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Among all the methods of computational fluid dynamics perhaps most
significant are the panel methods (PMs). This paper not only reviews
existing techniques for calculating aerodynamic loads for realistic air-
craft configurations, but also provides an account of mathematical ideas
needed to understand them. The scope of this paper covers the main
issues of problems of engineering analysis and design by means of PMs.
Results of example applications of these methods to particulary com-
plex configurations encountered in aircraft industry are also included.
A selection is given at both subsonic and supersonic speeds.

Notation
BC —~ boundary condition
PM —  panel method
VLM - vortex lattice method

1. Prologue
1.1. Introduction

As is known, Euler and even Navier-Stokes models can be today solved
using field methods (mainly the finite difference method) with the aid of su-
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percomputers. Nevertheless, applying the Navier-Stokes model to all problems
is not only impractical today, but may not satisfy other necessary criteria such
as timeliness, accuracy, reliability, availability of computing resources, and ma-
nagement confidence. E.g., in the Euler or Navier-Stokes formulation the shed
wake becomes a natural part of the solution. In these methods the wakes
are naturally convected downstream. However, this does not automatically
guarantee a better solution than the simplified approach taken in potential
methods (Tinoco (1990), p.567).

PMs based on potential flow models are still most popular tools in numeri-
cal aircraft-oriented aerodynamics. Application of PMs seems to be especially
reasonable at preliminary design stage of complex configurations when high
speed and low cost of computations are most important.

The primary aim of this paper is to provide a clear account of the mathe-
matical ideas needed to understand these methods in engineering analysis and
design. For this reason each section includes the basic concepts of advance in
the field required to implement the techniques in practical engineering activity.

The paper is divided into five sections. The first two ones have an in-
troductory character, while next two section contain the bulk of the paper.
Section 3 presents a general methodology for the solution to potential flows
problems, whereas Section 4 provides a global look at the state of the art in
PMs. The final Section includes some examples of applications of selected
codes to particulary complex configurations at both subsonic and supersonic
speeds.

1.2. Brief disscusion of previous reviews

Review papers on PMs have been published for a long time on several
occasions. A complete review of these papers is beyond the scope of this paper;
only publications that appeared in the last decade and concern formulation
in the field of PMs in aerodynamics are discussed here. So, we limit our
considerations to reviews written by Hess (1985) and (1990), Hunt and Hewitt
(1986), Wagner (1987), Erickson (1990), Morino (1993).

Hess (1985) presented the comprehensive review of the historical develop-
ment of surface source methods. e makes also a comparison between first-
order and higher-order methods and notices that in higher-order methods both
the local surface curvature and the singularity variation over a panel must be
taken into account. Since analytic integrations can be performed only over
flat panels even for variable singularity strengths, so many authors incorrectly
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refer to such methods with flat panel as to higher-order ones. It is worthy
to emphasize that paper by Hess (1985) contents extremely valuable discus-
sion of numerical efficiency and presents (following Slooff (1981)) a number of
challenges and problems to solve in. the future.

Hess (1990) pointed out the important role of the Kutta-Joukowski condi-
tion. According to him theoretical considerations concerning this condition are
even more important than the so-called singularity "miz”, i.e., the choice of
particular relation between source and dipole distributions. It may also be no-
ted that selection of the PMs generalizations applied to 3D fluid-dynamic pro-
blems is briefly discussed. This discussion includes propellers, transonic appli-
cations, and free-surface applications (surface-ship and underwater-structure
problems).

An extensive paper of Hunt and Hewitt (1986) gives a comprehensive look
at three aspects of the boundary integral method; namely,

e A discussion of the fundamental physics involved shows how one of the
practical boundary integral models employed in routine aerodynamic
applications to incompressible, irrotational flows may be interpreted in
pure physical terms

o A detailed mathematical analysis of the linearised elliptic formulation
results in the so-called "indirect” boundary integral formulation which
allows source and vorticity distributions of very low order to be used to
give accurate and economical solution

e Detailed discussion of the linearized hyperbolic equation indicates how
methodologies have been developed which allow boundary integral for-
mulations to be successfully applied to supersonic flow problem. A num-
ber of computed examples are presented as well. The paper is rather
difficult to follow because of too much mathematical consideration in-
troduced. '

Wagner (1987) presents interesting classification of flows for sharp leading-
edge delta wing according to the angle of attack and Mach number normal to
the leading edge. Then, the main fundamentals of panel methods are discus-
sed. Some examples for the aerodynamic analysis of complex configuration by
PMs are presented that show the versatility of these methods in application.
On the other hand these indicate that further developments towards a hybrid
method, e.g., an integral equation method with the embedded Euler domain
will be necessary.

Erickson (1990) discusses the PM capabilities and limitations, basic con-
cepts common to all PM codes, different choices that have been made in the
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implementation of these concepts into working computer programs, and va-
rious modeling techniques involving boundary conditions, jump properties,
and trailing wakes. Three appendixes supplement the main text giving de-
tails of computer program (PANAIR), showing how to evaluate analytically
the fundamental surface integrals and presenting the so-called finite part of
improper integrals, respectively.

The extensive review of Morino (1993) presents a unified methodology
for the analysis of potential and viscous flows. Worthy to note is that Morino
understands aerodynamics as inclusive of unsteady flows. Hence, in that paper
he always starts with the formulations for unsteady flows and recovers the
steady-state solution from a transient response as time goes to infinity. The
use of the Helmholtz and Poincaré decompositions to examine viscous flows
is described. The distinguishing feature of Morino’s review is the fact that
aspects of the formulations that require additional work have been pointed
out.

