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The paper presents a mathematical model of motion of a balanced spin-stabilized projectile
considered as a rigid body with 6 degrees of freedom. The modeling uses coordinate systems
conforming to Polish and International Standard ISO 1151. The design of kinematic equ-
ations describing motion around the center of mass uses the system of Tait-Bryan angles or
Euler parameters. The total angle of attack and aerodynamic roll angle express aerodynamic
forces and moments.
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1. Introduction

Now, ballistic computations use mathematical models of projectile motion of varying degrees of
simplification depending on the purpose of the model. One of the following two models is used for
developing firing tables: the point-mass model (with 2 degrees of freedom) describing motion of
the center of projectile mass with an underlying assumption that the projectile becomes ideally
stabilized on its trajectory and the effect of aerodynamic forces can be substituted with the
effect of drag force or the modified point-mass model (with 4 degrees of freedom) with one of
its implementation contained in STANAG 4355.
A model representing the projectile as a rigid body is one of the most often used for testing

dynamic properties of the projectile. In this model, aviation angles (Ψ,Θ,Φ) are used to de-
termine angular position of the projectile relative to the ground-fixed system, and the angle of
attack α and angle of sideslip β to determine angular position of the projectile relative to air
flow.
Flight stability testing requires a projectile motion model in which the projectile is represen-

ted as a rigid body with 6 degrees of freedom, addressing the effect of full aerodynamic force,
including specifically Magnus force and moment, to enable stimulation of actual atmospheric
flight, particularly for large quadrant elevation QE. This relates to the fact that the inclination
angle of the projectile Θ often comes up to 90◦ in the final flight phase and the total angle of
attack αt (contained between the projectile axis and the relative velocity vector) can become
large (40 or more degrees) near the vertex.
To develop such a mathematical model, the work uses standard coordinate systems confor-

ming to Polish and International Standard ISO 1151, provided that the transformation matrix
between the ground-fixed system Oxgygzg and the body-fixed system Oxyz uses the new sys-
tem of Tait-Bryan angles (Θn, Ψn, Φn) instead of the conventional aviation angles (Ψ,Θ,Φ) for
the avoidance of singularities in kinematic equations for projectile motion around the center of
mass. In addition, the paper proposes kinematic equations of motion of the projectile as a rigid
body based on Euler parameters.
To eliminate the error from computation of components of the aerodynamic force and moment

in the case when the projectile axis deviates significantly from the relative velocity vector, the
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paper proposes expressing the aerodynamic forces and moments with the total angle of attack αt
and the aerodynamic roll angle ϕ rather than with the conventional angles: angle of attack α
and angle of sideslip β.

2. Using the new system of Tait-Bryan angles in designing kinematic equations

for motion of the projectile as a rigid body

To avoid singularities in kinematic equations of motion around the center of projectile mass
in a simulation of firing at maximum quadrant elevations (where the inclination angle of the
projectile Θ often comes up to 90◦ in the final flight phase), the transformation matrix between
the ground-fixed system Oxgygzg and the body-fixed system Oxyz was derived using the new
rotation system (system of Tait-Bryan angles) shown in Fig. 1 (Roberson and Shwertassek,
1988; Wittenburg, 2008) instead of the conventional aviation angles (ISO 1151, 1988): azimuth
angle Ψ , inclination angle Θ and bank angle Φ.
The first rotation is around the horizontal axis of the ground-fixed system Oyg by the new

angle of inclination Θn, the second rotation is around instantaneous axis Oz′g by the new angle
of azimuth Ψn and the third rotation is around the axis Oz′′g by the new angle of bank Φn.
The transformation matrix between the ground-fixed system Oxgygzg and the body-fixed system
Oxyz using the new system of Tait-Bryan angles can be obtained from the following dependence

LΦnΨnΘn = LΦnLΨnLΘn (2.1)

Using the formulas for elementary matrices (Fig. 1) will provide the following

LΦnΨnΘn = (2.2)






cosΘn cosΨn sinΨn − sinΘn cosΨn
sinΘn sinΦn − cosΘn sinΨn cosΦn cosΨn cosΦn cosΘn sinΦn + sinΘn sinΨn cosΦn
sinΘn cosΦn + cosΘn sinΨn sinΦn − cosΨn sinΦn cosΘn cosΦn − sinΘn sinΨn sinΦn







