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This paper concerns the crack-border stress singularitics in a micrope-
riodically stratified elastic layer weakened by an interlace central penny-
shaped crack. By using the homogenized model with microlocal para-
meters (cf Wozniak, 1987a) the stress field with an inverse square-root
singularity is obtained. In the context of linear fracture mechanics, the
stress intensity [actors are defined as the local crack response parame-
ters which can be obtained in terms ofl the solutions to the corresponding

Fredholm integral equations. Some examples are solved numerically and
the results are presented in the diagram form.

1. Introduction

As the result of increasing use ol advanced composites in various bran-
ches of modern technology, the study of [racture toughness ol these materials
has received wide attention. The recent literature on the crack problems in
composites is very extensive and will not be wholly discussed here. We can
mention only some basic monographs by Sih and Chen (1981), Cherepanov
(1983), Sih and Tamuzs (1979), Sih and Skudra (1985).
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A large set of problems is associated with interface cracks which are con-
sidered as one of the most commonly encountered types of damage in the
failure of composites. Many investigators have reported on this subject (cf
Williams (1959), Cherepanov (1962), England (1965), Erdogan (1965), Kassir
and Bregman (1972), Willis (1972)). In these studies, it was pointed out that
the conventional solutions for interface cracks possess a controversial oscilla-
tory stress singularity leading to the physically inadmissible phenomenon of
crack surface interpenetration. This result indicates that the classical appro-
ach is not suitable for the crack lying on the interface of two diflferent media.
The unreasonable behavior mentioned above was discussed by many researches
and several models have been proposed to correct the unsatisfactory features
of the oscillatory crack-tip characteristics, e.g., by Dundurs and Comninou
(1979), Atkinson (1977), Itou (1986), 1lills and Barber (1993).

Lately, an efficient attempt has been made at solving some elasticity pro-
blems of interface cracks in microperiodic two-layered space (see Kaczynski
and Matysiak (1988), (1989a,b), (1993), (1994); Matysiak (1989), Kaczynski
(1993a,b), (1994); Kaczyiiski, Matysiak and Pauk (1994)). The closed-form so-
lutions with the standard inverse square-root singularities haye been achieved
using the homogenized model of microperiodic composites given by Wozniak
(1986), (1987a,b); Matysiak and Wozniak (1987). The advantage of this mo-
del is a relatively simple form of the governing equations and a possibility
of evaluating not only mean but also the local values of strains and stresses
in every material components of the stratificd body. Moreover. such an ap-
proach has made it possible to determine the stress intensity factors for the
above crack problems which are the counterpart ol those well-known for ho-
mogeneous bodies (cf Panasyuk, Savruk and Datsyshyn (1970); Kassir and Sih
(1975), Andreikiv (1982); Murakami (1987)) used to predict crack propagation
in linear fracture mechanics.

It is the aim of this paper to discuss the singular crack-border stress field
in a periodically stratified elastic layer containing an interlace central penny-
shaped crack on the basis of the homogenized model mentioned above. We
pay attention to the particular fundamental solution to tension problems (so-
called Mode I - sce, e.g. Sneddon and Lowengrub (1969)) associated with the
action of concentrated, axial symmetric and circumferential forces.

In Section 2, based on the results of papers given by Wozniak (1987a),
Matysiak and Wozniak (1987), the governing equations of the linear clasticity
with microlocal parameters in the axisymmetric case of periodic two-layered
composites are presented. Moreover, the penny-shaped crack problem in the
stratified layer is formulated.

In Section 3 the solution is obtained by using the method of Hankel trans-
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forms and then reducing the resulting system of dual integral equations to the
Fredholm integral equations of the second kind. Utmost attention is payed
to determine the singular stress field in a region close to the crack periphery.
Physically meaningful fracture mechanics parameters such as the stress in-
tensity factor and the energy release rate are defined and extracted from the
solution to the Fredholm integral equations.

