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What is to be shown hereafter is the capability of predicting fatigue
life of randomly loaded structural components, using a two-dimensional
model. Fundamental for the description are partial differential equations
of parabolic type with variable coefficients. The method discussed has
been illustrated with a practical example of evaluating fatigue life of an
aircraft undercarriage under operational conditions.

1. Introduction

The conception of forecasting fatigue life of structural components presen-
ted in this paper has been based on the grounds of probabilistic description of
a,crack propagation process. It differs, however, in some details from multi-
plicity of various stochastic methods of fatigue calculations. Difference equa-
tions that describe accumulation of changes due to fatigue are the core of the
conception. Appropriate transformations of these equations have resulted in
differential equations of parabolic type with the description of a possible rapid
catastrophic failure included. In some measure the paper surmounts the series
of publications on the above-mentioned grounds. The publications have been
appearing for a number of years and include one- and two-dimensional appro-
aches to cracking processes (cf Kocanida and Tomaszek, 1989, 1990, 1992a,b;
Kocanda et al., 1990). A two-dimensional model of half- and quarter-elliptical
cracks has been used in the present paper. The model differs, however, from
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the previous ones. The paper is a generalized form of the previous one (Ko
canda and Tomaszek, 1992b) and at the same time amplifies (Kocanda et al.,
1990). To recall: in case of fissures or cracks mostly of half- and quarter-
elliptical shape there is probability that cracks propagate in two directions,
perpendicular to each other-hence, two-dimensional the model postulated.

Bibliography of the subject includes quite a rich set of works treating crack
propagation process as a random one. Part of it that covers a period of 1985
+ 90 has been referred to in references to our previous works (cf Kocanda and
Tomaszek, 1989, 1990, 19924,b; Kocanida et al., 1990) (35 entries). Valuable
monographs with comprehensive references have also been published by Sob-
czyk and Spencer (1992), Prowan edit. (1987). Besides the introduction into
fatigue problems on an experimental level and description of these problems,
and initiation into mathematical grounds for stochastic approach in formu-
lating fatigue questions, the first monograph reviews methods and models of
probabilistic approach to fatigue cracking processes. The work mentioned pre-
sents its co-author’s, Sobczyk’s achievements in crack propagation modelling
using cumulative discrete stochastic processes. The second monograph has
been composed of works of fifteen authors who give their own analyses, vario-
usly approached, of random fatigue cracking, mainly in aircrafts and products
of nuclear engineering. Among quite recently published works of Polish au-
thors the work by Dolinski (1992) should be mentioned. The author includes
plastic zone in front of the cracking and material heterogeneity into statistic
modelling of cracking propagation under constant-amplitude loading.

Limits set to the contents of this paper are the reasons for reductions in
mathematical derivations and comments on recently (i.e. 1991 -+ 93) published
works. These are to be reflected in a far more comprehensive and extensive
publication.

2. Description of the method

The following equation has been applied by Kocaiida and Tomaszek (1989)
to describe crack propagation process in a general case of random loading
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where
U(ly,l2,t) ~ density function of crack lengths in two directions

perpendicular to each other, at the instant ¢

C(h,l2) - coefficient that describes possibility of a catastro-
phic failure of a component at crack lengths: [y
in one direction and [/, in the other one

ai(ly,12), az(l1,l2) — mean square of crack increments in respective di-
rections in the assumed time unit

bi1(l1,12), ba(l1,12) — mean value of crack increments in respective di-
rections in the assumed time unit

(1, 12) — correlation moment in the assumed time unit,
#(lla 12) = r\/al(ll, lg)\/ag(ll 5 127

T — a correlation coefficient.

To apply Eq (2.1) to evaluate fatigue life is a difficult task, due to the lack

of analytical solution. However, Eq (2.1) can be simplified if the following
assumptions are taken into account

e There are such fatigue crack lengths (in two directions, square to each
other) that probability of a catastrophic failure of a structural component
equals zero for a certain assumed interval {(or for a certain number of
loading cycles)

e In deterministic approach fatigue cracking rates are described with the
Paris equation

o Loading cycles of At duration may not occur in a continuous way;
instead, they can occur randomly at a rate of A)ie. AAt < 1.