Comparing these reviews one can say that some of them are more practi-
cally oriented (cf Erickson (1990); Hess (1985) and (1990)) and contain working
formulae and valuable results, useful in numerical package testing. Other pre-
sent mathematical foundation and even philosophical considerations (cf Hunt
and Hewitt (1986); Morino (1993); Wagner (1987)). All of them are helpful
in understanding panel methods, their state-of-the-art and challenges for the
future.

As follows from the above considerations each review paper reveals rather
a specialized interest and not very wide look. If a paper contains mathematical
framework, so does not even give any information about specialized problems,
such as unsteady effects, e.g., Erickson (1990).

Our main purpose is to present the PMs as full, comprehensive, coherent
and relatively simple ones, therefore we decided to include formulation of the
problem, mathematical background, methodology of solution, presentation of
some codes, selected numerical results and future challanges. Such intention
is ambitious and difficult to realize in a reasonable volume, so we decided to
divide our work into two separate parts: the first one devoted to classical PMs,
whereas the second one to modified (advanced) PMs. This paper contains the
first part, the second one is entitled: ”Modified Panel Methods with Examples
of Applications to Complex Flowfield Calculations”, [13].
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1.3. Problem formulation

Classical PMs are numerical schemes for solving the Laplace equation
Prz T Pyy T P2z = Vip=0 (1.1)

where {z,y,z} denotes a movable (body fixed) reference frame and ¢ is the
perturbation velocity potential.
Some authors refer classical PMs to the Prandtl-Glauert equation

(1 - Ma2 )orz + @yy + 2z = 0 (1.2)

where May, is the Mach number of the uniform flow. However, we will limit
our further considerations to Eq (1.1) because the Prandtl-Glauert transfor-
mation to new movable (body fixed) reference frame {zn,yn,2zn} in the form

r =zny/1 - MaZ Y=UN z2=zN (1.3)

converts Eq (1.2) into Eq (1.1).

Set up the connection between the descriptions in the unmovable (space
fixed) reference frame (denoted by Kj) and movable (body fixed) reference
frame (denoted by K'), Fig.1. Consequently, we shall denote by the subscript 0
all measurements and operations made with respect to the frame Ky and
denote without any subscript all measurements and operations made with

respect to the frame K.

Fig. 1. Relation between space-fixed and body-fixed descriptions

It can be proved (cf Karamcheti (1966), p.284) that the various differen-
tiation operations in the two frames are related as follows

Vo =V (14)
vi=v? (1.5)
0 _9_ Ut)v (1.6)

Bty Ot
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From Egs (1.5) and (1.3) it follows directly that the Laplace equation for the
perturbation velocity potential is valid in both the reference frames. Since
full velocity potential can differ from the perturbation velocity potential only
by a linear function, so from Eq (1.5) it follows that full potential satisfy
the Laplace equation relative both the reference frames also. Moreover, the
important formulae for pressure calculations, on the basis of Eq (1.6), are
different in both the reference frames, i.e.

plrosta) = pr,0) = poo = P[22 + 3(Taga)] =

(1.7)
poo = P[5 = UV + 2(VeY]

Because for a rigid body the function specifying the surface of the body be-
comes independent of time if described from a movable reference frame, so
all further considerations will be carried out just in the body fixed (movable)
reference frame.

In order to complete the problem we need to formulate the proper BCs
on the body surface, at the trailing edge ( Kutta-Joukowski condition), and at
infinity, respectively.

The first BC requiring zero normal velocity across the body solid bounda-
ries

Von=0 (1.8)

where n is a unit vector normal to the body.
Along the wing trailing edges the velocity has to be limited in order to fix
the rear stagnation line and therefore

Vp < 00 (1.9)

The third BC requires that the flow disturbance, due to the body motion
through the fluid, should diminish far from the aircraft

limVe =0 (1.10)

In the PM approach, a governing differential equation is converted to an
integral one over the configuration surface by means of the Third Identity of
Green (cf Kellog (1967), Chap.VIII, Sec.4), that from here will be call simply
the Green Theorem. This integral equation is then solved by means of a
discretization process. The configuration under consideration is divided into
panels to which a certain distribution of singularities of unknown strength is
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assigned. Thus, PMs should be more precisely called as the surface-singularity
methods.

In classical PM codes a combination of source and doublet distributions on
the panels is used. Some codes use elementary horseshoe vortices instead of
doublets. The strength of the singular elements are determined by satisfying
the proper boundary conditions. Once these are known, the surface velocity
components and pressures can be calculated by using

V2
Cp=1- @ (1.11)
where V is the velocity at the panel surface due to the freestream and the
perturbation velocity potentials.

When one writes a review of PMs, one has to bear in mind that the main
feature of classical PMs consist in their capability to predict correctly the
aerodynamics in a linear approach only. In this context it is worth noting that
the field of computational fluid dynamics may be conveniently divided into
two major areas:

1. Subsonic and supersonic regimes, where the nonlinear terms in the dif-
ferential equation are negligible

2. The transonic regime, where the nonlinear terms are essential to describe
the phenomenon.

Mathematically speaking, a problem is called a nonlinear problem if the
governing equation is nonlinear and/or if the boundary conditions are non-
linear. So, for inviscid and low-subsonic flows at high angles of attack, the
problem is nonlinear, although the governing equation is linear (Laplace or
Prandtl-Glauert model). The nonlinearity is due to the BCs, that are formu-
lated on the separated flow surfaces. For inviscid and high — subsonic flows
at low angle of attack, the problem is also nonlinear, because the governing
equation is nonlinear (the full potential equation; see Eq (6) in Goraj and
Pietrucha (1993)). Of course, for compressible flows at high angle of attack,
the problem is nonlinear due to both factors.

Suming up: starting from the Navier-Stokes model, which is the most
general model representing the flow, the following assumptions are necessary
to derive Eq (1.1):

e No viscosity terms

e Irrotationality of the flow
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e Steady state
e Small perturbation approximation
e Incompressible flow.