The angular velocity of the body-fixed system Oxyz relative to the ground-fixed system
(see Fig. 1) can be expressed with vectors of angular velocities of the new system of Tait-Bryan
angles as Ω = Ψ̇n+Θ̇n+Φ̇n, and its components along the axis of the body-fixed system Oxyz
can be expressed with the following dependence






p
q
r






= LΦnΨnΘn







0
Θ̇n
0






+ LΦnΨn







0
0
Ψ̇n






+ LΦn







Φ̇n
0
0






(2.3)

Resolving appropriate matrix multiplications in equation (2.3) will provide the following






p
q
r






=







0 sinΨn 1
sinΦn cosΨn cosΦn 0
cosΦn − cosΨn sinΦn 0













Ψ̇n
Θ̇n
Φ̇n






(2.4)

Using the concept of inverse matrix, the equation for derivatives of transformation angles
can be expressed as follows







Ψ̇n
Θ̇n
Φ̇n






=







0 sinΨn 1
sinΦn cosΨn cosΦn 0
cosΦn − cosΨn sinΦn 0







−1 





p
q
r






(2.5)
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Fig. 1. (a) Rotation of ground-fixed system Oxgygzg around axis Oyg by angle Θn, (b) rotation of
instantaneous system Ox′gy

′

gz
′

g around axis Oz
′

g by angle Ψn, (c) rotation of instantaneous system
Ox′′gy

′′

g z
′′

g around axis Ox
′′

g by angle Φn

3. Alternative method of determining projectile position relative to air flow for

computation of aerodynamic forces and moments

Determination of aerodynamic forces and moments affecting the projectile in flight requires
computation of the angular position of the projectile relative to air flow (or projectile velocity
vector with respect to the air V).

The most popular method of computing aerodynamic force components consists of deter-
mining the angle of attack α and angle of sideslip β. For axial-symmetric artillery projectiles
however, it is not the most convenient one because large spin produces continuous change of the
angles even if the angles that the forces and moments really depend on do not change so fast.
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Aerodynamic forces affecting spinning projectiles operate in the plane of drag and perpen-
dicularly to the plane of drag (Magnus force) independently of the projectile bank angle.
Accordingly, for axial-symmetric flying objects, it is better (for the determination of the

angular position of the projectile relative to the vector of velocity V) to use angles that are
independent of the projectile spin, such as the total angle of attack αt and aerodynamic roll
angle ϕ (Baranowski, 2006). The values of the angles, shown in Fig. 2, can be computed from
the following equations

αt = arctan

√

(wK − wW )2 + (vK − vW )2

uK − uW
ϕ = arctan

wK − wW
vK − vW

(3.1)

Fig. 2. Illustration of spatial position of angles αt and ϕ

The total aerodynamic force RA and total aerodynamic moment MAO acting on axial-
symmetric spinning projectiles can be presented as follows (Fig. 3)

RA = RAα +R
A
Ω MAO =M

A
Oα +M

A
OΩ (3.2)

where
RAα – aerodynamic force operating in the plane of drag, resulting from the effect of

air on non-spinning projectile, the longitudinal axis of which is inclined from
the air flow direction by the angle αt

RAΩ – aerodynamic force acting perpendicularly to the plane of drag, resulting from
the projectile spin and angle αt (Magnus force)

MAOα – aerodynamic moment acting on a non-spinning projectile
MAOΩ – aerodynamic moment resulting from the projectile spin and angle αt.

To facilitate the determination of components of the aerodynamic force and moment acting on
the spinning projectile, the body-fixed system Oxyz uses the splitting of aerodynamic force RAα
acting in the plane of drag into a component following the longitudinal axis of the projectile
XA = CAXSρV

2/2 and a component perpendicular to the longitudinal axis of the projectile
PA = CAN (M,αt)SρV

2/2 (M – Mach number), Fig. 3.
The aerodynamic moment MAOα produced by the force P

A is referred to as:

• overturning moment, for spin-stabilized projectiles;

• or stabilizing moment, for fin-stabilized projectiles.