Taking such assumptions into consideration the following difference equa-
tion can be formulated

Ul otrat = (1 = AAO)UY, 1, ¢ + MALUL — Al 1Al ¢ (2.2)

T Maorhanila teneetuerna 1 Slasaiana
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Whe(;fj,lz,t — probability that the cracks in two directions, perpendi-
cular to each other, at the instant ¢, are [;, [,
Aly, Al - crack increments in directions [} and I3 in time interval
At
A — loading cycle rate.

Transition to functional notation and the Taylor series expansion enable
us to derive the following equation from Eq (2.2)

8U(11,12,t) — ——/\(aU(ll,l2,t)All + 8U(llal2,t)A12) n
ot ol oly
(2.3)
02U(ly, Iz, 1) 1. /0%U(ly, 1y, ) 02U (Iy, 2, 1)
y Y2y Al - y Y2y 2 y by 2
AT A AL + oM T Al + Tt Al)

Increments Aly, Al will be determined using the Paris formula for a

one-dimensional case il
EV— = CAO'liznﬂ(ﬂ'l)m (24)

In the above derived formula

Ao — range of stress amplitude o,, A ¢ = 20,
C,m — coefficient and exponent that depend mainly on material
M, ~ geometric coefficient that expresses dimensions of struc-

tural components.
Eq (2.4) assumes the following form for m = 2

In =1y eC1 Ad?N
where: Cy = CM}r.

The exponent value m = 2 assumed for the calculations may be taken
as a mean value for most of metals (it ranges from 1.2 to 4.0). The value
refers mainly to low-alloy steel, various grades of steel of high strength, and
Titanium alloys as well. The value of m depends in general on the loading
structure and conditions.

Therefore, formula (2.4) for m = 2 may be written down as

Al C1Ac Al = CiAclAN
AN ~ ! -
for AN =1, Al = CAaol.

One-cycle crack increment can be described, using Eq (2.4), with the rela-

tionship
Al = Py,CiAc?ly (2.5)
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where
P, - probability that the crack growth will occur if stress range
Ao exceeds threshold value Aoy, ie. Ao > Aoy
Iy - crack length determined with the relationship
Iy = lePnCras*N (2.6)

Series expansion applied again allows Eq (2.6) to be expressed with
In = lo(1 4+ PiC1Ac®N)
If the expression Py, C1Aoc is substituted for b then
In=1p(1+bN)
Substitution applied to formula (2.5) results in
Al = blo(14 bN) = blg + lgh*N (2.7)

Then, with Eq (2.7) used in a one-dimensional aspect the following equation
is obtained

Al = bl = biloi(1 + biAt) = lp;:b; + l(ﬁb?/\i (2.8)
where
b; = Py C;Ac?
lo; — initial crack length in [; direction

i=1,2
N = At

Again, substitution of formula (2.8) into Eq (2.3) gives

ou . oU 22U 1 U 1

_— = - t 2.

TRRRCCN TN b0 57, a1, Lt M0 rar, T3 T g%l kA 812 (2:9)
where

i),'(i) = A(loib,' + lo,-b;-zAt) d,'(t) = A(lo,'b,' + l(;),'b?/\t)2 1=1,2

,Lt(t) = /\(101()1 + l(ﬂb%/\i)(lozbz + logb%/\t)
A dot above the coeffiecients in Eq (2.9) denotes the time derivative.
Solution to Eq (2.9) takes the following form

1 1 1 1

Uh,l2,1) = V2may(t) \/ZWaz(t)mexp{_2(1 —1r2)

(2.10)

.[(11 - bl(t))2 _ 27'(11 - bl(t)) (12 - bz(t)) (1 by t)) ]}
a1(1) Var (1) /ax(t) as(t)
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where

b,‘(t) = Mg;b;t + %loib?/\ng

a;(t) = MEbH + 12630242 + %zgingsts

]

p(t) = J/f p(t) dt

p(t)

= \/alit)\/ag(ti

Two-dimensional Gaussian distribution of crack lengths in two, perpendi-
cular to each other, directions has been arrived at in this way, with the centre
of this distribution shifting. The parameters of the centre of the distribution
have been determined with dependences (2.11).