Therefore, it is clear that PMs are applicable to the flow conditions for
which, at least in a global sense, the flow can be considered inviscid, irro-
tational, and stationary in respect to time. Such methods we will call the
"classical PMs”. Thus, it is essential to note that in practice numerous exi-
sting PMs incorporate processes which allow some account to be taken of the
finite Reynolds number (by including boundary layer effects), the influences
of compressibility (e.g., by considering the Prandtl-Glauert equation), and
unsteady effects. Such and the like PMs we are calling the "modified PMs”
and will be considered in the next paper [13].

Now, we are able to give a bit more full determination of classical PMs.
So, we make the following assumptions:

1. Linearity of governing equations and BCs
2. Flateness of the vortex surface
3. Shedding-up of the wake from trailing edge only

4. Steadness of the flow.

2. Mathematical background of the panel methods
2.1. Boundary-value problems

A combination of a partial differential equation and BCs is known as a
boundary value problem. A boundary value problem is a wellposed one if:

1. There exists a solution to the problem
2. This solution is unique

3. The solution depends continuously on the source term and on the boun-
dary data.
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Sometimes a physical phenomenon is described by a boundary value pro-
blem that is not well posed, but in such cases there are serious implications
as to the instability of the physical problem (cf Stakgold (1968), p.89). A
thorough investigation is then needed to decide whether it is the physical pro-
blem which is in some sense unstable or whether, instead, an error has been
made in translating the physical problem into its mathematical formulation.
Worthy of note is an opinion: "knowing that a solution exists and is unique
is important becauce one would not find himself fallowing a blind alley.” (cf
Smith (1990), p.7).

Theory of the Laplace equation (and the more general case of Poisson
equation) is referred to as a potential theory. Both equations are the partial
differential equations of elliptical type. There are two main forms of boundary-
value problems, namely the Dirichlet form or the Neumann form. Both forms
can be formulated using internal or ezternal approaches.

In internal formulation a potential field in region B, bounded by a closed
surface S, is considered. In aircraft aerodynamics the external Neumann
conditions are usually considered, since in most cases we do not know the
potential distribution, whereas we know the potential derivatives, normal to
the surface and equal to the velocity components.

For clarity we limited our considerations to the external conditions. To do
it let us define the region

V= E3\(B+S5) (2.1)

laying in unlimited space, out of the body B.

The boundary value problem for the Laplace equation consists in finding
¢, satisfying this equation in the region (2.1) and such that for the Dirichlet
condition we have

els = f(=,9,2) (2.2)
and for the Neumann condition we have

d

Fnls = g(z,y,z2) (2.3)

where f and g are functions given a priori.

In both kinds of boundary value problem the potential should vanish at
infinity. One should emphasize that the conditions (2.2) and (2.3) could not
be given simultaneously. However, it is possible to require that the Dirichlet
condition is satisfied in one region of the boundary while the Neumann con-
dition is satisfied in another region. Such form is usually called as the mized
(sometimes Poincaré) boundary value problem.
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A powerful method for the study of boundary problems makes use of the
so-called fundamental solution. The modern definition of this solution (that
is denoted by F) is as follows (cf Marcinkowska (1972), p.48)

V2E = §(r;) (2.4)
where
6 - Dirac delta function
r; — distance between the "source” point and the ”observation” po-
int, namely
r=|r| = |z — =i (2.5)
The fundamental solution to the Laplace equation for 3D problem is
1
E=— 2.6
drr (2.6)
whereas in 2D case is ) .
E=—In- (2.7)
2 7

It is very important for further considerations to note that the function FE is
a function of two points: the source point z; at which arises the singularity
of 6, and the observation point z which is the variable involved in Eq (2.4).
By the way, it should be noted that one also faces the notions "the influencing
point” and "the influenced point”, respectively.

2.2. Boundary integral formulation

In order to formulate the Dirichlet and Neumann problems in terms of
boundary integral equations, we will use the so-called fundamental formula
for harmonic functions (cf Marcinkowska (1972), p.140) in the form

o(P) = /(gf f):f) ds (2.8)
S

where F is the fundamental solution given by Eq (2.6) or (2.7), and n is the
outward normal to the surface. According to Eq (2.8) and taking into account
the conditions (2.2) and (2.3) we have for the 3D case

P = 1= [[0Q755 - Qg 5@ 29)
S
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where P is a point outside B, and () is a point on 5. As was mentioned in
Section 2.1 the conditions (2.2) and (2.3) cannot be given simultaneously, and
thus Eq (2.9) is not a solution! In order to find it, consider the asymptotic
process P — R € 5. As a result we have the equation

B %r-/[g(Q)r(f},Q (Q)an T(P Q)] dS(Q) =0 (2.10)
S

which is the boundary integral equation, because it establishes the relation
between f and ¢ on the boundary §. From the mathematical point of view
this is the Fredholm equation of the first and second kind for a functions g
and f, respectively.

After resolving Eq (2.10) we can already obtain the solution to the Laplace
equation from Eq (2.9). Realization of a procedure for obtaining of a numerical
solution to Eq (2.10) is termed a panel method. The name "panel method”
comes from the approximating treatment of the configuration surface by a set
of panels on which unknown ”singularity strength” are defined.

It is known from Lamb (1932) that under fairly general circumstances the
disturbance potential due to a body may be expressed as an integral over the
body surface of a source distribution ¢ and a doublet distribution g, i.e.

o= i/[_la+ %(%)u] ds (2.11)

4 T
S

This is the main formula in aerodynamic calculations.

2.3. Jump properties

We will now give some important properties of the singularity distributions,
that are commonly used in aerodynamic PMs. Let us denote two sides of the
surface S as U (the upper) and L (the lower) sides, respectively. Also denote
n versor, normal to the surface and considered to be positive if directed from
the lower side to the upper one.

