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This paper presents the complete theory of coupled thermoelasticity of
fibre composites. The same displacement and tempcrature fields have
been accepted for both phases (i.e. for matrix and fibre phase). The
continuous model of a fibre composite body has been created so, that
fibre phase is ideally "fuzzy field”. The principles of energy conserva-
tion and principles of macroscopic thermodynamics have been used. The
constitutive equations of fibre composite have been obtained as well as
displacement equations and the conductivity equation. The cquations
obtained, include anisotropic terms, while the parameters of anisotropy
of continuum are given explicitly. The paper is supplied with an exam-
ple concerning heat conductivity in a finite space reinforced with fibres,
which are parallel to the axis z,.

1. Introduction

We will consider a body consisting ol a matrix and any number of fibre
families. The matrix is an elastic and homogencous body. The fibres of every
family create a family of parallel straight lines, uniformly distributed in space,
with such density, that they can approximately be treated as the specific
continuous medium, in which only normal stresses can be trought along the
fibres direction. The fibre phase, containing all fibre families, is immersed in
the matrix. So, one could say, that every point of geometrical space is refered
to two material points, one of which belongs to the matrix, while the other
one — to the fibre phase. As the consequence of this, we have: o = ol + o,
e = el = g/, where o is the stress tensor, ¢ is the strain tensor; upper
index I or II defines the attachment to the phase I (matrix)or I (fibres).
The above description is in line with the concept of biphase medium, which
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was presented by olnicki-Szule (1990). This concept created the base for the
works by Switka (1992) aud (1993).

The method, which has been used in the present study differs from me-
thods known in mechanics of composites, which are based on the substitution
for the composite medium the uniform one, showing the substitute characte-
ristics (cf Christensen (1979), Jones (1975), Vinson and Sierakowski (1986)).
Presented theory takes into account the structure of fibre composite when for-
mulating the constitutive equations and it allows one to define explicitly all
the characteristics.

This work systematizes the notion and formal details, whicl are related to
mechanics of fibre composites. The interactive relations between tensor fields
of stresses and strains, a vector ficld of displacemnents and a scalar field of tem-
perature will be defined here. The constitutive relations and the conductivity
equation have been defined basing on the laws of thermodynamics (¢f Fung
(1965), Nowacki (1970) and (1978)).

2. Mutual relations referring to geometry and the structure of
fibre composite

We will consider a fibre composite rcinforced with one family of fibres. We

will define the field clements on a plane, which is vertical to s, (|s,] = 1)
vector, when such a vector defines fibres direction in rth family

dA()  —  total field element

dA%) - part of field clement, which is refercd to the matrix

dAﬁs) — part of field element, which is refered to the fibre of

rth family, perpendicular to the dA®) element
A, — single fibre cross-section area.

The index r, which is the number of [ibre fainily and the index m, which
defines attachment to the matrix, in contrast to other indexes, will be excluded
from the convention of summation.

It will now be convenient to introduce a quantity denoted as the density
of rth family of fibres and dcfined as follows

(s)
dAy )
w= o (2.1)
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Fig. 1.

If the traces of fibres create a rectangular grid on the perpendicular plane
8, with netting dimensions being equal to b, , b,, (see Iig.1), then

(2.2)

Hr =

So, we have
dAY) = pi,dAW dA) = (1 = iy )dA®) (2.3)

The number of fibres per one field element dA(*) can be calculated from the
equation I, /dA(®) = 1/(b,b,,), so

I = ﬁdm” = ’/‘Tf(zft(s) (2.4)

L ]

We will denote the force in a single libre as Z,.

Fig. 2.