Operational fatigue crack propagation depends on a great deal of various
factors described in many publications. The most important factors include:
the nature of random loading, geometry and properties of material, etc.

Therefore, let us assume that the actual crack propagation process is known
(its nature comprises full probabilistic description of mechanical properties of
a given structural component). Let it be a general notation in form

(o, o), (it t1), (lizs 1), o (lims )] i=1,2 (212

The likelihood function for the density function (2.10) and data (2.12) can
be described as
1 n—1 1 1 1
(27T)2 k=0 \/111(Atk) \/0,2(Atk) \/1 — T2
2
1 [(11,k+1 —lik) - bl(Atk)]
exP{—Q(l_rz)[ ar(Ate)

L =

(2.13)
2T [(11,k+1 — k) — bl(Atk)] [(12,k+1 ~lak) — b2(Atk)]
Var(Aty)/az(Atk)

[(12,k+1 ~lyk) — bZ(Atk)]2
GQ(Atk) ]}
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where

1 .
b,‘(Atk) = /\l,‘ob,'(tk+1 - tk) + §liob?/\2(tz+1 — tz) t=1,2

1
ai(Atk) = /\lizobg(tkﬂ - tk) + l?ob?/\z(tZH - iIQc) + glgob?’\s(tZH - t%)

The likelihood function (2.13) has been applied to estimate the distribution
parameters in the density function (2.10). The formulae (2.11) define the
forin of dependences of these parameters of distribution upon each other. The
right sides of the formulae (2.11) show coefficients b, and b2. To estimate
the parameters of distribution (2.11) it will be good enough to estimate the
coefficients b; and by and the correlation coefficient, using the likelihood
function.

The formulae to estimate these coefficients are as follows

V1425 —1 1
- z=1

: Y
" (2.14)
_Lnil [ =)= (03 (g =51 )] o =l p )= (b3 (tha1 =b3 (1))
. n =0 teg1—tx
r* =
Ve (Omy/a5(t)m
where
2
ol (Lipgr = lik) — (07 (fka1 — b7 (%)
a:(t)m=12[( )= ) p=12
n k=0 tk+1 - tk

What has been obtained is a probability density function of crack lengths in
two directions perpendicular to each other, with shifting centres and parame-
ters of distribution known. Let it be written down as

Uy, b2, 1) = U (I, 12, 63(0), 83(0), \Jai(0), Jas(),77) - (2.15)

Probability of not exceeding the permissible crack lengths in both the
directions can be defined using this function

lig loa
R(t) = R(h <hgl2 < le;t) = / / U(ly, o, t) diydly (2.16)

Assuming that R(t) > R, where Rp is a permissible minimum probability
of exceeding l14 and l4, one can evaluate a fatigue life of a component.
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Relationship between [; and [I; makes calculations related to the two-
dimensional Gaussian distribution highly difficult. Notable simplifications are
to be obtained as a result of transforming the coordinates

[l =1l cosa+lysina
(2.17)

ly = =lysina + lycosa
where angle « results from the formula

2r*mm (2.18)

a7 (1)ma3(t)m

tan 2a =

Such being the transformation, the modified crack lengths [ and I, be-
come independent random variables for every ¢ assumed. Average values,
standard deviation and permissible crack lengths are also subjects to trans-
formation by the formula (2.17). In a new coordinate system formula (2.16)
takes the following form

R(t) = R(h < hail < ba,t) = Ba (1 < Bait) Ra(lp < st)  (2.19)

where R (l{ < l{d,t) and 32(1; < l;d;t) have been determined from the
one-dimensional Gaussian distributions.

To take advantage of the tables of normal distributions calls for the stan-
dardization of random variables [{ and .

Probability R(t) determined by the formula (2.19) can also be understood
as probability of that the growing probability of a catastrophic crack of a
component P, (together with the formulae for) will not exceed the assumed
hazard level while determining the permissible crack lengths {14 and l24. The
fact is to be written down as

R(t)=P{P <P} (2.20)

where P, is the probability of a catastrophic failure of a component for
L < hgand I < [y

Here is the place to draw and introduce some definitions from the field of
equipment reliability. Let us assume that the state of serviceability has been

determined with the probability R(t) of the event {11 < g and I3 < l34 and
P, < Pr} whereas the state of unserviceability is the probability Q(t) of the
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event {11 > higor Iy > lyyor Py > ;P,}. Hence,

R(t) = P{o <o} Ra(li < 1t t) B (12 < 1aay ) .
2.21

Q) = P{a > acal} + P{a < O'Cd{}{l - Rl(h < 11d,t) R (12 < lzd,t)}

In the formulae appears o, — here the analytical value of stresses included
in the stress intensity factor K for permissible lengths [, and [o4. The
notations of probability in both the formulae i.e. (2.21) and (2.22).