For artillery projectiles, it can be expressed with the coefficient of overturning moment
Cm(M,αt) as follows

MAOα = Cm(M,αt)
ρV 2

2
Sl (3.3)
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Fig. 3. Components of aerodynamic force acting on the projectile in flight

Using the angle ϕ, projections of the force PA and moment MAOα on the axes Oy and Oz
of the body-fixed system Oxyz can be expressed as follows

Y Aα = C
A
N (M,αt)

ρV 2

2
S cosϕ ZAα = C

A
N (M,αt)

ρV 2

2
S sinϕ

MAα = Cm(M,αt)
ρV 2

2
Sl sinϕ NAα = −Cm(M,αt)

ρV 2

2
Sl cosϕ

(3.4)

Using notations conforming to ISO 1151 (1988), components of the total aerodynamic for-
ce RA in the body-fixed system Oxyz take the following form:
— axial force

XA = −[CAX0(M) + C
A
Xα2(M)α

2
t ]
ρV 2

2
S (3.5)

— transverse force

Y A = [−CAZα(M)αt cosϕ+ C
A
Y pα(M)p

∗αt sinϕ]
ρV 2

2
S (3.6)

— normal force

ZA = [−CAZα(M)αt sinϕ− C
A
Y pα(M)p

∗αt cosϕ]
ρV 2

2
S (3.7)

In turn, components of the total aerodynamic moment MAO in the body-fixed system Oxyz
can be expressed as follows

LA = CAlp(M)
ρV 2

2
p∗Sl

MA = [CAmα(M)αt sinϕ+ C
A
mq(M)q

∗ + CAnpα(M)p
∗αt cosϕ]

ρV 2

2
Sl

NA = [−CAmα(M)αt cosϕ+ C
A
mq(M)r

∗ + CAnpα(M)p
∗αt sinϕ]

ρV 2

2
Sl

(3.8)

In accordance with equations (3.5)-(3.8), determination of the main aerodynamic properties
of ground artillery projectiles consists of computing the following quantities:

• axial force coefficient for αt = 0 – CAX0(M)

• derivative of the axial force coefficient – CA
Xα2
(M)
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• derivative of the normal force coefficient – CAZα(M)
• derivative of the Magnus force coefficient – CAY pα(M)

• derivative of the spin damping moment coefficient – CAlp(M)

• derivative of the overturning moment coefficient – CAmα(M)
• derivative of the pitch damping moment coefficient – CAmq(M)

• derivative of the Magnus moment coefficient – CAnpα(M)

where

CAXα2 =
∂2CAX
∂α2

CAZα =
∂CAZ
∂α

· · · CAmα =
∂CAm
∂α

CAlp =
∂CAl
∂p∗

CAmq =
∂CAm
∂q∗

· · · CAY pα =
∂2CAY
∂p∗α

CAnpα =
∂2CAn
∂p∗α

CAnp =
∂CAn
∂p∗

p∗ =
pd

2V
q∗ =

qd

2V
r∗ =

rd

2V
(3.9)

In the case when the Magnus moment coefficient shows strong non-linear reliance on the
total angle of attack, the following equation can be used

CAnpα(M)p
∗αt = CAnp(M,αt)p

∗ (3.10)

4. Mathematical model of motion of the projectile as a rigid body

There are two groups of methods for the development of mathematical models of motion of flying
objects based on the principles of classical and analytical mechanics. In the group of methods of
analytical mechanics, one can distinguish methods based on inertial generalized coordinates and
referring directly to the Hamilton principle and Lagrange equations (Koruba et al., 2010) and
the methods consisting in applying the equations of analytical mechanics in quasi-coordinates,
e.g. Boltzman-Hamel equations (Ładyżyńska-Kozdraś and Koruba, 2012). Classical mechanics
uses the law of change of the momentum and angular momentum of a rigid body (Gacek, 1997;
Kowaleczko and Żyluk, 2009).
Based on the principles of classical mechanics, spatial motion of the projectile as a rigid body

in the frame moving together with the projectile, with the origin of coordinates located in the
center of mass of the projectile, can be described with the following vector equations:
— vector dynamic equations of motion

m
(δVK
dt
+Ωr ×VK

)

= RA +G+ Fc
δKO
dt
+Ωr ×KO =MAO (4.1)

