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The wave propagation problem in periodic libre-reinforced linear-clastic
materials is investigated. The approach is based on the equations of
refined macrodynamics proposed by Woiniak (1993) and generalizes the
results obtained previously by Mielczarek and Wozniak (1995). Its main
feature i1s a possibility of obtaining resulting formulas for the spectral
lines and the phase velocities in a simple analytical form.

1. Preliminaries

The problems of wave propagation in periodic composites have been stu-
died in a series of papers by Achenbach and Sun (1972), Iljalmars and Fischer-
Hjalmars (1981), Abudi (1981), Tolf (1982), Zérawski (1982) and others. In
most cases the spectral lines as well as the phase and group velocities were
obtained by numerical solutions to boundary value problems related to the
representative array of the medium. In this paper an alternative approach to
this problem, based on the equations of the relined macrodynamics, proposed
by Wozniak (1993), is investigated. The considerations will he restricted to
the waves propagating in the plane 0z,22, normal to fibres. The fibres are as-
sumed to be parallel, periodically distributed and have circular cross-sections;
the representive array A of the composite on 0xjz9-plane is shown in Fig.1.
Both the matrix and the rcinforcement are made of homogeneous, isotropic,
linear-elastic materials and the perfect bonding between constituents is taken
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Fig. 1. Cross-section of the fibrous composite and its representative array A

into account. The analysis will be carried out within the framework of the
macro-wave approximation in which higher powers of the dimensjonless wave
number ¢ = kI (k = 2r /L being the wave number and [ = 2\/(1;)? + (I,)?
is the maximum characteristic length dimension of the representative array)
are small compared to 1 and can be neglected. The main attention will
be devoted to the waves propagating along z,-axis. On these assumptions
the results found are given in a simple form of explicit interrelations between
the frequency & and the wave number k, representing three basic modes of
the spectral lines both for the longitudinal and transversal waves. llence the
obtained dispersion reclalions constitute a certain generalization of formulae
derived previously for transversal waves by Mielczarck and Wozniak (1995).

2. Foundations

In order to specify the general form of governing equations of the refined
macroelastodynamics (cf Wozniak (1993)) for the problem under consideration
we shall introduce two micro-oscillatory shape functions hy = hy(z),z2),
hy = ha(xy,22) which are A-periodic, A = (—{,,{;) x (—{2,/2), continuous,
and describing, [rom the qualitative viewpoint, the expected disturbances of
the displacements due to micro-heterogencity of the medium. The diagrams
of function hq(z;,z2) on the matrix-fiber interface and for 25 = a, @ € (0,7),
are given in Fig.2; at the same time h;(z;,z) = 0 for every z € [r,/;] and
hi(z1,22) = hi(zy,—22) for every (2,,22) € A. The extremal values of
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Fig. 2. The diagrams of function hy(x,,z) for 22 =@, a € [0,7] and on the
madtrix-liber interface

hi(z1, z2) are for (z1,zq) = (£7,0), being equal to /;. The form of function
ho(z2, 1) can be obtained from hj(z;,29) by interchanging subscripts 1,2 in
exact formulas defining h;(21,22) (hence {,,/; have to be replaced by I,,1),
respectively, etc.). The micro-macro localization hypothesis of the refined
macrodynamics yiclds the following approximation for the displacement fields
ui(z,7),1= 1,2, 2 = (2, 22) at the instant 7 (¢ Lq (3.1) in WoZniak (1993))

ui(z,7) = Ui(z, 1) + hi (2)Q; (2, 7) + ha(2)Q} (2, 7) =12 (2.1)

where macrodisplacements U; and macrocorrectors Q},Q? are dynamic va-
riables. At the same time these variables are macro functions i.e. they satisly
conditions

Ve,z: z-z€ A = |Flz)~ F(2)| <ep
(2.2)

1 2 1 2 g
Fe {Ui, 19 ivU’i.jv i,jv i_j)Ui }

where values O(er) in the course of macro-modelling are rejected as negligibly
small. For more detailed information the reader is referred to the above refe-
rences. Let us denote by p and A, p the mass density and the Lamé modulae,
attaining for fibres and a matrix constant but different values pp, Ap, gt and
PM, AM, IM, Tespectlively. Setting x = A4 2p and introducing the averaging

operator
1

4[1[2
A

<f>= f(zy,22) dayda,
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for an arbitrary A-periodic integrable function f, from Eqs (5.1) in WozZniak
(1993), we obtain (summation over b = 1,2 holds)

<p> U= <> U= <p> Urge— <A+ p> Upa— <rhiy > QL +
- </\h2y2> Q%,l_ </lh2_2 > Qf,z— </L/l1_1 > Qéj =0

