour. The characteristic featurc of the obtained result is the
fact that equations for microstructural variables ¢%, ¢ = 1,...,n, are ordinary
differential equations involving exclusively time derivatives of ¢®. It means
that the microstructural variables are independent of the boundary conditions
and Eqs (4.1) have to be considered together with two boundary conditions
for macrodeflections w, two initial conditions for w and two initial conditions
for every microstructural variable ¢*. It has to be emphasized that solutions
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to the pertinent boundary-initial value problems have a physical sense only if
w and ¢° are regular macro-[lunctions.

At the end of this section let us consider a thin plate made of a homoge-
neous isotropic material and having the A-periodic thickness. In this case

h3

Ba,@'y& (6076,86 vE )

1 ' ab ﬂ‘y 1
a.nd undel‘ denota.tions

En?

B= a0

D =<B(1 = v)g%,ap +oapvBg* 1y >
D =<B(1-v)¢%u89%08+vB9% 00 985>
the system of governing equations (4.1) will take the lorm
<B> wiaaps+D5pq% 0+ <M> 0+ <My >G* =<p>+b<M>

(4.2)
Db + Degw,ap +< Mg®g® > + < Mg® > = <pg® >+ b< Mg®>

where the underlined terms have the same meaning as those in Eq (4.1).

5. Effective stiffness theories

Scaling the microstructure down by setting | — 0, we arrive at the asymp-
totic approximation of the refined theory. Neglecting the underlined terms in
Eqs (4.1) we obtain for ¢* the system of linear algebraic equations

<Baﬂ'y§gavy6 qbaa,@> (lb =-< Baﬁ—y&‘laaaﬂ> W,~g (51)

It can be shown that the nxn matrix of clements < Bygy59% s 7%,ap> is non-
singular. Denoting by G®® elements of the inverse matrix we can eliminate
microstructural variables from the governing equations by means of

¢ = -G <Ba/3,,5qb,a/3> Wons (5.2)
Setting

fof[ri'ys =< Bopys > — < Bapug® > G* < B'y6rrp.’]bwrp> (5.3)



344 J.JEDRYSIAK, CZ.WOZNIAK

we arrive at the following equation
B sWiapys+ <M > =<p> +b <M > (5.4)

where Bg%vb‘ are called the eflective stiffnesses of the micro-periodic plate
under consideration. Let us observe that for a plate homogencous in 0z, x4
plane and having constant thickness we obtain B,gys=const, and by neans
of <¢%,,3>= 0, from Eq (5.2) it follows that ¢* =0, a = 1,...,n. Thus we
conclude that the micro structural variables describe the effect of thie inhomo-
geneous periodic structure on the plate behaviour.

Theories of micro-periodic Kirchhoff plates governed by Eq (5.4) are called
the effective stiffness plate theories. The formulae for the effective stiffnesses
Bfféw can be obtained using dilferent procedures (cf references mentioned in
the Introduction) independently of the asymptotic approximation ol Eqs (4.1)
leading to Eq (5.3). The effective stiffness theories neglect the ellect of the
size of the unit cell A on the macro-behaviour of the body, being independent
of the microstructure length paramcter {. Let us observe that for quasi-
stationary problems we can also eliminate variables ¢* from Iqs (4.1) and
arrive at the governing equation in w which has the form similar to that of
Eq (5.4) with the extra term of the order ((I2) on the right-hand side of this
equation. It follows that for quasi-stationary problems we can use the effective
stiffness theory represented by Eq (5.4) instead of the refined theory governed
by Eqs (4.1). For dynamic problem the situation is different; to show this fact
we shall consider in the subsequent section a certain special problem.

At the end of the section we shall pass to the ellective stillness theory
for isotropic homogencous plates with  A-periodic thickness. The pertinent
governing equations can be derived directly from Lqs (4.2) by neglecting the
underlined terms. Denoting by G clements of n x n matrix which is inverse
to the matrix of elements D® we obtain ¢* = —G“ngﬁw,Og and after
denotation

B s =< B> 8ap6y5 — D2G* DY

we arrive at the governing equation, the form of which coincides with that of
Eq (5.4).

6. Refined versus effective stiffness theories

In order to compare the scope of applicability of the refined and eflec-
tive stiffness plate theories we shall analyse vibrations of a simply suppor-
ted rectangular plate made of an isotropic homogencous material and having
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the A-periodic thickness. It will be assumed that the unit plate element
(based on the unit cell A = (0,/;) x (0,/3)) has two symmetry planes:
z1 = 11/2 and 29 = l3/2. Tor the sake of simplicity we confine ourselves
to one micro-shape function ¢ = ¢! = [?[cos(2ra,/l;)cos(2raz/l3) + ],
where the constant ¢ is defined by the condition < Mg >= 0. Deno-
ting II = (0,L1) x (0,Ls), ky = 27/Ly, ko = 27 /L, we shall assume that
p = posin(kyz1) sin(kaz,) cos(wT), where pg is an arbitrary constant, pg # 0.
At the same time the ellect of the body forces on the plate vibrations will be
neglected. Since [y € Ly, la € L, then pcan be treated as a macro-function
and the term < pg > on the right-hand side of Eqs (4.2) will be neglected.
Hence, setting q = ¢', Dap = D}, D = D', from Lgs (4.2) we obtain

<B> W,ooB0 +Dor,(3qvaﬁ +<M>w= P
(6.1)
Dq+ Doswyap+ <M(g)*>§=0
with p = posin(kizy)sin(kyz,) cos(wr).
Let us observe that now Dj, = D2 = 0. Solution to Eqs (6.1), satis{lying
boundary conditions for the simply supported plate, can be assumed in the
form

w(wy, xe, T) = Aysin(k z))sin(kozz) cos(@r)

(6.2)

g2y, 22,7) = Ay sin(krzy) sin(kzzg) cos(wr)

where A, A4 are vibration amplitudes, A, A, # 0. Substituting the right-
hand sides of Eqs (6.2) into 15qs (6.1) we obtain the system ol two linear
algebraic equations for A, Aq

<B> (K + k)= <M>&*  ~(Dnk?+ Dakd+ < Mg> o)
—(D”kf + Daokd+ < Mg> aﬂ) D~ < M(g)?> &?

