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The concept of averaging applied to mechanical systems subject to im-
pulsive excitation is created in the paper. The process is realized by
means of special transformation of variables including the pair of non-
smooth periodic function.

1. Introduction

The impulses acting upon mechanical systems are usually modelled by:

e Additional conditions imposed on coordinates and velocities, which show
the character of impulse influence on the system in a neighbourhood of
their application point e.g., application of velocities transition to external
impact

e Introducing singular terms of the Dirac function type into the equation
of motion.

Great adventage of the first way of modelling is the fact that differential
equations representing the systems are the same as in the case with no impulses
imposed (cf Samoilenko (1979)). However we have to consider a sequence of
impulses action.
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The second way of modelling yields the system uniform for all intervals
without introducing the aforementioned conditions upon variables but it calls
for further consideration within the framework of distribution theory. It is
known that such investigation is quite difficult, especially for non-linear sy-
stems. The corresponding single-impulse case for quasilinear equations has
been considered by Liu Zheng-Roung (1987).

In the present paper the method allowing one to eliminate singular perio-
dic terms from equations and obtain a solution in the uniform, analytic form
for the whole interval is described. The method is based on a sawtooth perio-
dic argument application and a corresponding transformation of differential
equations. It is shown that the transformed equations correspond to those
obtained for the periodic solution presented earlier (cf Pilipchuk (1992)). The
method will be described here for dynamical systems of the general form, but
as an example, the transversely loaded beam resting on the periodic set of
linear-elastic springs will be considered, for which the spatial coordinate will
play the role of time. For similar problems see the survey by Manevich et al.
(1989).

2. System description

The differential equation of mechanical system motion subject to periodic
excitation (including discontinuous and impulsive ones) may be written in the
form

& = f(z,0) +p7" () zER" ¢=wl (2.1)

where pis n-dimensional vector; the regular component of the right-hand side
part f(z,¢) is supposed to be continuous as a function of z and piece-wise
continuous and periodic with the period T = 4 as a function of ¢; there are
discontinuities of the first kind at the points where the periodically affecting
é-impulses are placed

(o) = 2 i [6(p+ 1 — 4k) = 8(p = 1 — 4k)]

k=—c0

represented as generalized second order derivative of the sawtooth, piece-wise
continuous function 7(¢p), which has the unit amplitude and the period equal
to four (the normalization considered is convenient since 7/ = 1), Fig.1, (cf
Pilipchuk (1988)).
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Let us consider Eq (2.1) with the following initial data

z|t=0 =z° (2.2)

Hence, one have the initial problem represented by Eqs(2.1) and (2.2).

There are numerous mechanical models which can be represented by Eq
(2.1). To demonstrate the mechanical sense of Eq (2.1) we shall present the
following two examples.

Example 1. Substituting

_ T _ ) _ 0
ol - I B er®) B Y

into Eq (2.1) we shall have the Duffing oscillator under the periodic impulsive
excitation
&1+ krzy + Bl = gor"(y)

where k, 8, go are constant. The possible mechanical interpretation of this
equation is shown in Fig.2.

Example 2. Denoting t = y (the spatial independent variable) and

substituting
— u(y) _ EF ltf{-a'r’
z = =
lvw)] / l 0
!
a

] .

2a
we shall have the spatial periodic structure shown in Fig.3

%[EFU + mf)j_;‘] = L)

0

} -y

Y t
2a 2a EF(1+d) EF(1-d)

Fig. 3.
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3. Averaging

The transformations described by Pilipchuk (1992) can be applied to the
periodic motion regimes taking place for the specific initial data. In the pre-
sent work the general initial problem represented by Eqs (2.1) and (2.2) will
be examined using the transformations mentioned above combined with the
averaging method of two-scales (cf Kuzmak (1959)). Therefore, the oscillating
time T = T(wt) will be considered as a fast variable in comparison with 0 = 1.
It means that the following assumption can be accepted

wl=ex1 (3.1)

i.e., the system is subject to high-frequency excitation.
The solution to the initial problem represented by Eqs (2.1) and (2.2) is
searched in the form

z = X(7, %) + Y (r,0)7 r= T(%) (3.2)

Hence, the representation of periodic solutions (cf Samoilenko (1979)) is de-
formed by the slow variable of time 0 (cf Pilipchuk (1988)).