By virtue of Eq (2.11), the potential ¢p and velocity Vp induced at
an arbitrary (external) point P by a source distribution ¢ on an arbitrary
surface S are given by

drmgp = — / o ds (2.12)

04,9 1
P /a adS—nS/;Q—adS (2.13)
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where r is drawn to the point P from the variable point @ on 5.
Forapoint P € S, alimit process shows that the contribution to 47rdp/dn
due to the infinitesimal portion of S is 2wop if P lies on the face U, whereas
derivative Jdp/0n is equal to —2mwop if P lies on the face L. Therefore, the
discontinuity across the surface from L face to the U one is given by

Iy
o= Aa_n (2.14)

where the symbol A denotes the difference between the limiting values of
derivative d¢/dn. Positive derivative 9p/In means the potential growth
towards the outward vector n and corresponds to the positive o.

It is also worth noting that the local singular contribution to 4mpp is
equal to zero and thus the potential ¢ is continuous across 5.

In the same way we can obtain the discontinuity for doublets of strenght
i (the doublet axis being orientated from the ”sink” to the "source”). Once
again by virtue of Eq (2.11), the potential ¢p induced at an arbitrary (exter-
nal) point P by a doublet distribution g on an arbitrary surface S is given
by

Jd /1

A limit process is required as a point P approaches 5. This shows that the
singular contribution to 47 due to the infinitesimal portion of Sis —2wup,
if P lies on the face U whereas it takes the value 2mpup if P lies on the
face L. Therefore, the discontinuity in potential crossing S in the direction
n=ny=-—-njy is

p=—(ou —¢L) (2.16)

It can be also shown that the normal velocity component V', is continuous
across S, whilst the tangential velocity V, jumps by the value equal to the
tangential derivative of the jump in potential (cf Hunt (1980), Sec.4.3).

3. Implementation to aerodynamics
3.1. Origin of the concept

The PM idea in aerodynamics was created in Douglas Aircraft Company
(Long Beach, California) in 1952. It was connected with the task of computing
the flow around the aircraft body, designed according the area rule (introduced
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by Richard Whitecomb in 1952). The primary algorithm and program in
machine code was written for IBM/701 by A.M.O.Smith and J.Pierce. In
1956 dr John L. Hess joined the Douglas aerodynamic group. After a short
time he became the creator and author of most of the algorithms. So, the PM
is usually associated with the I{ess name (cf Hess (1985)).

3.2. Preliminary considerations

The idea presented in Section 2.2 is very universal and can be applied to
various engineering problems of continuum mechanics (such as stress analysis,
heat conduction, electromagnetic field analysis, etc.). Using this idea in fluid
mechanics requires some improvements, due to

e Body movements

There is considered the fluid movement (or body movement) and the
choice of coordinate system is important. In the system connected with
the body the velocity potential ¢ = ¢, + @, where ¢oo = Uz, whilst
in the unmovable system ¢, = 0.

e Wake existance

Behind the body there is created the so-called wake, which should be
described somehow. So, the surface S has to be divided into sub-areas

S =S+ Sw + S (3.1)

that are shown in Fig.2 (we have taken a cut through a wing and its
semi-infinite wake).

e Interior potential

An actual surface panel model of a body generally produces a set of
panels that separates space into two or more distinct regions: enclosed
interior volumes and an external volume extending from infinity to the
external side of the panels. The flow in the external volume corresponds
to the physical flow field being modeled. Although the flow in the in-
terior volumes is ficticious but can be used to advantage. It must be
remembered that we are using surface-singularities and BCs to create
the flow fields, and therefore flow exists on either side of the panels. The
internal-external fields are, in general, independent of one another.
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Y Inertial reference
frame

n ¢ oP(xy.2)

SCD

Fig. 2. Notation for definition of the potential flow problem

We assume the existence of velocity potentials ¢ in the flowfield and ¢; in-
side the wing. Applying Green’s Third Identity (cf Kellog (1967), Chapt.VIII,
Sec.4) to the inner and outer regions, and combining the resulting expressions,
the velocity potential at the point P on the inside surface can be written

1 1 d 1 1 a1
SB SW
where, according to Eq (2.16)
p=—(¢—¢:) (3.3)
_ o
=5, (3.4)

In principle, an infinite number of combinations of doublet and source di-
stribution will give the same external flowfield, but different internal flowfields.
To render a unique combination of singularities we can either specify one of
the singularity distributions (e.g., o = 0 in the doublet-only formulation) or
we can specify the internal flow. It is possible to require that

¢=¢i on Sp (3.5)

and in this case the doublet term on Sp vanishes and the problem will be
modeled by a source distribution on the boundary.
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3.3. Methodology of solution

The basic concept of PM is illustrated in Fig.3. The configuration is mode-
led by a large number of elementary panels lying either on the actual aircraft
surface, on some mean surface, or a combination thereof. To each elementary
panel there is attached one or more types of singularity distribution, such as
sources, doublets, vortices, and so on. These singularities are determined by
specifying some functional variation across the panel (e.g., constant, linear,
quadratic, etc.), actual value of which is set by corresponding strength para-
meters.

"Eq (1.3)is solved by an integral approach (see Xq (2.11)). The perturbation
velocity is then given by

dp 1 01 d /01
s

where 7 is the distance between the (z,y,z) coordinates of a field point
P, and the (&,7n) coordinates of a point @ on a surface 5 (see Fig.3). If
sources of strength (£, n) and doublets of strength (&, n) are distributed
on the surface (with the doublet axis normal to 5), Eqs (2.11) and (3.6) give
the formulas for calculating the potential and velocity that these distributions
produce at point P.