<p> Up— <> Uppa— <p> Upni— <A+ p> Urjo— <khgz> Q3.+

— <Ahy1> Qio— <phii> Q4 — <pha2> Qi =0

(2.3)
<phahy> Q8+ <khaihpy + jthasho2> QY+ <Ay iheo + jthe2hy: > Q4 +
+ <khe1> Ui+ <Ahei1> Uzot <pthe2> (U224 Uz ) =0

< phghy > Q%+ < khg2hp2 + phahsy > Q§+ <Ahg 2l + phathe2 > Qll) +
+ <Kha2> U2+ <Aha2> Ui+ <prhay> (Uzy + Uy 2) =0 a=1,2

y
where < phyhy >= 0il a # b. Eqs (2.3) represent the system of governing
equations of the refined macrodynamics for macrodisplacements U; and ma-
crocorrectors Q%; for the sake of simplicity body forces have been neglected.
The above equations constitute foundations of the subscquent analysis of wave
propagation. For the detailed discussion ol Eqs (2.3) the reader is referred to
the papers on the refined macrodynamics.

3. Analysis

In the sequel we confine ourselves to the analysis of waves propagating
along zj-axis. To this end we assume U; = Ui(z;,7), QF = Q%(x1, 7).
On this assumption by the direct calculations it can be shown that the sy-
stem of governing equations (2.3) is divided into two independent systems for
Ui,Q1,Q3% and for Uz, Q1,Q3%. The first of them will be used to the inve-
stigation of longitudinal waves and the second one describes propagation of
transversal waves. Moreover, from the analytical viewpoint both systems have
a similar structure and can be written down in one compact form. To this end
we shall introduce the following denotations for unknown functions
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_ ) Ui(ar,7) I Qi(zy,7)
U = =
{ Us(z1,7) } @ Qy(z1,7)
(3.1)
Qz — QZ(TUT)
Ql(.T],T)
and for averaged modulae
_ ) <k> _ ) <rhip> _ ) <Ahgo>
7= <u> M= <phyy > 2= <phyay>
< k(b)) + <p(hig)?> <Ahyhg 2>
= ’ = e 3.2
= { #(h11)2+ <K(h12)*> e <phyhyo2> (3.2)
< &k(ho, 2)2+ <p(ha1)?> ~
! =<p>
22 { < plha2)?+ <k(hoy)?> p=sp

It can be seen that the values of modulae (3.2) are independent of the length
dimensions Ij,lo, v of the representative array A, i.e., they are invariant
under arbitrary rescalling microstructure down by setting / — 0 and keeping

l1/1,13/l and 7/l constant, where [ = 2/(1;)? + (/2)? is the maximum charac-

teristic length dimension of A. On the contrary, the micro-inertial modulae
< phghy>, a = b, in Eqs (2.3) are of the order (O({?). Ilence, setting

<p(h)?> <plhy)?>
P11 = —p(l;) P22 = _/)(122) (3.3)

we introduce micro-inertial modulae py1, p22 which behave like constant for
{ — 0. On the assumption that macro-functions U;, @¢ depend only on x4, 7,
U; = U2y, 1), QF = Q%(21,7), and introducing denotations (3.1) +(3.3), Eqs
(2.3) can be represented by two independent systems of equations, which can
be jointly written down in the form

,5U -vUn - 71Q,‘1 - 72Q?2 =0
PpiQ' + 711Q' +712Q° + U1 = 0 (3.4)
Pp2Q? + 112Q" + 122Q% + 12U2 = 0

It has to be emphasized that Eqs (3.4) involve in the explicit form the micro-

structure length parameter [, i.e., all coeflicients in Eqs (3.4) are independent
of [ (are invariant under rescalling [ — 0). At the same time we have to
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keep in mind that Eqs (2.3) and hence IEqs (3.4) have a physical sense only if
U;,QL,Q%, i = 1,2 are macro functions, satislying the condition (2.2). These
two facts play a crucial role in the approach below.

The subsequent part of analysis is similar to that proposed by Mielczarek
and Wozniak (1995); that is why we restrict ourselves to the main points of

approach. Looking for solution to Eqs (3.4) in the form
U = Acos(wr — kay) Q' = B'sin(@r — kzy)
(3.5)
Q% = B%sin(wr — kay)
where A, B!, B? are arbitrary constants, we obtain non trivial solutions only
if the determinant of the resulting system ol linear algebraic equations for

A, B!, B? is equal to zero. This condition represents the dispersion relation
between the wave number k and the frequency . Under denotations

~ _ 7 _ Y22
& = — = — + _—
P P11 P22
- 2 171(~,)2
g T2 (7112) b = :[(/1) n (72)’2] (3.6)
P11p22 Pt P P22
vy = 11(72)% + 722(11)% = 21172712