Section 4 contains some numerical calculations of the stress intensity fac-
tors. The obtained results are examined and presented graphically.

2. Problem description

Let us consider a microperiodic laminated layer, tlhie middle cross section
of which is given in Fig.1. A repeated [undamental layer of thickness 1 is
composed of two homogeneous isotropic elastic layers denoted by 1 and 2 and
characterized by the Lame constants A;, ;51 = 1, 2. Let [y and I3 be the
thicknesses of the subsequent layers, so [ = [} +15. The cylindrical coordinate
system (7,¢,z), such that the z-axis is normal to the layering and to the
interface with a penny shaped crack situated on the plane z = 0, will be
applied.

For the static axisymmetric case the equations ol the homogenized model
(after eliminating the microlocal parameters) take the form (see Pusz (1988))

1 9%[rw,(r,z)] 0*w,(r,z)
o dzdr A 0z2

Q?w, (7, z)] ?w,(r,z)
drdz e 0:2

where Dg, D are the differential operators

CDolw,(r,2)]+ B =0

(2.1)

Ay Dy [w,(r,2)]+ B 0

J
o0

o(r
75)

Do[f]E%g;( (22)
2.2

Dl[f]E%

and Aj, A,, B, C denote

(M 4 201) (A2 + 2p12)

A =
P A=) O0 + 20) + 00 + 2i2)
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An(n = D)1 — p2)(Ar = Ao+ 2p1q — pa)

A2 = (L=m)(Ar+ 2p01) + (A2 + 2p2) +A>0
(1 = m)A2(A1 + 2py) + Ay (A2 + 2p9) .
D= e ra0e r 2y 0 (23)
- Hi[2
(1 = mn)p1 + np2
=T

Unknown functions w,(r,z) and w,(r,z) are the components of the ma-
crodisplacement vector.

The stresses in the layer of jth kind are expressed by the macrodisplace-
ment vector in the form

ow., 1 9(rw,)

(3} — z

oz = 4 or t BT Or
. Jw, OJw
(J) = —_— T Z

o =C(Z2+57) (24)
, Jw 19(rw,)
() = p.2 2= oo !

o = D; Jz + L r o Or

where
)y
D, = —" A
R (2.5)
4 (A; + 115) Aj

E; = j=12

Ajt2up A+ 2

The considered penny-shaped crack problem is described by the following
boundary conditions (see I'ig.1)

ol)(r,z=0%) = 0ld(r,2=07) =0
(2.6)
oD z=0N)=0¥(r,z2=0")=0 r<a

and
(2) — ! ()0 o _ _
o(r,z=H) = 6(r —b) oil(r,z=1)=0

27y

P
o re=—d)=~5=8(r=b)  o{)(r.s=-1)=0 r>0
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2) N~ | r=b
(H
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1 r=
/17111111 -
) G4
m
(2)
(M 4 _r=b

pad N

P
Fig. 1.

where §6(-) is the Dirac delta-function and [/’ is a given constant, £ > 0.

The solution to the formulated above problem can be interpreted as a
Green function for the symetrically loaded laminated layer weakened by a
penny-shaped crack.

3. Solution to the boundary-value problem

Making use of the superposition principle, the boundary-value problem
stated in Section 2 is separated into two parts. Ior the first part, the uncrac-
ked stratified layer is assumed to be loaded by constant forces distributed on
the circumference of radius bacting symmetrically with respect to the middle
plane. For the second part the negative tractions generated at the crack area
from the first part are applied to the crack faces.