P{a < aca,} and P{a > Ucal} follow from the condition
P = P{o > Ucal}-
It should be pointed out that o.,; can also be treated as a stress due to
misestimation of the greatest operational loadings possible.
Various instances could take place in the practice of calculating fatigue lives
of structural components under random loadings, depending on the contribu-
tion of these components to the reliable performance of a machine/instrument.

The hazard of a catastrophic failure of a component during its life has often
been required to equal — in practice — zero. The requirement will be met if:

e The hazard of component failure assumed while determining permissible
crack lengths equals zero

e Probability of exceeding the permissible crack lengths in course of ope-
rational life {5 and Iy equals zero.

The component life will then be the shortest time (or the lowest cycle/flight
number), for which R; and R2 equal in practice unity. This condition can
be expressed in the following form

1= min(Tl, Tz)

where Tj, T, — times in which probability of not exceeding permissible crack
lengths {14 and I4 equals in practice unity.

The second possible way of calculating fatigue life under random loading
consists in allowing the hazard of a catastrophic failure of a component. Such
being the case, the following practical assumptions are made while determining
component’s life:

e The hazard of a catastrophic failure of the component cannot exceed the
hazard assumed while determining permissible crack lengths in directions
perpendicular to each other
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e Permissible crack lengths have been determined for the hazard that
equals zero. Cracks in course of operational life are allowed then

e A certain level of hazard is assumed while determining permissible crack
lengths in two directions square to each other.

3. Numerical example

A crack of quarter-elliptical shape was propagating within a structural
component of an aircraft undercarriage, depending on a number of flights N
in a way illustrated by Table 1.

Table 1
Measure- | Number of | Crack length | Crack length
ment no. flights in direction | in direction
N [ [mm] Iy [mm)]
1 0 0.3 0.1
2 500 3.0 2.0
3 1300 5.0 3.0
4 1400 6.0 5.0
5 1500 9.0 6.0
6 1612 10.0 7.0
7 1721 16.0 8.0
8 1904 20.0 10.0
9 2105 22.0 12.0
10 2200 23.0 14.0

After taking into consideration, among other factors, the component geo-
metry, random loadings, and crack shape, and adequately assuming the ha-
zardous level of catastrophic fatigue of a component permissible crack lengths
in two directions: !4 = 23.0 mm and /5y = 14.0 mm have been determined.
Using the formulae (2.14) coefficients b} and b} have been calculated. Their
values are: b} = 0.0052, b5 = 0.0072. Table 2 shows mean crack lengths b}(t)
and b3(t) calculated by the formulae (2.11).
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Table 2
[N [500] 1000 ] 1500 | 2000 |
li [mm] | 3 | 42 | 9.0 | 20.6
b7(1) | 1.6 | 6.0 | 11.3 | 195
l [mm] | 2.0} 2.7 | 6.0 | 11.0
b3(t) | 1.0 | 3.6 | 6.9 | 11.8

The calculated correlation coefficient is r = 0.725, angle o = 19°.

Now we are going to transform by the formula (2.17) the data necessary
to evaluate fatigue life.