PP11P22
this relation reads
o8 — (G2 + Mot 4 [(Ga — v + Bl — (@B —))k* =0 (3.7)

where [ is trcated as a small parameter. For the detailed discussion and a
method of finding the solutions to Eq (3.7) c[ Miclczarek and WoZniak (1995).
Setting

eff _ N - ‘711(’72)2 +722(71)% = 271712112

- det Yij
= @1(722‘71 "‘71272)2 @(‘71172—%271)2
/3 det Yij ﬁ det Vij

(3.8)

o\ 2 2
62 = (m _ B) + 4M
Pl P22 P11pP22

det vi; = 711722 — (712)?

we obtain following formulae [or three modes of the spectral lines, constituting
solutions to Eq (3.7)
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(u')l)?:—]ﬂ[] Ll)}-}-(f)q) qul:gg—[

. 2_0—-6 2(0—5)1/1—4[/2 2 4 .
(@2)" = 2]2 3(a—6)2 —d(a—8)a+ 4ﬂl‘ + 0(q%) (3.9)
(w3)? = 2 * 2ot i — vy k* + O(q*)

212 Ja+8)2 —4d(a+8)a+ 4B

Using the procedure similar to that applied by Miclczarek and WozZniak (1995)
it can be shown that

0 <M<~ dety;; >0
ot ) —4(atba+48>0

Bearing in mind that the solutions to Eqs (3.4), given by formulae (3.5) have
to be A-macro functions, we conclude that ¢ = &/ should be small compared
to 1. Since terms of the order O(I?) are retained in Eqs (3.4) then weintroduce
the so-called macro-wave approximation by assuming 1+ O(¢") = 1. Hence,
terms O(¢®) in the first from Egs (3.9), as well as terms O(¢?) in the second
and third equation, can be neglected

eff
(@1)? = 75 21~ n(kiy?]
. 2_0—5 2(0—(9)1/1—41/2 2
(@2)" = 212 + 3(0—6)2—4(a—§)a+4ﬂk (3.10)
(d_)s)2 - [a% + 6 + 2(CY + 6)1/1 - 4[/42 k2

212 Ja+6)2 —d(a+8)a+43

Egs (3.10) also yield the simple formulae for the phase velocities ¢; = w;/k,
i=1,2,3. I[ I; =I5 then Egs (3.10) reduce to the form

(@) = 7° k2[ QPTH( T )2(/;1)2}

p P M1 — 712
. \2 Y11 ~ Y12 1 (‘/1)2 2 ,
w = — 4+ = k (311
(G2) P 12 Py — 12) )
(@) = Ttz 1l (71)? 2
r11 2 plvi+ 1i2)

The formulae (3.10) for the spectral lines and their special form given in Eqs
(3.11) hold for both longitudinal and transversal waves, represented by upper
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and lower terms, respectively, in definitions (3.2). In the paper by Mielczarek
and Wozniak (1995) only transversal waves were considered; however, the
discussion of the obtained results is quite similar to that given in the paper
quoted above and will be not repeated lLere.

It can be seen that main advantage of the proposed approach lies in the
simple form of the resulting formulae (3.10), (3.11). It has to be remembered
that Eqs (3.10), (3.11) are valid for values of ¢ = k!l satisflying macro-wave
approximation which can be assumed in the form 1+ ¢* = 1. Moreover, by
introducing in Eq (2.1) only two micro-shape functions /h(z), ho(z) we have
formulated a certain first approximation for the problem under consideration.
On the other hand, the comparison of results obtained within this approxi-
mation and the exact solutions which are known for the laminated media (cf
Mielczarek and WozZniak (1995)) shows that both results nearly coincide.

At the end of this contribution we present some numerical results. The
calculations were carried out for [, =l = 4r, r/ly = v/l; = 0.25, vp = 0.4,
vpmr = 0.3, Erp/Ex = ¢, ¢ =5, 10, 25 and pr/par = 1.5 by using delinitions
(3.2), (3.3), (3.6) and (3.8). The diagrams of spectral lines were derived from
formulas (3.10), (3.11) and are shown in Fig.3 and [Fig.4.

a),lﬂ |
0.3 ¥=10

0.2}

|

q

Fig. 3. The diagrams of spectral lines for w = w,
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Fig. 4. The diagrams of spectral lines for w = wy (broken lines) and w = w3
(continuous lines)
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O propagacji fal w o$rodkach mikro-nicjednoroduych

Streszczenie

W opracowaniu uogdlniono przedstawione w pracy [4] podejscie do problemu pro-
pagacji fal w periodycznie zbrojonych wloknistych kompozytach. Zaproponowana
metoda korzysta z rownain rozszerzonej makro-dynamiki, [6,7], umozliwiajac uzyska-
nie réwnan lini spektralnych i predkosci fazowych w prostej analitycznej postaci.
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