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A system of 2D-model equations characterizing elastostatic states, based
on a non-classical continuum theory with internal constrains is given.
This model is compared with lower-order and higher-order plate theories
through application to a particular problem involving an infinite strip
acted upon by a sinusoidal surface loads. The solution is compared also
with the exact solution to this problem.

1. Introduction

In the two-dimensional theory of a thin plate, a great number of inve-
stigations have been developed on the well-known Kirchhoff-Love hypothesis.
Although the classical plate theory is refined and well established, the applica-
bility range of such a simplified theory would naturally limited to a thin plate.
In order to analyze a thick plate, various two-dimensional theories have also
been investigated by taking into account three-dimensional characteristics of
stress and displacement fields.

On the same assumption of displacement distributions in the classical the-
ory, Reissner (1945), Hencky (1947) have developed a generalized theory of
the bending of elastic plates by taking into account the effects of transverse
shear deformation. Reissner postulated that the displacements have the form

U = u? + 236,
Uy = ug + 230, (11)

u3=ug
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where z3 is the coordinate normal to the midplane, and ¢, u9, 6;, 6, and
uJ depend upon the in-plane coordinates x; and =z, and @y, 6; are the
rotations of normals to midplane about the =z, and x; axes, respectively.
The governing equilibrium equations have been derived through the principle
of stationary potential energy for a 3D elastic body by introducing a set of
stress distributions which satisfy the boundary conditions on the surfaces of
the plate.

A set of governing equations,on the same assumption of displacement di-
stributions, has been also derived by Mindlin (1951). In Mindlin’s theory,
distributions of stress components are not specified in the thickness direction
of the plate and, therefore, stress boundary conditions on the surfaces of the
plate cannot be satisfied.

A mathematical model of elastodynamics of finite thickness layers with
kinematical constraints has been proposed by Baczysiski (1985). In this paper
we simplified this model equations to deal with the elastostatic state of an
isotropic plate. This model is tested in the case of an infinite strip loaded by
sinusoidal surface pressure. A comparison is made between the solution obta-
ined using this model and the other solutions obtained by the other theorems.

The aim of this paper is to show some consequences of the pure kinematical
constraints to solutions to the boundary value problems within the frame of
six-parameter plate theory (consistent with 3D theory of elasticity).

The number of cited literature is limited to the items which have been used
for comparison of the solutions, so that, the paper does not contain the analysis
of different plate theories, based on kinematical and kinetic constraints, which
have been wide by discussed, e.g. in the papers by Reissner (1985), Rychter
(1986) and Jemielita (1993).

2. Model assumptions

We assume that the region of plate B in the natural state configuration
will be parameterized by rectangular coordinates z = (z;), ¢ = 1,2,3; such
that B = II x (0,h), where II is the regular region in the plane 0z,z,
bounded by OII and h > 0 is the thickness of the plate.

The displacement field will be approximated in the form

u(2) = u(ny(2) + 2lee)(2) - v (2) (2.1)

where z = (2,z3) € B, z = (z1,22) € I, 0 < 23 < h and the functions wuy),
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u(2) are the 2D-displacement fields of the lower and upper surfaces 1(y), I1(3
bounding the plate.
The equilibrium equations in terms of the 3D-field quantities are postulated

in the form
Tiji(2) + pbi(z) + ri(z) = 0
(2.2)
Tij(z) = Tji(z) 4,j=1,2,3
where T;j(z) denote the stress tensor, r;(x) are the body reaction forces of
internal constraints and b;(z) are the external body forces acting on the plate.
The kinetic boundary conditions in terms of the 3D-fields are postulated
in the form

Ti;(z)n;(x) = pi(z) + si(z) i=1,2,3 (2.3)

where z € 05; nj; denote components of the outward normal unit vector on
0B, s; are components of the surface reaction forces of the internal constraints
and p; are components of the surface loads.

The constitutive equations for the stress tensor components are in the form

Tii(z) = pluij(2) + vji(z)] + Aurx(z)6i; ,75,k=1,2,3 (2.4)

where p and X are Lame constants.

The above assumptions together with the postulated appropriate ideality
principle of constrains (cf WoZniak (1973)) let us to derive the 2D-model equ-
ations of elastostatic for plates of arbitrary thickness.