Then we will denote field elements on a plane, which is perpendicular to a
vector n (cf Fig.2). Let us assume, that
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dA(™  —  total field element on a plane oriented according to the
n normal

dAg,’f) — part of field element, which refers to the matrix

dA£") - part of field element, which refers to the fibres of rth
family

Al - part of ﬁeld element, which refers to the total reinforce-

ment dA }: dA("

The relation between dA(® and dA®) is the following (see Fig.2)

dA(s) - ([A("')nsr = dA(”)n;sr, (25)
In a similar way
dAg{:) = d/lgﬁ)n.’sn dAgs) = dA£n)nisr. (2'6)

Now it is easy to calculate

d £l‘:) - r l (3)
gatm = Am (L= g )dd A

m
n; ST'. n,-s,.l.

dA™ = p,d A

By generalization of the above results on all families of fibres, we have

dA™ = pd A dAG) = (1= p)dat p= k

3. Cauchy’s formula

Let dF™ be a vector of elementary resultant force, due to the stresses in
dA™ field element, and let dF{™ be the resultant force due to the stresses.

So
dF™ = ¢F) Z?ls, (3.1)

If we take into account, that dF™/dA(™) = T(™ is the vector of total

stress in a fibre composite, dF{™/d A% = 80 is the vector of total stress in
a matrix and if we take into account Eqgs (2.2), (2.4) and (2.7), then

Tl("') — (1 — /‘L)Sz(n) + Z/_Lrarnjsrjsr‘- (3‘2)
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where o, = Z,/A, is the stress in a fibre of »th family. Then, by putting
T}‘) = 7; (the tensor of stress in fibre composite), S](') = 0;; (the tensor of
stress in matrix), we obtain

Ti; = (1 — p)oi; + Z Itr Oy Sy, Sr, (3.3)

The Cauchy’s formula refers to total stresses

T(n) = Tiny (3.4)

J

Aflter substitution of Eqs (3.2) and (3.3} into Eq (3.4} we find, that the Cau-
chy’s formula is fully transferred to the matrix

Sj(n) = a;]-n,- (35)

When defining the boundary conditions imposed on stresses, the following
should be assumed
T,'J'n,' = pj (36)

where pis the vector field of loads, defined on the plane, which bounds a fibre
composite body.

4. The principle of conservation of energy and the first law of
thermodynamics

Total stresses appear in equations of equilibrium

Tji; + pfi = poi (4.1)
where

f — vector of mass forces
v - velocity vector
p — density of fibre composite

p=(1=p)pm+D prpr (4.2)

T

pm — mMatrix density
pr — density of fibre material of rth family.

Eq (4.1) is multiplied by v; and integrated over the B; C I region, where
B is a region occupied by fibre composite, By is any subregion of B region,

11 — Mechanika teoretyczna i stosowana
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bounded with smooth closed surface (2,. The field element on 2, is oriented
in accordance with = normal line, that is dA(™ = d. It should be taken

into account, that
/// % ///(T],v,) v - /// rais dV =
B
// My, d - /// riéi AV

As the result, we obtain
// TMy; d2 — /// riséis dV + /// pfiv dV = /// poivi V. (4.3)
i) B, B, B,

d
L= (K+U) (4.4)

ﬁ://T,.‘")v,- d.Q-i—///pf,-vi av (4.5)
2, B\

is a fibre composite strain power

1
C = 5// poiv; dV (4.6)
B,

So

where

is a kinematic energy and

1
= 5/// Ti;€i; dV (4.7)
B,

is an elastic energy of fibre composite occupying the B; subregion.

The principle of mechanical energy conservation (4.4) works in every D
subregion, so for DB region as well. In such case, one should take into account,
that By, = B and 2 = £2.

According to the first law of thermodynamics we obtain then
Cusxy=c+% (4.8)
dt dt

where @ is the heat taken from the neighbourhood.

The following specification is made to enable calculation of dQ/dt. Let ¢

be the vector of heat flux density in a matrix [W/m?], while ¢, is the heat
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flux density along fibres of rth family. The vector of fibre heat flux density
will be equal to ¢;8.. So, we have

dQ . n . n
- = // Gin; dAsn) - Z// Gr 8y, M dA£ ) =
nl T nl

(4.9)
= (1- ,u)///(],-‘,- dV — Zy,///(q,sr,) dV
B, r B, '
Let us return to the strain power. According to Eq (4.5) we obtain
L = //mnm a2+ ///pf,v. av = /// (rjive) s + pfiv] av =
(4.10)