— vector kinematic equations of motion

drK
dt
= VK Ω = Ψ̇n + Θ̇n + Φ̇n (4.2)

where
VK – vector of the projectile velocity with respect to the ground
KO – vector of the projectile angular momentum relative to its center of mass
Ω – vector of the projectile angular velocity
Ωr – vector of the angular velocity of the frame moving together with the projectile

respect to the ground-fixed system Oxgygzg
ΩZ – vector of the angular velocity of the Earth
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rK = [xg, yg, zg] – initial position vector of the center of mass of the projectile
and its components in the ground-fixed system Oxgygzg

RA = [XA, Y A, ZA] – vector of the aerodynamic force and its components in the
body-fixed system Oxyz

G = [Gxg , Gyg , Gzg ] – vector of the gravity force and its components in the ground-
fixed system Oxgygzg

Fc = −2m(ΩZ ×VK) – vector of the Coriolis force due to rotation of the Earth
MAO = [L

A,MA, NA] – vector of the aerodynamic moment and its components in the
body-fixed system Oxyz.

The scalar form of the foregoing vector – dynamic and kinematic – equations (in appropriate
coordinate systems), together with the complementary equations, represents a mathematical
model of motion of the projectile as a rigid body.

4.1. Scalar form of equations of motion in the body-fixed system Oxyz

In its final vector-matrix form, the mathematical model of motion of ground artillery pro-
jectiles as rigid bodies contains the following groups of equations:
— dynamic differential equations of motion of the projectile center of mass in the body-fixed
system Oxyz






u̇K
v̇K
ẇK






=







XA/m
Y A/m
ZA/m






+ LΦnΨnΘn







gxg + FCxg/m
gyg + FCyg/m
gzg + FCzg/m






+







0 r −q
−r 0 p
q −p 0













uK
vK
wK






(4.3)

where components of the Coriolis force in the ground-fixed system Oxgygzg have the following
form






FCxg
FCyg
FCzg






=







2Ω(cos(lat) sin(AZ)wKg − sin(lat)vKg)
2Ω(cos(lat) cos(AZ)wKg + sin(lat)uKg)

−2Ω(cos(lat) cos(AZ)vKg + cos(lat) sin(AZ)uKg)






(4.4)

for a spherical model of the Earth, components of the gravitational acceleration in the ground-
fixed system Oxgygzg can be expressed as follows (STANAG 4355 Ed.3, 2009)






gxg
gyg
gzg






= gn







−xg/Rz
−yg/Rz
1 + 2zg/Rz






(4.5)

and Ω = 7.292115 · 10−5 rad/s – angular speed of the Earth, gn = 9.80665(1 −
0.0026 cos(2 lat))m/s2 – magnitude of acceleration due to gravity at the mean sea level,
Rz = 6356766 m – radius of the sphere, locally approximating the geoid, lat – latitude of
the launch point, for the southern hemisphere lat is negative [deg], AZ – azimuth (bearing) of
the xg axis measured clockwise from true North [mil].
— kinematic differential equations of motion of the projectile center of mass






ẋg
ẏg
żg






=







uKg
vKg
wKg






= LTΦnΨnΘn







uK
vK
wK






(4.6)

— dynamic differential equations of rotational motion about the projectile center of mass in the
body-fixed system Oxyz overlapping with the principle central axes of inertia






Ix 0 0
0 Iy 0
0 0 Iz













ṗ
q̇
ṙ






=







LA

MA

NA






+







0 r −q
−r 0 p
q −p 0













Ix 0 0
0 Iy 0
0 0 Iz













p
q
r






(4.7)



242 L. Baranowski

— kinematic differential equations of rotational motion about the projectile center of mass






Ψ̇n
Θ̇n
Φ̇n






=







0 sinΦn cosΦn
0 cosΦn/ cosΨn − sinΦn/ cos Ψn
1 − cosΦn tanΨn sinΦn tanΨn













p
q
r






(4.8)

— equation for the total angle of attack αt

αt =















π

2
if uK − uW = 0

arctan

√

(wK −wW )2 + (vK − vW )2

uK − uW
otherwise

(4.9)

— equation for the aerodynamic roll angle ϕ

sinϕ =















0 if
√

(wK − wW )2 + (vK − vW )2

wK − wW
√

(wK − wW )2 + (vK − vW )2
otherwise

(4.10)

and

cosϕ =















1 if
√

(wK − wW )2 + (vK − vW )2

vK − vW
√

(wK − wW )2 + (vK − vW )2
otherwise

(4.11)