Once ¢ and u are specified, Eqs (2.11) and (3.6) can then be integrated
so that ¢(z,y,2) and V(2,y, z) are expressions involving only the unknown
singularity parameters. If point P is assumed to be a control (collocation)
point on the wing surface (there is one control point per panel - see Fig.3),
both equations give the potential and velocity at this point in terms of the
source and doublet distributions of a single panel. Summing the effects from
all panels on the wing surface gives the potential and velocity at the point
P in terms of the total number N of singularity parameters. Repeating the
process for all N points P, and imposing BCs at these control points, leads
to the linear algebraic equation

[AIC]{)\} = {RHS) (3.7)

In this equation, [AIC]is called the matriz of aerodynamic influence coef-
ficients (of N x N), {A} is the vector of unknown singularity parameters, and
{RHS} is the so-called right-hand-sides vector that expresses the BCs of flow
tangency on the surface. Once the singularity parameters are obtained from
Eq (3.7), the corresponding potential and velocity field, and next the pressure
field, can be computed.

9 — MMechanika Teoretyczna
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control points

singularity

Fig. 3. Panel arrangement - influence of panel k on control point @

The above described process, in one or another form, is common to all
PMs. The choice of particular relations between o and u that produce a
numerically well-behaved [AIC] matrix is the key problem. In this context it is
useful to note that there exists an important equivalence between doublet and
vortex distributions on a body surface (cf Katz and Plotkin (1991), p.86). This
equivalence also helps to explain such items as the inability of the constant-
doublei - strength model to yield good velocity fields by summing the velocities
induced by the individual panels and its lack of an explicit Kutta — Joukowski
condition (cf Maskew (1982), p.277).

3.4. Example of 2D numerical solution

To present briefly this method, we shall consider, following Yeo et al.
(1992), an airfoil with known boundary Sp, submerged in a potential flow
(Fig.4). The flow of interest is in the outer region where Laplace’s equation in
terms of the total velocity potential is fullfiled. Following Eq (2.11) and taking
u as In7r (for the two-dimentional case) the general solution to Eq (2.7) can
be obtained using source ¢ and doublet pu distributions placed on the surface
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an arbitrary point

O P(x,y)
z
conlrol oinl N.
body ——-o-‘
frame X
lrallmg edge
—x X X 3 1 wake *®
Yo
wm
surface
singularity
UCD

Fig. 4. Notation for a panel on an airfoil

of boundary S5 (which includes Sp and possibly a wake surface Sw)

$(2,7) = Goy — %/(UIHT—/J@;;;T) ds (3.8)

S

Here r is the distance between the singularity elements (source or doublet)
and a field point, and ¢, is the freestream potential

boo = Uso + Weoz (3.9)

Place the point (z,z) inside the surface Sp. Then the inner potential ¢; in
terms of the surface singularity distribution is obtained as

$i(2,2) = Pooi — él;/(alnr - 'ua(;nr) ds (3.10)

S

Note that if for the enclosed boundary Jd¢;/dn = 0 as required by the BC,
then the potential inside the body will not change (cf Lamb (1932), p.41)

¢i(z,z) = const (3.11)
By seting ¢; = (¢ 4 ¢oo )i = Poo and assuming that ¢e; = $oo We obtain
@i =0 (3.12)
So, from Eqs (3.10) and (3.12) it follows that

pilz,z) = —%/(Ulnr —ua;:lr) dS =0 (3.13)
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From the Neumann BC in the form

ad)i _ % a¢>00

an ~ on ' on 0 (3.14)
and the surface source definition (see Eq (2.13))
09  0¢;
one obtains 96
=z 3.1
7= on (3.16)

Since J¢/0n is equal to Q. n (accounting that the positive derivative d¢/dn
corresponds to the normal vector m which is pointed outwards of Spg, Fig.2
and Fig.4), we obtain

c=Q.,n (3.17)
To proceed with the solution, Sp is divided into discrete elements and at

each of these elements Eq (3.13) is evaluated. This results in a set of algebraic
equations for the unknown g distribution

N N
Z Corttie + Cp Ny1N+1 + Z Byrop =0 (3.18)
k=1 k=1
where
1 dlnr
= — dSy 3.1
Cop 2r on k (3.19)
Sk
1 dlnr
Cor = 5= [ G dSwa (3.20)
5o L[ - dS 3.1
pk = —2—7{_ n7 k ( . )
Sk

and Sk, S, denote elements of integration between edges of the kth panel;
p=1,2,...,N; N is the number of body panel; (note that in 2D solution we
bave only one wake panel, so S, = Sy+1).

To define the problem uniquely, the wake doublet distribution should be
known or related to the unknown doublets on Sp (Kutta-Joukowski condi-
tion).

From this condition we have

BN+1 = AN = (3.22)
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and consequently the influence of the wake elements becomes

Conttpnt1 = Cpnt1(pny — p1) (3.23)

control points

Fig. 5. Representation of body and wake surfaces by a set of doublets

Setting up
Apr = Cok if panel is not at the trailing edge
Apk = Cpk + Cp N41 if panel is at trailing edge (up)
Apk = Cpr — Cp N+1 if panel is at trailing edge (down)
a linear algebraic equation in N unknown variables p; can be derived in the
form '

N N
> Aprpk = — Y Bproy (3.24)
k=1 k=1

Evaluating Eq (3.24) at each of the N control points (p = 1,..., N) results in
N equations in the N unknown uy, as follows

Ay = Bo (3.25)

The solution to the matrix equation provides the doublet values of each of
the N panels and the pressure coefficient for each panel can be calculated.

4. Getting on to the Codes

4.1. Main features of the Panel Methods

4.1.1.  Discretisation of geomeiric surfaces

Hunt (1978) showed that the surface on which the singularities are arran-
ged need not necessarily be identical to the configuration surface. Fictitious
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surfaces inside the true configuration surface may instead be used, provided
the BC themselves are fulfilled on the appropriate surface. The use of such
arbitrary internal surfaces, or of a number of them without geometric conti-
nuity (e.g., flat panels representing a twisted and cambered surface), does not
by itself necessarily imply any error in the mathematical formulation.

