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In this paper the dynamic programming approach is used, and the neces-
sary optimality conditions under a periodic control constraint in a finite
interval have been found. On the basis of dynamic programming theory,
the optimality conditions were formulated in the form of the modified
Bellman’s functional equation, which was derived using the method gi-
ven by Piekarski (1992). The independent variable interval [0, L], i
divided into N identical subintervals of the length 7= L/N. Let us
assume that the control is the same shape within each subintervals. The
initial optimization problem within [0, L] is replaced by an equivalent
optimization problem valid within one subinterval. Consequently, it is
enough to analyze the control function inside a single subinterval, i.e.,
0 <t <T. It is worth noting that a modified optimality cntenon on
the basis of Pontriagin’s maximum principle was derived by Piekarski
(1992) and Leitman (1966) (for the first time).

1. Introduction

The aim of the previous paper by Piekarski (1992) was to analyze the opti-
mization problem on the assumption of periodicity of control variables in a
finite interval. Solution to the problem or the necessary optimality conditions
have been obtained by using Pontriagin’s maximum principle, e.g., Leitman
(1966). The results obtained can be applied to the optimization problems
in discrete-continuous systems. For example, Kuhta and Kravchenko (1976)
considered boundary-value problems under piece-wise analytical conditions,
in vibrating elastic systems subject to discrete and discrete-continuous exci-
tations, respectively. Optimization under periodic control over a given, finite
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range seems to be advantageous in some industrial and economics problems.
This approach could be used if a system consists of many elementary models,
e.g., vibrating beems or rotating shafts with concentrated masses. In such
problems the periodic optimal control may be used in a natural way. To il-
lustrate this modified optimization problem and apply the theorem obtained,
Gajewski and Piekarski (1994) considered the optimal control problem of mini-
mizing the volume of a vibrating elastic beam a constant frequency constraint
and periodical optimal shape. In the paper by Piekarski (1994), the necessary
optimality conditions for periodic control have been found, taking into account
certain constraints imposed on the state variables. The objective of this paper
is to generalize the results obtained previously. We shall formulate a theorem
formulating relationships of dynamic programming (cf Bellman (1957)). The
necessary optimality conditions are specified in terms of Bellman’s functional
equation with the periodic control in the limited interval.

2. Formulation and solution to the problem

The interval [0, L] of independent variable ¢is divided into N subintervals
[(¢ — 1)T, ¢T] of the variables

o=t +(¢-1)T ¢g=1,2,...,N< o0 (2.1)

where

0<4; <T NT =1 (2.2)

The problem of optimization in the interval [0,L] is to be formulated as
{follows: determine a minimum of the cost functional

L
J = /fo(x(t),u(t),t)dt (2.3)
0

with constraints
— the state vector

2(1) = [21(1),s oo 2a(D)]T (2.4)

satisfies the equations

(2.5)

3

d .
—i(t) = fi(z (1), u(t), 1) i=1,2,..,
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with the initial conditions

z(0) = zg (2.6)
— the vector of control
u(T) = [u1(2), ua(t), ooy um()]7 (2.7)
is periodical in a limited interval
u(ty) = u(ty) (2.8)

and belongs to a given set of determined and picce-wise continuous functions
u(ty)) €U (2.9)

We introduce the following vector functions
z9(t1) = 2() = [21(Lg), 22(tg), ooy Zal(tg)] (2.10)
W(1) = u(ty) = (11 (tg)s walty s ooy ()] (2.11)

for every value of t, from Eq (2.1). Dimensions of the state and control spaces
are n X n and m X n, respectively. Upon substituting Eqs (2.8), (2.10) and
(2.11) into Eqs (2.3) and (2.5) we get

/Zfo 2(t), u(t1), 1) dia (2.12)
o 9=1
and J
dt, zi(t1) = fi(z¥(t1),u(tr),1,) (2.13)
under the conditions
z'(0) = zo (2.14)