— complementary equations

γ = arcsin
wKg
VK

χ = arctan vKg
uKg

u = uK − uW v = vK − vW w = wK − wW

V =
√
u2 + v2 + w2 VK =

√

u2Kg + v
2
Kg + w

2
Kg

(4.12)

where:
u, v,w – components of the vector of projectile velocity with respect to the

air V in the body-fixed system Oxyz
uK , vK , wK – components of the vector of projectile velocity with respect to the

ground VK in the body-fixed system Oxyz
uKg, vKg, wKg – components of the vector of projectile velocity with respect to the

ground VK in the ground-fixed system Oxgygzg
uW , vW , wW – components of the vector of wind velocity with respect to the gro-

und VK in the body-fixed system Oxyz
γ, χ – path inclination angle and path azimuth angle, respectively.

A comparison of components of the matrix LΦnΨnΘn , Eq. (2.2), with the matrix LΦΘΨ
(Baranowski, 1998; Gacek, 1997) reveals relations between the aviation angles and the new
Tait-Bryan angles

sinΘ = sinΘn cosΨn sinΨ =
sinΨn
cosΘ

sinΦ =
cosΘn sinΦn
cosΘ

(4.13)

4.2. Using Euler parameters in designing kinematic equations of motion for the projectile

as a rigid body

Also Euler parameters (Gajda, 1990; Roberson and Shwertassek, 1988) in the form of qu-
aternions can be used for the avoidance of singularities in kinematic equations of motion around
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the center of mass. According to Eulers theorem, an object placed in 3D space can be moved
from any starting position to any target position with a single rotation around a single axis.
So, to define spatial orientation of a movable axis system (e.g. the body-fixed system Oxyz)

relative to a fixed system (e.g. the ground-fixed system), it is enough to specify three direction
cosines of the axis of rotation (for instance, using Tait-Bryan angles: αE , βE ,γE as parameters
describing the instantaneous position of the axis of rotation) and the value of the angle of
rotation around the axis δE .
These four numbers (3 direction cosines and the angle of rotation) are known as Euler

parameters and can be written in the form of quaternions λ (Gajda, 1990; Gosiewski and Ortyl,
1995; Wittenburg, 2008).
Quaternions are defined as vector quantities with 4 degrees of freedom

λ = λ0 + λ1i+ λ2j + λ3k (4.14)

where i, j, k as imaginary numbers meet the following conditions

i2 = j2 = k2 = −1 ij = −ji = k jk = −kj = i ki = −ik = j

and

λ0 = cos
δE
2

λ1 = cosαE sin
δE
2

λ2 = cos βE sin
δE
2

λ3 = cos γE sin
δE
2

Quaternion components have to meet an additional combining equation (requirement for
orthogonality)

λ20 + λ
2
1 + λ

2
2 + λ

2
3 = 1 (4.15)

The transformation matrix T between the body-fixed system Oxyz and the ground-fixed
system Oxgygzg can be presented in two ways:
— using aviation angles: Ψ , Θ, Φ (Baranowski, 1998; Gacek, 1997)

T= L−1ΦΘΨ =







cosΘ cosΨ − cosΦ sinΨ + sinΦ sinΘ cosΨ sinΦ sinΨ + cosΦ sinΘ cosΨ
cosΘ sinΨ cosΦ cosΨ + sinΦ sinΘ sinΨ − sinΦ cosΨ + cosΦ sinΘ sinΨ
− sinΘ sinΦ cosΘ cosΦ cosΘ







(4.16)

— using quaternions (Gosiewski and Ortyl, 1995)

T = 2







(λ20 + λ
2
1 − λ22 − λ23)/2 λ1λ2 − λ0λ3 λ1λ3 + λ0λ2
λ1λ2 + λ0λ3 (λ20 − λ21 + λ22 − λ23)/2 λ2λ3 − λ0λ1
λ1λ3 − λ0λ2 λ2λ3 + λ0λ1 (λ20 − λ21 − λ22 + λ23)/2






(4.17)

Using quaternions, in the case of deriving equations of motion for the projectile as a rigid
body in the body-fixed system Oxyz:
— the kinematic differential equations of motion of the projectile center of mass (4.6) are as
follows