Let us assume that the slow time can be introduced into the right-hand
side of Eq (2.1)

f= f(za ¥ to) p= p(to)
Substituting Eq (3.2) into Eq (2.1) yields
oY X X oY , 0
a—T+€(—a—t—0'—Rj)+ W+€(W_Ij)]r +(Y—€p)T =0

where
R; = %[f(X+ Y, 1)+ f(X-Y,2-7,1)
I = %[f(X+Y,r,t°) - f(X-Y,2-1,1%]

Eliminating the periodic singular term and comparing separately the real and
imaginary parts to zero, one obtains

oY 0X

W (X Y=o

or ot (3.3)
0X oY

o telge 1) =0 Yoo =
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Now the system of equations does not contain the singular terms and averaging
techniques can be properly used.

The corresponding solution can be found in the form of power series with
respect to € =10

X = Zc"X"(T,tO) Y = ZeiY‘(r, t%) (3.4)
1=0

=0

where the functions X', Y are to be defined. Substituting Eq (3.4) into
Eq (3.3) and setting the coefficients of corresponding powers of ¢ equal to
zero, one obtains the sequence of equations under the boundary conditions

- for €
- for €
%LTI=_({Z9_)::)+R(} Y =P

y eer

where RS = Ry| ,I$=1I,;
I . le=0 I e=0 . .
The equations of zero-order approximation are solved as follows

X0 = A°(19) Y°=0 (3.5)
where A° is an arbitrary vector-function of slow time. Taking into account
Eq (3.5), in the next step the first order approximation is given by

X' = /I‘} dr + A'(1°)
’ (3.6)

T dA°
1 _
Y _/R?dr—ﬁ(r+]_)+p
1
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where A! is an arbitrary vector-function. In the second equation the
arbitrary vector-function is chosen in the way ensuring the boundary condition
at the point 7 = —1 to be satisfied. As a result the boundary condition at
the second point 7 = 1 can be rewritten as

O = (R4, 7, %) (3.7)

where (---) stands for the averaging operator with respect to 7. Hence,
the averaging operator in a given case arrives as the result of the boundary
conditions for fast (oscillating) time fulfillment. Eqgs (3.7) are to be solved for
the following initial data: A°(0) = =°.

Note, that the second expression in Egs (3.6), taking Eqs (3.7) into consi-
deration can be written as

T

v'= [(B) - (R dr+p (3.8)

-1

The arbitrary function Al(to) will be defined at the next approximation step
resulting from the boundary conditions satisfaction for the value of Y2. The
corresponding equation is

dA’ ORG\ i 1( 40 40
W‘<W>A = F'(A°,19) (3.9)
where
ORG/0A° - matrix of partial derivatives
o — known function.

Note, that equations in the functions A%, A3... will have the analogous
structures.
In the case of one-directed impulses Eqgs (3.8) and (3.9) can be written as

dAl aR? 1 1 0 ,0
W-<H>A =F (A", 0)+p
Yl:/(’*—?—@?)) dr — pr

-1
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4. Second order equation

Let us consider the system of second order equations

i = —[a(p,1) + pr"(0)]2 + 90, 1) + r(D)7" ()
(4.1)

4
= - z€e R
p=- €
where
€ — small parameter, ¢ < 1
q,p - n X n-matrices
g,r — n-dimensional vector-functions.

Assuming the form of solution as given by Eq (3.2), we have the following
set of equations and the boundary conditions

92X 2Y 02X
57 = 25,90 — € (gpz + QX +PY - G)
(4.2)
o2y R2X 0%
57 = 255 ~ < (G + Q¥ + PX - F)
0X| B
B bre =€ PO — (4.3)

where Q, P, G, F appear after the substition: q = Q + P, ¢ =G + Fr'.