///(Tji,jvi + Tijvi; + pfivi) dV
B,

and in line with the energy conservation law, we can write as follows

///UdV+////)v,v, av = /// (rjs + p10s + Tigéis] AV +
(4.11)
- _")/// dii dV =3 s ///(r)rsr.-)..- v
B, r B,

where U is the specific elastic energy (referred to the unit of volume). As Eq
(4.11) must be met for every By, so

U = Tijéij 1 — i) (11 i Z,U1 (Irsr.) h (412)

or

U=(1-poié+ Y proré, — (1= p)gii — Zy, Grei).i (4.13)

5. Second law of thermodynamics

We will denote entropy of the system with &* and the specific entropy

with §, i.e.
:///s v (5.1)
By
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Due to the fact, that
TdS* = dQ (5.2)

where T is thermodynamic temperature, so

T///—dV— (1—u)///qi,idv—erur///(qrsr..).zdv

and from this

ST = q; i Z /J'r (1r31 (5‘3)

which is the equation of entropy balance.
Eq (5.3) can be rewritten in the following way

: I i .rSr,' "
§ = —(1—u)qT'—Zur(qT) =

= Ol - D)

The above expression is subject to integration over B3 region to ena-
ble calculation of the velocity of entropy variations for any subregion. After
employing the Gauss-Ostrogradzki theorem, the following is obtained

dre +

I

ds* - B)gini + Zm GrSr, M
i //
(5.4)

6T + 2 prrsr T

- /// T? i dV = S;u + Smt

The first term stands for the exchange of entropy with the neighbourhood
(change of entropy by incoming heat). The second term stands for the change
of entropy in the closed system and its value is non-negative

. 157‘,
St = — - 2w by (5.5)

Denoting
T; T;sr,
ds,' = "‘ﬁ ér = —W (56)

Eq (5.5) can be written
LS.'int, = (1 - p)®:iq; + Z,Ur¢1"ir (5'7)
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The objects &; and &, are the so called thermodynamical incentives and they
are related to the heat flux density by the following linear relationships

i = Li;®;

ir = L@, (5.8)
According to the Onsager principle, L;; = L;;
Now, the Eq (5.5) can be written in the following way
Sint = (1= p)Lij®:i®; + >, L, &? (5.9)
SO
S = (1= WLy 7 + Soe b (F2)’ (510)
By denoting
N = 4 - (5.11)
Eq (5.10) can be presented in the form
Sine = (1 - );:JT T +Z;L, (T.isr,)? (5.12)

The Fourier’s laws appear after Eqs (5.5) and (5.12) are compared for matrix
and fibre phase (of rth family)

g = —\;T; dr = —Ars, T (5.13)
Eq (5.13); can also be written in the following form
oT
=, 5.14
q P (5.14)
After taking Eqs (5.13) and (5.3) account, the following is obtained
ST = (1= X Tij + 3 e e (51,50, ,]) + Gy (5.15)

Eq (5.3) has been supplemented with the term ¢, which represents the volu
metric output of heat sources [W/m3].
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6. Constitutive equations

A thermodynamic function I, which is called the free energy is introduced
F=U-S5T (6.1)

After differentiation with respect to time and after Eqs (4.13) and (5.3) are
used, the following is obtained

F=(1-poic;+ > peoré, — ST (6.2)
It can be assumed, that the specific entropy of the composite is the sum of
entropies of individual phases, according to the formula

§= (1 _#)Sm + Zﬂrsr (63)

It appears, that after substitution of Eq (6.3) into Eq (6.2), one can write

F=0-pF,+ Z/L,-F, (6.4)

where
F, =0ié; — ST I =0, -57T (6.5)
As F, = F,(¢;;,T) and F, = F.(¢,,T) and dI'is the total differential, then

0F, oF,

= Iy W
de;; Y + or
(6.6)
. oF. . OF, .
F,= —é + =
e, et oT T
After comparing (6.5) and (6.6) it appears, that
o OF, ¢ ol
Yo é)gij o orT
(6.7)
IF,; OF,
= 5. =-Zr
’ der ar