The usual practice to reduce the problem is to approximate a curved sur-
face by a large number of plane panels, each of which passes as closely as
possible through usually four points of the actual surface. A single point on
each panel is picked up as control point which can be the centroid or the point
at which a source panel induces zero tangential velocity.

The main reason for using plane panels is that for low order singularity
distributions the induced velocity due to a single panel of arbitrary shape can
be computed analytically. Thus, the computing effort is reduced.

4.1.2.  Choice of singularity disiribution

The mathematical model of PMs may use any combination of sources and
doublets. However, source singularities must be applied if there is an overall
flux of fluid through the closed boundary of the domain of interest that can
include problems in which a boundary layer is simulated by the surface trans-
piration. If wakes have to be simulated, then doublicity or vorticity must be
placed on that surface. Thus, only in special cases can a source-only or a
doublicity-only formulation be chosen. The numerical problem should consist
in determining the best mix of such singularity distributions that not only
satisfy the BCs but that also minimizes the numerical errors in that domain.
In the mixed formulation, no approximation is in principle implied if locally or
globally uniform distributions of one type of singularities are applied provided
the other singularity can vary adequately to satisfy the BCs sufficiently not
only at control points but also between them.

4.1.3.  Discretisation of boundary conditions

The choice of combination of singularieties is not a trivial matter. Altho-
ugh many different combinations are in principle mathematically equivalent,
their numerical implementation may yield significantly different results from
the numerical stability, computational economy, accuracy, and overall code
robustness, respectively, point of view.

The uniqueness theorem (see Section 3.1) requires that the BCs should
be satisfied everywhere on the boundary S (see Eq (3.1)). The numerical
process, however, usually has to satisfy the BC at a discrete set of points on
this surface. The approximate fulfilment of the BC stems from the leakage
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between collocation points and the approximate representation of the geome-
tric boundary. This is the reason why the control points do not generally lie
on the configuration surface (inaccurate fulfillment of the Dirichlet BC) or the
computed panel normals are not identical with the true ones (inaccurate ful-
filment of the Neumann BC). One means of trying to reduce the leakage is to
represent the surface itself more accurately and to use higher order singularity
distributions on these surfaces.

4.2. Getting into the Classification

4.2.1. Higher-order versus lower-order panel methods

Since numerous codes using PM approach have been developed, there is
the need to distinguish between them. The variations depends mainly on the
geometric layout of the elementary panels, the choice of type and form of
singularity distribution, and the type of BC imposed, respectively.

In a general classification, PMs can be devided into lower order and higher
order PMs, reffering to the order of singularity distributions and geometry re-
presentation applied. However, there is some confusion as to what constitutes
a truly higher order method. As Hess pointed out "since analytical integrations
can be performed only over flat panels even for variable singularity strenght,
the temptation is to use this formulation, and many authors incorrectly refer
to it as higher order.” (cf Hess (1985), p.32).

In subsonic flow, lower order PMs usually achieve sufficient accuracy, so-
metimes just by increasing the number of panels. Even strong vortex flows
can be modeled by this methods, e.g., Kandil et al. (1977). Only in some
cases, such as when the compatibility condition which relates properties of the
flowfield at the trailing edge of a lifting wing to the derivative of the circulation
in span direction should be fulfilled, special care must be taken.

In supersonic flow, two essential problems arise when surface singularity
methods are extended to that flow regime. Both of them stem {rom the hy-
perbolic character of the linearized differential Iq (1.2) for the perturbation
velocity potential.

The first problem is that lower order singularities can propagate virtual
waves causing unrealistic fluctuations of the surface pressure. A new singula-
rity, called triplet, has been developed by Woodward and Landrum (1980), to
alleviate this problem.
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4.2.2. The method of Hess and Smith

Most recent PMs are based on a combination of sources and doublets
oriented to the surface. For this reason we have started with this approach.
In this subsection we shortly consider the pioneering PM due to Hess and
Smith (1964), which employes constant strength distributions of sources on
straight line panels. For this reason it is very often called "surface source
method” (cf Hess (1985)). This method has been named by its creators the
"Douglas-Neumann method”. This classical method made it possible for the
first time to analyze flows past bodies of realistic geometry.

4.2.8. The method of Morino

Morino and Kuo (1974) proposed a new formulation of the problem of
potential flow around complex configurations, which differs from the other
PMs only in that the potential function on the submerged surface is generally
unknown. Nevertheless, a program based on this concept is similar to the
other PMs as to geometry discretization.

An advantage of Morino’s formulation over the classical first-order methods
seems to be the lower number of unknows needed to achieve a satisfactory
degree of accuracy (cf Baston et al. (1986)).

4.2.4. Vortex lattice methods (VLMs)

It is essential to note that recently there are many versions of VLM avai-
lable for solving of Eq (1.3): Quasi-VLM (cf Lan (1974)), Unsteady-VLM (cf
Konstadinopoulus et al. (1985)), Subsonic Nonlinear VLM (cf Rom (1992)),
and even ... Generalized VLM (cf Soviero and Bortolus (1992)). The proposed
method is an extension of the classical VLM (cf Bertin and Smith (1989)) for
calculation of the aerodynamic forces on lifting surfaces undergoing complex
3D unsteady motions. Hedman (1965) published the fundamental work, which
became the base of further development of the Vortex Lattice Method.

4.2.5. Inverse methods

Most PMs for predicting potential flows over complex configuration are
analysis methods, which predict the surface pressure distribution on a confi-
guration with a specified geometry. Relatively few methods address the aero-
dynamic designer’s task of designing such configuration as wing-body combi-
nation. Those fall into two categories.