We take here 7/7” = 0. Note that the exact solution to Eqs (4.2) and
(4.3) is a special mathematical problem of the distribution theory. Assuming
the solution to Eqs (3.4) in a power series form with respect to € and then
setting the corresponding coefficients powers of € equal to zero, one obtains
the set of equations and boundary conditions. The corresponding solutions
can be written as follows

X° = B°(19) Y°=0 Xt=0 Yl=0

x*= [(r-9)[6¢-(6)- (- (@)B] d+ (r~ pB)r + B*

-1
T

Y?= [[(r-eXF - pB%) - (1 - )(F - pB*)] de

-1
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where the function B°(1°) is described by the ”oscillating”, average time
equation
d*B°
d102

+(Q)B° = (G) (4.4)

the function B° will be defined in the next step of the procedure. The
boundary conditions imposed upon X for one-directed impulses have the
following form

X .,
o7 = Fe¢ (T—PX)I

In this case one have the new formula for X?

r=%*1 r=%1

: T 72
x?= [(r-9)[6-(6) - (@~ (Q)B] de - =(r —pB®) + B?

and the averaged equation takes the following form

d?B°

S (@ +P)B = (G) + (45)

Example 3. Consider the transversely loaded beam resting on the pe-
riodic set of linear-elastic springs. The corresponding equation of equilibrium

is
D%Jr%:_ 6(2-1-2) =q(7) — 00 <y < 00

Let us introduce the nondimentional quantities

__ql?
7=

w= aD

§ =

o
& b~
-9

w:

Al a8

;)
and assume that ¢ « 1. The equation of equilibrum can be written in the
form of Eq (4.1) by putting

| ] dth

=l 70

o ]_ o —1]_
S E2 S v B
P=F=0 r=0 t=¢
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For the given case one obtains
2
X*=—pB°+ B Y?=0
Hence, we have

z = B°(¢) + € [Z;pBO(E) + BZ(E)] + ..

_ (¢ _ @
T = T(z) €= *E
where the vector-function B is defined by Eq (4.5) having the following form
in the components of matrix B® = [B?, B|T
d‘BY
dgd
This is the averaged equation for the elastic beam resting on a continuous
elastic foundation.

EEHEHEEE RS

Y po _ = 0 _ dzB?
+ EBI - (I(E) B2 - d£2

SEIE
T

T
1

0 1 2 3 4 5 6

Fig. 4.

To illustrate the presented asymptotic (€ — 0) solution, consider the beam
under the harmonic transverse force, q(%) = gosin ¥ go = constant. Taking
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into account only the main slow and fast components of the expansion we
obtain the following formula for the moment

_ diw 2r2 L2 [ €? 2(y)]sin ym

=D— = —gg——— z A
dy? q027r4+'y

M(y) 7

472

Fig.4 shows the moment chart, which has been calculated for the following
values: L =m; a=0.2(e¢=0.063...); v=1947; ¢o = 11.

5. Conclusions

So the presented example of solution has a uniform analytic form for the en-
tire independent variable interval. The advantage of it when applied to calcu-
lation and research into the system properties is connected with the sawtooth
argument presence. The presented technique consists in treating the sawtooth
argument in combination with the averaging method. The role of sawtooth ar-
gument is to exclude external periodic impulses (or spatially localized periodic
irregularities of 1D elstic media) from the corresponding equations.

The possible alternative methods for solving the same problems have been
presented in the survey by Manevich et al. (1989). The homogenization
procedure, which has been described by Benosussan et al. (1978), should be
noted. This procedure gives the averaged equation in the slow spatial scale and
a cell problem in the fast one. The cellin Example 3 is viewed as a part of the
beam between arbitrary taken two springs. The corresponding cell solutions
should be pasted together to get a global description of the system in both
slow and fast spatial scales. The employed here pair of non-smooth functions
allows one to get automatically both the cell problem solution and the global
description of the system, which is very convenient for the researcher.
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Usrednianie ukladéw mechanicznych przy pomocy nie-gladkich funkcji

okresowych

Streszczenie

W pracy przedstawiono koncepcje usredniania ukladéw mechanicznych z wymu-

szeniem impulsowym. Usrednianie realizowane jest przy pomocy specjalnej transfor-
macji zmiennych, zawierajacej pary nie-gladkich funkcji okresowych.
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