3. Elastostatic model of finite thickness plate

In the static case, the 2D-formulated equations consist of
— The equilibrium equations

1 1
Naykr,k(z) — EM(I)KL,K(Z) + EN(I)sL(z) + faye(2) =0
1 1
Nayks,x(2) — EM(I)KS.K(Z) + EN(1)33(Z) + flya(2) =0
(3.1)
1 1
FMykLk(2) = EN(I)SL(Z) + fr(2) =0

1

1
hM(l)K3,K(Z) - EN(l)ss(Z) + f2)3(2) = 0

14 — Mechanika Teoretyczna
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_ where N(yy;;, M(1);; stand for the generalized internal stress resultants and
stress couples and  f(1);, f(2)i are the generalized external forces. These all
quantities are related to unit length of parametric lines on the fundamental
surfaces II(1), II(2) and are defined as follows

h
N(l),-]-(z) = /T,-j(z) d:l:3
0

h
Mqyi;(2) = /T«'j(z)xa dz3
0

M@)s3(2) =0 (3:2)
h
f(l)i(z) = %/b‘(z)(h - 1?3) dz3 + [pi(z)]z;;:O
0
h
fr2)i(2) = %/bi(”’)xi" dz3 + [p‘(z)]z;,:h
0

— The kinetic boundary equations
The kinetic boundary equations in terms of generalized stress resultants,
stress couples and loads take the form

1
[N(I)KL(z) - ;{M(I)I(L(z)] n()k(2) = pyL(2)

[N(I)I\’S(z) - 71{M(1)K3(z)] nay)k(2) = pays(z)
(3-3)

1
EM(l)KL(Z)n(l)K(Z) = p(2)L(2)

1
5 M0yka(2)na)k(2) = pys(2)

where p(;), P(2) stand for the generalized external forces. These quantities
are related to unit length of the curves 81II(y), 01(3) and have the following
definitions

h
Pyi(2) = %/p;(z)(h — z3) dz3
0]

h
1
P)i(2) = 7 / pi(z)z3 dzs
0
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— The constitutive equations

The constitutive equations for the generalized stress resultants and stress
couples in terms of the 2D-field quantities are in the form

Nuykr(z)

N(I)KS(Z)

N(l)ss(z)

Mk1(2)

M 1)kc3(2)

M(I)SS(Z)

= 2phenykr(2) + phe(yy k(%) + Mheqymm()éxr +

1
+ Ez\h2621)MM(Z)6KL + Ahe(1)33(2)dk L

2[1’16(1)]\’3(2) + [l,h2el(1)K3(Z)

= (A +2u)he(yss(z) + Aheypmm(2) + ’\hze(l mm(2)
(3.4)

2uh3
= uh’eqykr(2) + e(l)KL(z) + Ah emymm(2)0kL +
+ '73'/\h3621)MM(z)6KL + E/\h 6(1)33(2)61(L
2
= phleyks(2) + SR el xa(2)

= 0

— The geometrical relations

The geometrical relations for the 2D-strain measures in terms of displace-
ments are defined in the form

eykL(?) = uy(k,L)(2)

1
ere(z) = 7lue) k0 (2) — v, (2)]

1 1
emk3(2) = gplu@K(2) — vk (2)] + Suaye k(%) 55

1
emka(z) = o7, [4@3,k(2) = u()3,k(2)]

6’(1)33(2) = %[U(z)s(z) - "(1)3(2)]

621)33(2) =0
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4. Model equations in displacements

For the isotropic plate and the displacement field postulated in Eqgs (2.1),
the generalized equilibrium Egs (3.1) take the form

(A + whlue)k + 2uaykl kL + phlue)r + 2uayL) kK +
6
+3[(A + w)uz)s — (A = wuwsl.L + ‘hﬁ[u(2)L —ua)L]+6f1yL =0

phlug)s + 2ugys] kK + 3[(A+ plugyx + (A — Wuwyk] k +

6(A+2
+%["(2)3 —umya] +6fa)3 =0
4.1
(A + wh[2u2)k + vk ],kL + Bh[2u)L + vyl KK +

6
+3[(A = pluys — (A + p)ugyslL — T”[U(z)L —umyL] +6f2L =0

Bh[2u(ays + vysl Kk — 3[(A — wuyk + (A + p)uayk] x +

6(A+ 2
—%["(2)3 —u)s] +6f(23=0

Let us introduce the auxiliary vector fields v = (vr,vs), w = (wr, ws)
characterizing the general symmetric and antisymmetric states such that