The first category is the optimization method, which couples a conventio-
nal analysis method with an optimization algorithm to modify iteratively the
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geometry in order to minimize a certain "cost” function, such as the drag.
The method of Vanderplaats (1979) for example represents this category.

The second category is the inverse or design method, in which one specifies
the surface pressure distribution and the method calculates the corresponding
airfoil geometry. This approach was pioneered by Lighthill (1945) for incom-
pressible flow using a conformal mapping technique. The latest incompresible
design methods are variants of Lighthill’s basic approach.

Detailed review has been lately presented by Dulikravich (1992) — this
study encompasses almost one hundered papers! However, among this large
number there is only one (cf Kubrynski (1991)), which deals with complete
airplanes by means of PMs.

4.3. Classical VLM (CVLM)

From the mathematical point of view, the CVLM represents a particular
case of the general PM with zero source distribution. On the other hand
this method is an extension of the finite step lifting-line method originally
described by Glauert (1948).

The VLM assumes the same model as the standard PM. The wing is divi-
ded into trapezoidal panels (also called finite elements or lattices — from which
the name of this method comes). Each panel is replaced by a horseshoe vortex.
Such vortices have a vortex filament across the 1/4-chord of the panel and two
filaments stream wise: one on each side of the panel starting at the 1/4-chord
and trailing downstream in the [ree-stream direction to infinity. Fig.6 shows
a typical horseshoe vortex representation of a planform.

The velocities induced by each horseshoe vortex at a specified control point
are calculated using the Biot-Savart law. A summation is performed over all
control points on the wing to produce a set of linear algebraic equations for the
horseshoe strength that satisfy the BC of no flow through the wing. The BC
for each horseshoe is satisfied by requiring the inclination of the fluid stream
lines to match the angle of attack at the 3/4-chord point of its elemental panel.
The circulation required to satisfy this tangent flow BC is then determined by
solving the matrix equation. Then, the Kutta-Joukowski theorem for lift from
a vortex filament is used to determine the lift from each panel. These lifts are
then summed up to obtain approximate aerodynamic characteristics.

It is worth noting that VLM is now usually included into basic academic
courses. As a good example we can quote (cf Bertin and Smith (1989)) where
the VLM is presented as the numerical-code-oriented procedure.
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Fig. 6. Surface and trailing vorticity sheets

4.4, Presentation of various codes

Linear-potential PMs have been able to model arbitrary geometries for
many years. One of these codes, PanAir, can be used to predict subsonic as
well as supersonic flows about these general configurations. Some of those
codes, with comments, are presented in Table 1.
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Table 1
Year, name Refer. Boundary Singularity Surface
condition (approxim.) | approximat.

1964 DOUGLAS- | [15] NEUMANN S(C) PLANE
-NEUMANN

1969 NLR [28] NEUMANN | S(C),D(C) PLANE
1973 USSAERO [49] NEUMANN | S(L),V(L) PLANE
1980 MCAIR [4] DIRICHLET | S(C),D(P) PLANE
1980 SOUSSA [38] | DIRICHLET | S(C),D(C) | PARABOLIC
1981 PAN AIR (5,33] MIXED S(L),D(P) | PLANE (SUB)
1982 VSAERO [36] MIXED S(C),D(C) PLANE
1983 QUADPAN (6] DIRICHLET | S(C),D(C) PLANE
1984 VORTR [11] NEUMANN | V(C),D(P) PLANE
1984 HISSS [9] MIXED S(L),D(P) | PLANE (SUB)
1988 PMARC [1] MIXED S(C),D(C) PLANE
1991 KKAERO [27] | DIRICIILET | S(L),D(P) PLANE

In Table 1 there are used following abbreviations:
S - sources, V — vortices, D - doublets, (C) - constant, (L) - linear,
(P) - parabolic, (SUB) - subpanels.

PMARC — Panel Methods Ames Research Center

QUADPAN - QUADrilateral PANel Aerodynamic Programm

SOUSSA — Steady, Oscillatory and Unsteady, Subsonic and Supersonic
Aerodynamics

VSAERO — Vortex Separation AEROdynamic Programm

HISSS — A Hlgher-Order Subsonic Supersonic Singularity Method

(The remaining abbrreviations have not been unfortunately identificated).

5. Sample solutions with panel codes

5.1. General remarks

In last decade new formulations and updates of existing methods were pu-
blished (e.g. Woodward and Landrum (1980), Maskew (1982)), which combine
some new features with the simplicity of low-order methods.

This chapter discusses the ability to routinely compute the aerodynamics
of complex aircraft configurations. The field of computational fluid dynamics
may be conveniently divided into two major areas:
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868

Fig. 7. (a) - PanAir paneling of V/STOL fighter/attack aircraft; (b) — HISSS
paneling of an advanced supersonic fighter
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1. Subsonic and supersonic regimes, where the nonlinear terms in the dif-
ferential equation are negligible

2. The transonic regime, where the nonlinear terms are essential to describe
the phenomenon.

Presented are only subsonic and supersonic results. Solutions are compared
with experimental data as well as with the results from other computational
fluid dynamics codes when available.

5.2. Aeroplane configurations in subsonic flow

In order to demonstrate the range of application of PMs, the PanAir
surface-paneled scheme for V/STOL fighter/attack aircraft is shown in Fig.7a
(cf Madson and Erickson (1990), p.727), whereas in Fig.7b is shown an advan-
ced fighter configuration, for which the comparison with experimental data is
available (cf Tinoco (1990), p.561). A total number of 990 surface panels were
used to described the geometry of V/STOL.