L]-[%]

Under denotations

l[ D + <D>

2l<M(g)2> <M>
1 [ D < D>
2V l<M(g)2> <M>

(6.3)

A= (K 4+ 43)2] +

(Dlllv'? + D221~‘%)2
<M><M(g)2>

2
(k2 + £2)2] "+ 4
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§[<M(g)"’>+<M>(I"+I"")]Jr (6.4)

1 D <B> ‘ (D11k? + Dagk3)?
= - k? + k2 4 : d
+ 2\/[<M(g)2> skt e+ <M><M(gp>

the solution to Eqs (6.3) can be written down in the form

A = po[D— < M(g)?> &?]
YT M ><M(g)?> (02 = AB)(0? - A2)

(6.5)
A = po(D11k? + Dyak3)
TT <M ><M(g)?> (02 - A3) (@2 - A2)

Substituting the formulae for amplitudes A4,,, A, into Eqs (6.2) we obtain the
solution to the problem under consideration. From Eqs (6.5) it can be easily
seen that Ay, Ay are lower and higher resonance [requencies, respectively, for
the vibration problem under consideration.

The above analysis was carried out within a framework of the refined the-
ory. On passing to the effective stiffness theory we shall use Eq (5.4), where
now |

B s =< B> Sapbys — +DasDas (6.6)

After neglecting the body forces as well as assuming that <p>Z% p we
obtain
B swiapys+ <M > =p (6.7)
where p = posin(2ray/Ly)sin(2r2o/Ly) cos(T).
The solution to the pertinent boundary value problem can be assumed in
the form
w(xy,z2,7) = Agsin(kyay) sin(ke2,) cos(wr) (6.8)
where Ay is the vibration amplitude. Substituting the right-hand side of Eq
(6.8) into Eq (6.7) and bearing in mind Eq (6.6), after denotation

1
<M>D

2 <B>
<M>

we obtain the following well known formula for the vibration amplitude

(K} +k3)% - (Diik? + Dagk3)? (6.9)

Po
Ao = 1
0T M > (A —&2) (6.10)

with the resonance frequency A given by Iiq (6.9).
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In order to compare the lower resonance vibration frequency obtained from
the first of Eqs (6.4) and that given by Il (6.9), let us denote

<B>
g = >y ”>(L2+k2)2 e =< M(g)*>
y= (Dy k% + Dpk3)?
- <M >

Under the above notations the first one from Eqs (6.4) takes the form

X;’:%[ +ﬁ]—~\/ +(%—2g) +bi2€2

Let us observe that since ¢ € O({*) then the constant ¢ can be treated as a
small parameter. Representing the square root in the formula for Ay in the
form of the power series with respect to ¢, we obtain

A =8-L+00)

Taking into account Eq (6.9) and bearing in mind the definitions of S and 7,
we arrive finally at the interrclation

AL =274+ 0(Y)

between the values of resonance frequencies Ay and A obtained within frame-
works of the refined and eflective stillness theories, respectively.

Summarizing results of this section, the following conclusions related to
the both aforementioned theories can be formulated:

e The squares of lower resonance frequencies rclated to the effective stiff-
ness theory are approximations ol the order (/) of the resonance
frequencies derived from the refined theory.

e Higher resonance frequencies are caused by the effect ol the microstruc-
ture length dimension on the dynamic behaviour of the plate and cannot
be obtained within a framework of the eflective stiffness theory.

e For the analysis ol forced vibrations at high frequencies the refined plate
theory has to be used.

The above conclusions are similar to those obtained by Baron and Wozniak
(1995), which where related to the theories of periodic composite plates based
on the Reissner-type plate theory.
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7. Concluding remarks

The above example is a simple illustration of the proposed refined macro-
theory of Kirchhoff plates with micro-periodic structure; the aim of the exam-
ple was to show that the refined theory is able to describe, on the macro-level,
certain micro-dynamical aspects of the plate behaviour. On the other hand,
these aspects cannot be investigated within a framework of the known effec-
tive stiffness theories. This result is strictly related to the fact that Eqs (4.1)
involve terms describing the effect of the microstructure length dimensions on
the macro-behaviour of the plates under consideration. For the sake of sim-
plicity in the example the have cofined ourselves to one micro-shape function;
in order to carry out more detailed investigations of the microdynamical plate
behaviour we have to introduce two or more micro-shape functions. Problems
related to various applications of Eqs (4.1) to dynamics of micro-periodic plate
as well as the possible generalizations of these cquations are reserved for se-
parate papers. '
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O clastodynamice cienkich mikroperiodycznych plyt

Streszezenie

Celem pracy jest opracowanie 1 analiza nowe) metody modclowania cienkich
sprezystych plyt o mikroperiodycznej strukturze w plaszczyznach réwnoleglych do
plaszczyzny srodkowej plyty. Zasadnicza cechy otrzymanej teorii jest uwzglednienie
wplywu wielkosci mikrostruktury na dynamike plyty. Efekt ten jest pomijany w zna-
nych asymptotycznych teoriach plyt kompozytowych o periodyczne) strukturze. W
pracy wykazano, ze wielkoé¢ mikrostruktury odgrywa istotna rolg przy badaniu pro-
cesOw dynamicznych.
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