The functions F,, and F, are expanded into the Taylor’s series in a nci-
ghbourhood of the point of thermodynamical equilibrium (natural conditions)
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Fu(0,T0) | 0F(0,To)

9
Fm(E,",T) = Fm(O,T0)+ £; (T—T +
J 0<i; I oT 0)
1 82Fm(0, ]‘0) . B 82Fm(07 TO) ,
g ey S+ gt g eu(T = To) +
92F (0, T,
. e
977
(6.8)
OF(0,Ty)  OF(0,T
Fr(Er,T) = Fr(07T0)+ ng O)Er + (‘gT 0)(T_T0)+
L[02F(0,To) 5 . 02F.(0,To)
+ 35 gz ot 2o (T -To)+

It should be taken into account, that F,,(0,7y) =const., F(0,Ty) =const.
(free energy in natural conditions);  JF,,(0,7y)/0¢;; = 04;(0,T0) = 0,
dF.(0,Tp)/0er = 0.(0,To) = 0, 0F(0,T)/0T = —S5,(0,Tp) =const.,
0F.(0,T4)/0T = —5,(0,Tp) =const. (entropy in natural conditions). After
introduction of the following notations

9*Fn(0,To) . O*Fr(0,To) 5.
asij0€k1 — Tk as,jaT B Y
(6.9)
PRO.T) _ PEOT) _
Je? T ds,0T — 77
and having in mind Eq (6.7);,3 the from Eq (6.8) one can obtain
oy = Cijmer — Bi;0
T ! (6.10)

o, = Ever — 3,0 O=T-Tp

We will formulate the constitutive equations of fibre composite for the
isotropic matrix

Cijit = Abijr + pr (6651 + 6:651)
(6.11)

Bij = By
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where puy and Ap are the Lame’s elasticity constants referring to the matrix.
When we include Eq (3.3), we finally have

Ti; = [2(1 — p)pLbindi + Z;LTETST,S,.J s,.ks,v,]skl +
’ (6.12)
+ (1= p)ALedi; - [(1 — u)Béi; + Zurﬁrsr,s,j]e
where e = ¢ stands for the dilatation.
7. Conductivity equations
The following equations are obtained from Igs (6.7);,4 and (6.8)
’F, T
Sm = ,3,']'6,'_1' - %(T - TO) + const
(7.1)
9*F+(0, To) .
ST = ,8,-57- - —aT(T - [0) + const

and then from Eq (6.3)

. . : 0*F,, (0, Tp) J*F.(0,To)1;
S = (1 - #)ﬁijfij + Zr:ﬂr,@rfr - [(1 - #)’()T + ZﬂraT]T
(7.2)
On the other hand, dS is a total dilferential, so
a8

5= 0-m|(Gem) g+ ()., 11+ S (52 o+ (57).7] @9)

T(0S5/0T), represents the heat quantity in the unit volume, which is produced
due to the unit change of temperature at constant strain. So it can be written,

that a5 95

where ¢,,, and ¢,, is the specific heat at constant strain, for matrix and rth

family fibres materials, respectively.
Comparing Eqs (7.2) and (7.3) allows one to write the formula for

(05101 as oS
(522), = (%), -5

£33
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The following result is obtained

ST = (1 — w)Bijéi; T+ D prBré, T + cepT (7.4)

where
cep = (1= p)em, Pm + Zﬂrcnpr (7.5)

If an isotropic matrix material is assumed (A;; = Aé;;, Bi; = (6i;) as well as
a straight line fibre paths [(srisrj),,' = 0] , then after Eqs (5.15) and (7.4) are
compared, the fibre composite conductivity equation is obtained

[(1—/‘)’\5:]'{‘2 /l'r/\rsr,-srj] T,ij—CsPT— [(1—ﬂ)ﬂ511+z ﬂrﬂrsr,-sr]]éijT = —qy

(7.6)
For very small variations of temperature, such that |@/Ty| < 1, the following
can be assumed

o
T:T0+9:T0<1+T—0) ~ To
and Eq (7.6) is linearized

[(1 - /1')/\51']' + Z/Lr/\rsr, Sr]-]O,ij - Cc/)é +
’ (7.7)