The problem of optimization, we started with, defined in the interval [0,!]
with the periodic control is equivalent to the problem in the subinterval [0, 7]
given by Eqs (2.12), (2.13) and (2.9) with non periodic control u(t;). Now,
using the method of dynamic programming, cf Bellman (1957), we can find the
necessary conditions of optimality. The minimum of cost functional (2.12) can
be presented in the form S[z!(t0),z%(%0),...,2"¥ (to), o] for 1o = 0. Applying
to the optimality principle to the interval [t;,T] from Eq (2.12) we have

ST (t0), 4 (t0), =" (10}, to] = mn /Zfo 29(1), u(tr), 1) diy (2.15)

u(t,)ev
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The integration interval [{1,T] was divided into two intervals: [i;,1; + Af]
and [tq + At,T]. From Eq (2.15) we obtain

S[z(ty), 2%(th), oy 2™ (11), 1] =

ti+At N

~ min (/ }:fo (1), u(ty), 1g) di +/ Zfo 29(0), u(ly), ) dt:)

u(t)el
t,+at =1

(2.16)

The condition (2.16) by virtue of Eq (2.15) may be rewritten as a functional
equation of the form

Mz

.'Eq tl) (tl) )At +
(2.17)
+8[at (1 + A1), 2%(t1 + A1), ..,z (4 + AL, 11 + A1]) + Oy(A1)

Sle! (1), 2%(1), 2™ (1), 1] = (rgl)léu(

The function S at the point (¢, + At) is expanded into the Taylor series

S[e'(t + A1), 22(ty + AL), ...,z (1 + At), 14y + At] =

= $[z'(t1), 2% (), 2" (1), 1a] + (2.18)
N n
+<§;81&(§tl f1 -Tq tl) ( ) )At+ %At+02(At)

Since the function S is independent of the vector control u(ty), by virtue of
Eq (2.18) we get from Eq (2.17)

9 §la'(1y), 21 t2),11] N( 95 ) (219
_(')_t[ H(t),2%(th), .. I(l)l q;f0+;mfz (2.19)
From Eq (2.19) the form of function S follows
N
Sl (t),2*(t1), .o 2™ (1), 1] = ) S[z(t1), 1)) (2.20)
g=1

When the functions fo and f; areindependent of ¢ (an autonomous problem)
we have

9 cria _
%S[l‘ (tl),tl] =0 (221)
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From Eqs (2.19) and (2.20) we obtain

min Z Py (2.22)

tl)GU

in which the partial functions P, are given by the formula

P,(1)) = _suh>m+hﬁm)umun
(2.23)

= 0
(z9(1), u(ty), 1, ) —— S[2(11), 1
Z:lf(x ( 1) u( 1) q)al'?(tl)S[x ( 1) 1]
Eq (2.22) when combined with Eq (2.23) represents Bellman’s functional equ-
ation of dynamic programming for the periodic control in a limited interval.
3. Example

The following example, due to its simplicity, can be solved analytically.
We shall be seeking the minimum ol cost functional

L
J:/pwm+éﬁaﬂm (3.1)
under the conditions
d
E.’L(t) = bu(t) :L‘(O) =1 (3.2)

The control constrains are given by Eq (2.8)
u(ty) = u(ty) ¢g=1,2,3 N =3 (3.3)
where i, is given by Eqs (2.1) and (2.2). Egs (3.1) + (3.3) given in the interval

[0, L] can be presented in an equivalent form in the subinterval [0, T]

T
J = /[a1 S 29(t) + %uz(tl)] dty (3.4)

q=1
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and

%xq(tl) = bu(ty) ' (0)=1 (3.5)

Eqs (2.20) and (2.21) in view of Eq (2.22) take the following form

0= mm[al Za:q (t1)+ = u2(t1 + bu(ty) Z 8 ] (3.6)

u(ty)
We can see that in view of Eq (3.6) one obtains the following two equations
a5 1
— = _—Z7lt
2q: 9z9(th) bU( V