The results obtained have been put together in Tables 3 + 5.
Table 3

[ N | 500 | 1000 [ 1500 | 2000 |
i [mm] [ 3.0 4.2 9.0 20.6

1 [mm] | 3.4877 | 4.850 | 10.4631 | 23.500
I3 [mm 2.0 2.7 6.0 11.0
I} [mm] [ 0.9142 | 1.1853 [ 2.7426 | 3.6931

Table 4

[ N [ 500 1000 ] 1500 [ 2000 |
py(N) [ 1.6 | 6.0 | 11.3 | 19.5
br(N) | 1.8384 | 6.845 | 12.93 | 22.28
b5(N) | 1.0 | 36 | 6.9 | 11.8
br(N) | 0.4245 | 1.45 [ 2.845 | 4.81

Table 5

[ N | 500 | 1000 [ 1500 | 2000 |
aj(N) [ 0.0071 | 0.0370 |0.1059 [ 0.231

, 2
a*(t) = (\/a{(t) cos o + ¢/a3(t) sin a)
a*(N) | 0.0091 | 0.04814 | 0.1387 [ 0.304
a5(N) | 0.002317 | 0.01325 | 0.0395 | 0.08796

ay(t) = ( vai(t)sina + }/az(t cos a)

*ay(N) | 0.00033 | 0.00213 | 0.0067 | 0.0154

Parameters determmed in such a way, shown in Tables 2 =+ 5, make calcu-
lation of probability that the crack will not exceed the permissible values in
both the directions /14 and [y possible.

Results are shown in Table 6.
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Table 6

| N ] 500 | 1000 | 1500 ] 2000 ] 2200 |
I}, = 26.31 lg = 5.748 (ac. to Eq (2.17))
U, —b*(N)

256.5 | 88.7 | 36.162 | 7.307 | 0.00

!

V)
[ — —'*
11;47,”2(1") 204.4 | 93.43 | 35.81 | 7.85 | 0.00
ay’ (V)

Fi(N) | 1.000 | 1.000 | 1,000 | 1.000 | 0.50

R,y(N) 1.000 | 1.000 | 1.000 | 1.000 | 0.5
R,(N)R,(N) | 1.000 | 1.000 | 1.000 | 1.000 | 0.25

Having the results of the above presented calculations acquired curves
shown in Fig.1 have been plotted. A ”dotted” line illustrates crack propa-
gation in two directions perpendicular to each other, in a transformed system.
The full lines illustrate the calculated crack lengths [ and [ for estimated
values of N. Horizontal dashed lines indicate the permissible crack lengths
li; and [}, calculated by the formula (2.17). Vertical segments on full-line
curves show confidence intervals for the hazard assumed.

1y 1 )

30

4

20

10

500 1000 1500 2000 2500 T{

Fig. 1.

Reliability requirements to be met by aircraft strugture components are
very high. It means that probability of a component crack/failure should ap-
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proach zero. With the data assumed in the example discussed and calculations
made one can admit that fatigue life of the undercarriage component under
investigation must not exceed a number of 2000 flights if the hazard level
assumed while determining permissible crack lengths is to be preserved.

4. Final remarks

Dynamics of crack propagation process according to a two-dimensional
approach is described by Eq (2.1). Applying Eq (2.1) directly to evaluate
fatigue life is not simple. Theé paper contains some simplifications that enable
the physical and mathematical meaning of this equation to be replaced with
a solution that makes evaluation of fatigue life of a component possible.

The above presented considerations are simplification of the previous pa-
pers by Kocaida and Tomaszek (1992a,b) and resolve themselves into two-
dimensional description of cracking phenomena. They enable life of a com-
ponent with initial cracks to be determined in a simplified way, with two
directions of their propagation distinguished. The two directions are quite
sufficient to describe dynamics of growth of a crack of a given shape. It sho-
uld be noted, however, that instances of propagation of cracks of so many
and various shapes may occur, that their description cannot be limited to two
directions only. In practical calculations of fatigue life of components with
selected two-dimensional cracking process initiated some other instances of
crack propagation may also occur. They have been described by Kocanda,
Smolinski and Tomaszek (1990).
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Probabilistyczna ocena trwalosci zmeczeniowej elementéw
konstrukcyjnych w warunkach rozwoju peknieé

Streszczenie

Wykazano mozliwosé przewidywania trwalosci zmeczeniowej losowo obciazonych
elementéw przy wykorzystaniu dwuwymiarowego modelu rozwoju pekania. Podstawe
opisu stanowia réwnania rézniczkowe czastkowe typu parabolicznego ze zmiennymi
wspdlezynnikami. Proponowana metode zilustrowano praktycznym przykladem okre-
§lenia trwalosci zmeczeniowej podwozia statku pcwietrznego w warunkach eksploa-
tacji.
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