(a) -
Vo _—7
(®)

o

Fig. 8. Possible wing-wake location

Since PanAir requires wakes to be defined for any surfaces from which lift
may be generated, two canard-wake cases were defined in order to evaluate
the effect of wake position (not shape!) on the wing-lift distribution. Both
cases are shown in Fig.8. If the case (a) is utilized through a wide range of
angles of attack «, the inboard wing circulation becomes seriously affected
(Fig.9a). By aligning the canard wake with o« (case (b)), which is rather
a simplistic modeling idea, the effect on the wing circulation can be readily
observed (Fig.9a). An improved lift prediction at a higher « is also evident
(cf Fig.9b).

After resolving modeling questions involving canard-wake positioning, the
PanAir results were generated for Ma., = 0.6. The results are compared with
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Fig. 9. Effect of canard-wake location on the PanAir result

experimental data (obtained in the Ames 11 x 11-ft Transonic Wind Tunnel)
in Fig.10. The lift prediction is in generally good agreement with wind-tunnel
data, even up to a = 10°. Pitching-moment data were also in reasonable
agreement with the linear portion of the wind-tunnel data (cf Madson and
Erickson (1990), p.706).

In PanAir, pressure coefficients can be calculated from the isentropic equ-
ation for a flow of perfect gas, and from approximation based on small per-
turbation assumptions. The discrepancy in the isentropic and second-order
results in Fig.10 indicate that there are regions of the configuration where the
small-perturbation assumption inherent in linear-potential methods is being
violated.
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Fig. 10. Comparison of PanAir and Mach Box results with the wind-tunnel test
results

5.3. Aeroplane configurations in supersonic flow

In Fig.11 is shown an advanced fighter configuration, for which comparison
with experimental data are available (cf Tinoco (1990), p.561). Longitudinal
characteristics comparison for May, = 0.4 + 1.4 are also presented in Fig.11.
The computational results are from the HISSS code. The comparison, made at
alow o before the onset of leading edge vortical flow, shows a good correlation
between the computational results and experimental data.

Lateral-directional stability characteristics have always proved to be dif-
ficult to predict computationally. The NASA study in 1981 found that
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Fig. 11. Comparison of HISSS results with wind-tunnel test results for longitudinal
characteristics

A502/PanAir generally provided accurate predictions at moderate « for a
complete delta wing/body configuration with either single or twin vertical
tails. Comparison with the experimental data for two of the vertical tail confi-
gurations tested is shown in Fig.12. Runs of yawing moment, rolling moment,
and side force (each per unit sideslip) versus « are shown for Mas, = 1.60
and Mag, = 2.86. The agreement of the computed stability derivatives as a
function of « with the experimental data is very good.

A comparison of computational results from two linear methods and a
full potential marching code with wind-tunnel data for a supersonic cruise
interceptor is shown in Fig.13. It can be seen that the results from the full
potential code are in substantially better agreement with the test data than are
the results from the linear methods, but nonlinear marching methods needed
a Cray XMP.

5.4. Future directions

While a flowfield analysis of a complex 3D configuration is possible, the qu-
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estion of the validation of the presented codes is still not settled, in particular
when complex physical phenomena are present, e.g., trailing edge flows, shock-
boundary layer interactions, separation, transition from laminar to turbulent
flow, viscous wake interactions, etc.

Further efforts are desired for better understanding and modeling turbu-
lence, transition prediction, and relaminarization. Engineers are working to
perfect the combinations of physical models that enable them to deal properly
with and resolve such phenomena as mentioned above. By reawakening inte-
rest in the fundamental fluid physics issues, and combining this interest with
their computational skills, engineers are continually striving to improve PM
methodology. However, this will be the objective of the next paper [13].

6. Concluding remarks

PMs have had a significant effect on the aircraft analysis and design pro-
cedures. A number of potential-flow solution methods were reviewed in order
to establish an appropriate historical background as well as an appreciation
of the current methods and thus provide a broad foundation of understanding
in preparation for more detailed lectures on specific papers to follow in the
daily life of an aeronautical engineer. Material has been selected to develop
a perspective of the variety of methodology — past and present — that has
been brought to bear on the problem of potential flow over complex aircraft
surfaces.

We have attempted to establish the status of PMs for calculating aerody-
namic loads to realistic aircraft configurations, with a focus on some essential
features of the mathematical modeling,.

Although PMs are used extensively in the aerodynamic calculations, rese-
archers and engineers are becoming more aware of its limitations. To overcome
these limitations, researchers are defining goals and directions for future re-
search. They have concluded that not only are bigger computers and better
algorithms required, but also that more research is needed into various fluid
physics issues which are fundamental to the models to be solved.

Currently, numerical methods based on the potential model offer an excel-
lent compromise between reliability, speed, and faithful representation of the
field.

In summary, this article may be a useful guide to individuals who are
starting work in this field as well as for those who are well versed in it. It may
also, to a certain degree, be a useful grouping of current research papers.
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Klasyczne metody panelowe jako standardowa procedura obliczeri
charakterystyk samolotu o zlozonej konfiguracji geometrycznej — od
teorii do algorytmow

Streszczenie

Sposrod wszystkich metod numerycznej mechaniki plynéw (CFD) prawdopodob-
nie najwazniejsze z praktycznego punktu widzenia sa metody panelowe. W niniejszej
pracy nie tylko dokonano przegladu istniejgcych metod panelowych (a wiec technik
obliczeniowych obciazen aerodynamicznych dla rzeczywistych konfiguracji aerodyna-
micznych), ale réwniez przedstawiono najwazniejsze modele matematyczne potrzebne
do ich zrozumienia. Zakres pracy obejmuje najbardziej aktualne zagadnienia analizy i
syntezy konstrukcji lotniczych. Omdwiono réwniez przykladowe zastosowania metod
panelowych wraz z wynikami obliczen, otrzymanych dla szczegdlnie zlozonych konfi-
guracji aerodynamicznych. Przedstawiono rezultaty zaréwno dla predkosci pod- jak i
naddZwiekowych.
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