By using the method of Hankel transforms the solution to Iigs (2.1) with
boundary conditions (2.7) can be written for the case of dilferent shear modu-
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lae pq and po of the subsequent layers in the form (the case of p; = uy has
to be considered separately but here it will he omitted)

w,(r, 2) = /545(5)950(5,3)-11(57‘) d€ = H{Po(&,2)P(&); € — 1}
° (3.1)

o0

wi(r,2) = [ EHOB(E 2)IoEr) d = ol (& 2)B(6); € — 1)

0

where
Po(€,2) = M8 4 B(E)eME" + B [ek26 4 B(e)eHeee] 4
+6a [emhE 4 B(E)ea]
B1(6,2) = Gr[eh s = O] + Gy o6 - pege ] +

A [e—kzﬁz _ ﬂ(f)eb{z]}

_ 1/B+ AGik k-G,
IB]'Q_ 2(B+A|G2k2:tk2—(l'2>
Ck? — A,
A N
Gy = P2k,
. \/AlAz—B‘Z—QBC:t\/E

1:2 =

(3.2)

j=1,2

24,C
D= (A]Ag — B2 - QBC)Z - 4/11,4202
(ki — Gr)e™ K17 4 (kg — Go) [fre= (k) — gemtlhy—ha)H
ki = Gt + (ka — Go)|[Bre=€thi=ka)ll — fre=tlir+ka)i |

p(&) =

Unknown function @(£) has to be determined from boundary condition
(2.7)1. Thus, using Eqs (3.1), (2.4) and boundary condition (2.7); we obtain

P
(&) = Q_WL(f)Jo(fb)
(3-3)
ky(B? 4+ Gy Ay) — ko( B2+ G241 )7(8)
IC](BZ + G]Al ) COS]](EI»'] I[) — ICQ(BZ + szll ) COS]](EI»'QII)

L(¢) =
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By using Eqgs (3.3), (3.1) and (2.4), the [irst part of the solution can be
written in the form of Hankel integrals (the formulac are too lengthy and here
will be omitted).

Applying the superposition principle to ensure a traction-free crack descri-
bed by the boundary conditions (2.6) we take the displacement w, and the
stress agfz),j = 1,2 on the plane z = 0 in the form

w7,z = 0) = Ho{™'P(£)1(€,0); € — 7}
(3.4)

ol (r,z=0) = Ho{s(E)d2(&); € — 1}
wlhere

$2(£) = (B + Allel)[e_klfH + ﬂ(f)ek‘“’] +
(3.5)

+(B + AlG2k2){ﬂ1 [e—kqfl-l n ﬂ(f)e"“”] + 8, [ek2£}1 n ﬂ(f)e_kgéy]}

and the unknown function (&) has to be determined from the following dual
intergal equations

(e - 9@ €~ = 0<r<a
-0 (3.6)
HO{f—lw(f); E—=1}=0 r>da
where
LX) )
9(6)=1- 3 X(6) = 5o
Xo = lim X(£) = (B + A\Giky)(ky — G) + (B = AGak)(ky — Gy)
{—o0 1\'102 - I{QG] _
(3.7)
P
S(r) = - Ho{ L(E)To(€b); 7 = €)
)= (Bk% — G5) sinh(&koIT)
(6) = (Bk? — G)sinh(&ko H)
By introduction the following dimensionless notations
b
¢ =af p= 2 €= -
(3.8)
I 2D+ C
h=" P7(Q) = T (at)
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the dual integral equations (3.6} can be written in the form

Ho{¥™ (Ol — g(Q)); ¢ — p} = 5"(p) 0<p<1
(3.9)
Ho{¢'97(¢); ¢ —p} =0 p>1
where
L()Jo(¢€)Jo(CE) dC
° (3.10)
. Xo
Xo=5m+ 0

Let the solution to the dual integral equations (3.9) have the form (Sneddon

(1966))
1

P*(() = /h(r)sin (rdr (3.11)

0

where h(-) is an unknown function.
By substituting Eq (3.11) into Eq (3.9) we arrive at the integral Fredholm
equation of the second kind

1
h(t) — }r/ KN, 7)h(r)dr = F(t) 0<t<l (3.12)
0

with the kernel and the [ree term given by

[ee]