1 1
v = 5["(2)L + uq)L] v = [u)s ~ vyl
(4.2)

1 1
wy, = E[u(2)L — u(p)L] w3 = 5["(2)3 + u(1)3]

and also introduce the symmetric and antisymmetric external forces
g9 = (91,93), 4 = (qL,g3) such that

gL = ';‘[f(2)L + fiyLl g3 = %[f(z)a - fyal
(4.3)

1 1
q =+l = Syl g3 = E[f(”f’ + f1)sl

by these definitions, Eqs (4.1) can be decomposed into two independent sy-
stems of equations characterizing the symmetric and antisymmetric states,
respectively. The first system of equations has the form
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2
(A + pvr kL + por kK + Ava L + RIL = 0

(4.4)
12X 12(X + 2p) 6
HU3 KK — ';lT'UK,K - -Tvs + Egg =0
and the second system of equations has the form
12 12 6
(A + WK, KL + PULKK — —2-“w3,L - —,wa + 79 =0
h h h (4.5)

2
pw3 KK + pWK K + 593 = 0

Similarly, the boundary conditions (2.3) can be written in terms of displa-
cements, taking the form
hAvanp + 2hpvk 1ynk + hAvg knL = 271
hpvs kng = 6g3 (4.6)
2hpw(g,Lynk + hAwg knp = 6qr,
hpwgnkg + hpws knk = 243
where gr, qr and @3, g3 represent the plane and anti-plane components of

the boundary loads, acting on the contour 8II of the midplane IT, with the
relations

1 = 1
gL = 5[:0(2)1, + payLl 93 = 7[P@)3 = sl
4.7)
- 1 - 1
iL = E[P(z)z, - p)L) @z = §[p(2)3 + p(1)3]

A solution to the displacement equations (4.4) and (4.5) which satisfies
the boundary condition (4.6) together with the definition (4.1) enables us to
determine the displacement field u(;) and u(,) of the lower and upper surfaces,
respectively.

5. Formulation of the problem

Consider an infinite strip of thickness h subjected to a loading on the
upper surface z3 = h of the form

. Ty
q = qoSIM ——

L
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where qp is cc.)nstant and L is the half wave length.

The solutions to Eqs (4.4) and (4.5) with the boundary condition (4.6) for
this example have the following form

v = 6AL° go cos =L
p(A +2p)w3h2 + 48un L2(A + u) L
vy = 6(\ + p)L? gosin ™21
(A + 2u)72h2 + 48uL2(A + u) L
(5.1)
wy = — 123 4o cos Ty
(A4 2p)w3h3 L
ws = [ L2 + 1214 dosin T,
un2h (A4 2p)m4h3 L
From Eqs (4.2) and Egs (5.1) we find out that
_ 6AL3 6L3 ]
“n u(,\ o hine ¥ a8ur(ht WIZ T O 2u)hEas 2O ST L
_ 6AL3 6L3 ] I,
O L 2mhPr £ a8um (O + wI?  (h+ 2phzedl 0 T (5.2)
u(1)3 = L + 121 _ 3(A+ 2p)L*h ]qo sin LESY
pht? (A4 2p)h3T4 p(A + 2u)n2h2 4+ 48u(X + p)L? L
woyo = | AR v A 3(A + 2p) L?h Jao sin 722
phr? (A4 2p)h3Tt  p(A + 2u)n2h2 + 48u(A + p) L2 L

From Egs (2.1) and Eqs (5.2) we find that the displacement field has the
following form

w(z) [ 6AL3 6L3 +
p(A + 2u)h2m3 + 48um(A + p)L? (,\ + 2u)h273
12L3z4 T
(2 O T
us(z) = [ - 3(A+2u)L%h
hpur?  p(X 4 2u)w2h2? + 48u(X + ) L2
6() + 2up) L%z, 124 T,

p(A+2p)w2h2 + 48u(A+ p)L2 - (M + 2u)h37r4]qo S
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6. Comparison with the other theories

The solution which we have obtained can be used to evaluate the displace-
ment of the midsurface and stress for comparison purposes. The displacement
of midsurface of the plate is given by