ẋg
ẏg
żg






=







uKg
vKg
wKg






= T







uK
vK
wK






(4.18)
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— the kinematic differential equations of rotational motion about the projectile center of mass
(4.8) have the following form (Baranowski et al., 2005; Baranowski, 2006)

dλ0
dt
=
1
2
(−λ1p− λ2q − λ3r)

dλ1
dt
=
1
2
(λ0p− λ3q + λ2r)

dλ2
dt
=
1
2
(λ3p+ λ0q − λ1r)

dλ3
dt
=
1
2
(−λ2p+ λ1q + λ0r)

(4.19)

Unlike the description using Euler and Tait-Bryan angles, it is a system of four differential
equations in which the solution remains within the [−1, 1] range, which facilitates numerical
computations.
The main computational problem in the quaternion model is the meeting of combining

equation (4.15). The quaternions are “improved” in order to satisfy this equation. The improving
algorithm has the following form (Ortyl, 2000)
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(4.20)

where εw – rate of violation of the combining equation (ideally εw = 0)

εw = λ20 + λ
2
1 + λ

2
2 + λ

2
3 − 1 (4.21)

The use of quaternions relates to difficulty with physical interpretation of quaternions as they
relate to the orientation of the axis of rotation rather than the orientation of the object itself.
Therefore, to interpret the computation results correctly, we need to transform these parameters
onto aviation angles, which are natural coordinates defining the position of the flying object in
space.
Taking advantage of the fact that individual components of the matrix T are equal one to

another, based on equations (4.16) and (4.17), the following relations can be established between
the aviation angles and quaternions

sinΘ = −T31 = 2(λ0λ2 − λ1λ3) −
π

2
¬ Θ ¬

π

2

tanΨ =
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T11
=
2(λ1λ2 + λ0λ3)
λ20 + λ

2
1 − λ22 − λ23

−π < Ψ ¬ π

tanΦ =
T32
T33
=
2(λ2λ3 + λ0λ1)
λ20 − λ21 − λ22 + λ23

0 < Φ ¬ 2π

(4.22)

and between quaternions and aviation angles (Gajda, 1990)
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(4.23)

Using quaternions instead of Tait-Bryan angles in kinematic equations of motion for artillery
projectiles can provide the following benefits:
• complete elimination of singular points in computing projectile position,
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• shorter computation time,

• less numerical errors during simulation thanks to algebraic computations instead of nu-
merical computations of trigonometric functions in the form of expansion in Taylor series
with omission of terms of higher orders (which is the case with solving kinematic equations
of motion for projectile incorporating Tait-Bryan angles).

5. Summary and conclusions

The paper presents a complete mathematical model of motion of a balanced spin-stabilized
projectile considered as a rigid body with 6 degrees of freedom in coordinate systems conforming
to ISO 1151. The resulting scalar equations of motion for the projectile, free from singularities,
enable simulation of the flight of projectiles fired at the whole range of gun quadrant elevation
(0 < QE < π/2) both in standard and disturbed conditions.
The new method of expressing the aerodynamic force and moment using the total angle of

attack αt and aerodynamic bank angle ϕ enables correct computation of the whole aerodynamic
effect (taking into account the Magnus effect) even for large αt.
For the modeling of flight of ground artillery projectiles, there is no need for improving

quaternions using equation (4.20) because the time of the simulated process is relatively short.
Because of its features, the mathematical model proposed in the paper seems to be parti-

cularly suitable for testing stability of flight of projectiles fired at a large quadrant elevation.
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Równania ruchu pocisku stabilizowanego obrotowo na potrzeby badania stabilności lotu

Streszczenie

W pracy przedstawiono model matematyczny ruchu wyważonego pocisku stabilizowanego obrotowo
traktowanego jako bryła sztywna o sześciu stopniach swobody. W modelowaniu zastosowano układy od-
niesienia zgodne z Polską i Międzynarodową Normą ISO 1151. W konstruowaniu kinematycznych równań
ruchu dookoła środka masy zaproponowano wykorzystanie układu kątów Taita-Bryana lub parametrów
Eulera. Siły i momenty aerodynamiczne wyrażono poprzez kąt nutacji oraz kąt przechylenia aerodyna-
micznego.
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