K, )= /g({)[cos(t — 1) — cos(t + 7)€] d¢

° (3.13)

F() = —o= [ H€olee) singed) de

From the standpoint of fracture mechanics a quantity ol primary impor-
tance is the field of stresses in the vicinity of the crack tip. The local stress
field reveals the typical inverse square root singularity and is characterized by
the stress intensity factor (SII') playing the main object in the linear elastic
{racture mechanics.
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The SIF is defined in the conventional manner as

LN;= lim '2(7'—(L)<7£-§)(7',0) (3.14)

T—a

By using Eqs (3.11), (3.8) and (3.3) we obtain

_ Ph(1)Xo
1 +y = (2
ng)(PaO ) - U,ﬁ,z)(/’so )N a2(2B + C)\//)Tl
(3.15)
p= 1 17t
a

so the stress intensity lactor K'; is given by

, Ph(1)Xo (3.16)

YT epB o)

where h(1) is the solution to the Fredholm integral equation (3.12) at the
point ¢t = 1.

The obtained results can be used together with the appropriate fracture
criterion for the prediction of [racture initiation. Employing the classical con-
cept of fracture toughness and assuming that the crack extends along the
interface, the fracture initiation can be controlled by the critical value of the
strain energy release rate (see Sih (ed.) (1973-1981)).

After some calculations for the considered axisymmetric case ol the micro-
periodic layered body with penny-shaped crack, the strain energy release rate
(1 is expressed by

Ay(VA Ay + B+ 20) K? (317)

s
Gy =
L= /A + B)\/ C/hid—B) !

4. Numerical example

The stress intensity factor Ky given in Eq (3.15) depends on the mate-
rial properties of the subsequent laminae, geometrical parameters 1 = l;/o,
€ = bfa, h = Il/a and the intensity of external force P. As an example
we consider the stress intensity factor A’y under assumptions that tlie Lame
constants Ay, g and Ag, po satisfy the conditions

AL =y Ay = fig (4.1)
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_m . _ Ki(2B+C)a?
1= K7 = PXq (4.2)
0.4
SIF
0.3
0.2 = /52‘)/)4
4/7,
0PN ] —
[y | [
0 1 2 3 4 5
be
Fig. 2.

The dimensionless intensity stress factor A7 = (1) is plotted in Fig.2 as

a function of v for h/a =5 and

(1°) b/a =
(2°) b/a=
(32)  bla=2
(4°) b/a =

The curves (1°) and (2°) determine
loadings at the points (r =0,z = £1I).

n=0.5
n=0.1
71 =0.5
7 =0.1.

K7 for the case of concentrated

Fig.3 shows the SII' K7 as a function of the ratio b/a for = 0.1,y = 0.5

and
(1°)  hja=2
(2°)  hfa=3
(3°)  hja=5
(4°)  h/e =10.
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WspdSlezynniki intensywnosci naprezen dla kolowej szezeliny
migdzywarstwowej w laminatowej warstwie sprezystej

Streszczenie

Niniejsza praca dotyczy osobliwosdci naprezefi wokdl szczeliny kotowej, polozonej
centralnie na zlaczeniu warstw w mikroperiodycznie uwarstwioncj warstwie sprezystej.
Stosujac model homogenizowany z parametrami mikrolokalnymi (por. WoZniak
(1987a)) otrzymuje sie pole naprezeii z osobliwoscia odwrotnie proporcjonalna do pier-
wiastka kwadratowego z odleglosci od punktu brzegowego szezeliny. Z punktu widze-
nia liniowej mechaniki pckania, lokalnymi pardmetrdml odpowiedzialnymi za IOZWO_]
szczeliny sa wspblezynniki intensywnosci naprezen, kiore otrzymuje sie z rozwiazan
odpow1edn1ch rownan calkowych typu [redholma. Przeprowadzono ich anahzq w
pewnych przypadkach i wyniki przedstawiono w postaci wykresow.
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