_qlir1-2v K? zl
"= Dr [(1 e teas )] sin
where ER "
AL =
D=waom k=7
and v is Poisson ratio, and the stress component Tjj is

12 z 6 . TT
T11 = (ﬁ_ﬁs - F)(R)Sln —L—l
These results are to be compared with the other solutions which have
obtained by using other theories. First, the solution obtained by using the
classical plate theory for the midplane displacement is

%L sin bt
Dr4 L
The Reissner plate theory yields the result
oL“ K%*(2-v) 1rzl
us= a1+ 10(1 - ]
For higher-order theories, Essenburg s theory (cf Essenburgb(1975)) gives
qolL? K?(v2-v42) vK? 3K . =z
= 1 -
w =Tt 1001 = ) 20 1120/ I
For the stress component T4, the classical, the shear deformation Reissner
and the Essenburg theories all yield the same result

U3z =

12go 23 . 724
BERR D
Also this problem is solved by Lo et al. (1977) by using a higher-order theory
which gives for the midplane displacement the result
us = goL* 1 _
Dr4 4(1 — v)[8400(1 - 2v) +120(1 — v)K? 4 (1 — v)2K4)

[33600(1 — »)(1 — 2v) + (7200 — 16920v + 552003)K? +

+1400(1 = v)K* — (1 - v)?2K®]sin Wzl
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and for the stress component 7Tj; gives

T = go sin TfL
17 16800(1 — 2v) + 240(1 — v)KZ + 2(1 — v)2 K4
15(1 - »)2K? (125 — 1) 6 25

'{720(1 — W)+ 24(1—V)K2+ (1 —v)2K* " K2 h
-[33600(1 — 2v) — 120(1 — v)(10 — 7Tv)K? — 80(1 — v) K4 +

+12(1 - v) (%)3[2800(2 ~ v) +280(1 - v)K?]}

For the exact solution (cf Little (1973)), setting « = I /2 the midplane
displacement is given by

o — goL* K coshk[2 + (1 4 v)k tanh K] sin Tt
®~ Drt 24(1 — v2)[sinh k cosh k — k]

and the stress component 77j; is given by

_ % cosh kK — ksinh & A sinh K .. T3
T = 2 [(sinh kcoshk — k = sinhkcoshk + n) sinh L +
(sinh K — Kcoshk IH cosh k )

T3] . WXy
- - cosh ——] sin —
sinh k coshk + «  sinhkcoshk — &

L L

7. Discussion and conclusion

In Fig.1 the variation of the coefficient of the midplane displacement versus
the ratio h/L is shown, where the displacement of midplane w3 is written in
the form
gl* . 7z
Drt T

We see from this figure that for h/L = 1.5 the differences between the
approximate theories and the exact solution are substantial, and continue to
increase with increasing h/L. Also we see that the higher-order theory and the
Essenburg’s theory yield close results while the present theory and Reissner’s
theory give near results. This is clear because the latest are of the order one
of the out-plane coordinate while the others are of high order of the out-plane
coordinate.

ug = (displacement coefficient)
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Fig. 1. Midplane displacement solution for v = 0.25
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Fig. 2. Maximum flexural stress distribution for » = 0.25
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In Fig.2 the maximum value of the flexural stress Tj; is plotted against
the ratio h/L. It is seen from this figure that if is smaller then one, results
of all theories are close each other the ratio between the thickness and the
characteristic length of the load.
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Poréwnanie wynikéw rozwigzan w ramach réznych teorii plyt

Streszczenie

W artykule przedstawiono uklad réwnai 2-wymiarowego modelu elastostatyki
plyt, ktéry bazuje na teorii nieklasycznego kontinuum z wiezami wewnetrznymi. Przy-
toczony model zostal przeanalizowany na przykladzie prostego problemu nieskonczo-
nego pasma plytowego z periodycznym obciazeniem. Wyniki rozwiazan zostaly po-
réownane ze znanymi rozwigzaniami w ramach innych modeli dwuwymiarowych 1 w
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ramach teorii écislej. Z poréwnania wynika, iz model oparty na zalozeniu wiezéw
czysto kinematycznych, dla pewnych parametréw problemu brzegowego moze dawaé
zadawalajace wyniki rozwigzan.
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