- [(1 - /J)ﬂél] + Zﬂrﬂrsr,s'r]]éijTO = _q.u

8. Displacement equations

The following displacement equations are obtained from the equilibrium
equations (4.1), the geometrical equations ¢;; = (u; ;+u;,:)/2 and the physical
equations (6.12)

(1-p) [;%Vzu.; + (AL +pr)e; — ﬂO,.’] +
(8.1)

+ Z Hr (Ersr.' SriSrSr Uy — /31"5r,'3r19,j) + Pfx = pi;

where e = uyk.
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9. Example

The example given below illustrates the influence of fibre phase on the heat
conductivity in a solid body (in the fibre composite). Let us assume a solid
body, which occupies unlimited space, and is reinforced with the fibres being
parallel to the z; axis, and distributed uniformly with the density equal to
1. In the origin of coordinate system there is the point-type heat source,
activated immediately at ¢ = 0 and then operating constantly in time. The
coupling with the field of strain velocities is neglected in Eq (7.7). The problem
stated above can be described by the following equation

MO 11+ 220 22 + 220 33 — cepO = —Goé(x1)8(22)8(x3) H (1) (9.1)

where

)\1=(1—ﬂ1))\+ﬂ1)\1 )\2:(1—#1))\ Al > A (()2)
and

do - output of the source, [W]

6(z) - Dirac function

H(t) - Heaviside function.

We will transform the Cartesian coordinate system (xy,22,23) to the
Cartesian system (y1, ¥2, y3) according to the formulas

A A
Y1 =2 Yo = /\—;l‘2 Yz =/ /\—;l's (9.3)

Eq (9.1) is transformed into the following form

)-Qﬁ%%=—mﬁwn&wWWﬂHU)

\ (029 n 0%0 + 0?0
1 —
dyi  0ys  0u3
which is characteristic of the symmetry with the reference to point. So, it is
convenient to make change into the spatial polar coordinates

v20 - Lo = ~Bspym) (9.4)
a )\]
where \
¢ = (9.5)
cep

is a coefficient of temperature equalization (cf Gdula (1984)) expressed in
[m?/s] and the unit of A, is [W/mnK].
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The solution to Eq (9.4) with the initial condition ©@(R,0) = 0 is known
(cf Nowacki (1960))

qo R
O = e .
471'/\11261 c(_zm) (9.6)
erfc(z) is an error cofunction
erfe(z) = 1 —erl(z)
and
erf(z) = %/e_‘2 di
0
(9.7)
Ao
yi+ys+yi= +—2+/\—13
With t — oo the stationary temperature ficld is obtained
o 1
O(R,00) = —0__ (9.8)

471'/\1 R

for erfc(0) = 1.
Isothermal surface for @ = @, is described by the lollowing equation

_ A2 o 2
+12+ /\1 (171'/\10]) (99)

/\1

The isothermal surface is an ellipsoid, which cuts-off the

oo o
B /\l 471'/\1@1

segments on the axes 29 and a3, while it cuts-oll the ay/A;/A; segment on
the z; axis, where (A;/A2) > 1.
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Termosprezystosé wicknokompozytéw

Streszczenie

Praca zawiera zamknieta teorie sprzezonej termosprezystosci wléknokompozytow.
Dla obu faz (tzn. dla matrycy i fazy widkniste)) przyjeto wspdlne pola przemieszczen i
temperatury. Zbudowano ciaggly model osrodka idealnie "rozmywajac” faze wldknista.
Wykorzystano prawa zachowania cnergii oraz prawa termodynamiki fenomenologicz-
nej. Otrzymano rownania konstytutywne wloknokompo7yt,u roOwnania przemieszcze-
niowe i réwnanie przewodnictwa. Otrzymane réwnania zawieraja rozbudowane czlony
anizotropowe, przy czym parametry anizotropii osrodka dane sa explicite. Prace kor-
czy przyklad dotyczacy przewodnictwa ciepla w przestrzeni nieogranic.zonej zbrojonej
wléknami réwnoleglymi do osi z;.
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