(3.7)

oS
alz (t1) + u (t1) + bu(ty) Z(? )—0

By virtue of Eq (3.7) it is seen that the optimal control #(t;) takes the form

u tl ’2(11 Z(Lq tl (38)

It is assumed that the new state variables z(1) fulfill the following conditions

zn(ty) =2(t) + 2t +T)+ 2(ty + 27)
z(t) = 2(t) -zt +7T) (3.9)
z(t) = z(t) - 2(t + 27)

Eqs (3.5), (2.10), (3.8) and (3.9) can be presented in as follows

d TN
d—tlzl(t]) =3b 20.121(11)

d d
d_tlZ2_0 EZS_O

(3.10)

The solutions of these equations are provided by the following functions

z1(ty) = ( bv2ayt; + —01) (1)
3.11

zi(1;) = const = ¢; 1=2,3
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From Eqs (3.9) and (3.11), it follows that

3 1 1 1
() = 51)2(“1% + \/Za,cltl + — 12 24 §c2 + 503
(3.12)

; 3
(1)) = 5 (111 + \/2(1 it +1—¢ i=1,2

) It is assumed that T = 2, b = a; = 1. From Eqs (3.5) and the conditions of
continuity (3.12) specified at the points 7 and 27T, we get

A 4+12¢,-12=0 ey = —6—2¢, ca=12c; (3.13)
The solutions of Eqs (3.13) are

c1 = ~4.0047 c; = —0.3365 c3=—0.6730  (3.14)
From (3.12) and (3.14) we have

z(t;) = 1.5¢2 - 2.8317; + 1
z(ty + T) = 1.5t% — 2.8317t; + 1.3365 (3.15)
z(t; + 2T) = 1.5¢2 — 2.8317t; + 1.6730

After substituting Eqs (3.9) and (3.11) into Eq (3.8) we obtain

~ 3 1
u(t1) = V2a, (§0v 21t + 561) (3.16)
from which it follows that
ﬂ(tl) - 311 - 283175 (317)

The control (3.17) and state variables (3.15), respectively, are shown in
Fig.1.

For the case of additional constraints imposed on state variables the gra-
phical representation of control is shown by Gajewski and Piekarski (1964), in
which the necessary optimality conditions of periodic control on the basis of
Pontryagin’s maximum principle have been found.
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Fig. 1.
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Réwnanie Belllmana optymalizacjl z okresowyin sterowaniem
Streszczenie

W pracy rozpatrzony zostal problem optymalizacji ukladow ze sterowaniem okre-
sowym w skoriczonym przedziale zmiennej niezaleznej. Warunki konieczne opty-
malnoscl otrzymane zostaly na bazie programowania dynamicznego. Dla ukladdw
ciaglych warunki te zapisano w formie zmodyfikowanego réwnania funkcyjnego Bell-
mana. Réwnanie to otrzymane zostalo metoda zastosowana w pracy Piekarskiego
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1992). Przedzial 7[’0 L}/ zmiennej niezaleinej ¢ dzielimy na N réwnych podprze-
zialéw o dlugosci N. Przyjmujemy, ze w kazdym z nich optymalne sterowanie
ma taki sam ksztalt. Ploblem optymallaac_u zadany poczatkowo w przedziale [0, L]
sprowadzamy do optymalizacji rownowaznej okreslonej w jednym z podprzedzialdw.
Pozwala to sprowadzi¢ badanie funkcji sterowania ukladu do badania jej w jednym
okresie np. dla 0 <¢ <T. Do tak otrzymanego problemu stosujemy nastepnie jedna
z teorii sterowania. Na bazie zasady maksimum Pontriagina zmodyfikowany warunek
optymalnosci po raz pierwszy podany zostal w pracy Piekarskiego (1992).
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