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The paper presents a method of creating of the flexibility matrix of a
cracked composite beam. The presented method has general character
and may be used to determine the flexibility matrix for beams with other
types of cracks (double-edge, elliptical, internal, etc.) if their stress
intensity factors are known. The presented flexibility matrix can be
applied to formation of stiffiness matrix of cracked beam finite elements.

1. Introduction

Vibration monitoring can be applied to detection of fatigue cracks in all the
cases where typical monitoring methods (ultrasonic, z-ray or visual inspec-
tion) are useless i.e. civil engineering structures, rotating shafts and blades,
constructional elements made of composite materials (Rytter et al., 1991).

A crack influences stiffness of a structure, and the stiffness, on the other
hand, influences dynamic behavior of such a system. It means that measu-
rement of these dynamic characteristics during the lifetime of the structure
can be used as a basis for identification of structural damage. The reliabi-
lity of vibration monitoring depends on determination of these characteristics
which are most sensitive on appearance of cracks in structures. Information
on the sensitivity of dynamic characteristics can be obtained by constructing
theoretical models of changes in the structure stiffness (cf Dimarogonas and
Paipetis, 1983; Krawczuk, 1993).

The main aim of this paper is to elaborate the model of local flexibility
changes of the beam made of unidirectional composite material due to the
transverse, one-edge, nonpropagating, open crack. The method of flexibility
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matrix formation is based on the Castigliano theorem and laws of fracture
mechanics. The elaborated method, described in this paper, may be used
to determination the flexibility matrix for beams with other types of cracks
(double-edge, elliptical etc.) if their stress intensity factors are known.

2. The method the flexibility matrix of the cracked beam
formation

In the case of unidirectional composite materials geometrical form of the
crack is a function of the number of loading cycles (Talreja, 1989). At the
initial stage of the damage process dominant mechanism is the fiber breakage
in the direction perpendicular to the direction of maximal strains. The analysis
presented in this paper is restricted to this case.

The terms ¢;; of flexibility matrix of linear-elastic body can be determined
making use of the Castigliano theorem in the form

o0
Cij = 6—1),5?] (2.1)

where U is the elastic strain energy of elastic body, P;—P; denote independent
forces acting on the body.
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Fig. 1. Composite beam with the fatigue crack

In the case of the composite beam presented in Fig.1 the elastic strain
energy U due to the crack is (cf Nikpur and Dimarogonas, 1988)

U= /D1ZK,,+D22KI,ZKH,+D32K”,+D4ZI”1,)dA (2.2)

=1 =1
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where A is the area of the crack, K;; denote the stress intensity factors
corresponding to three modes of the crack evaluation (j)and with independent
forces (¢) acting on the beam, D; -+ Dy are coefficients given by the following
relations (cf Sih and Chen, 1981)

1 E
D, = -—A'nlm(SI * 92) Dy = lA’lllm(sl + s2)
2 8182 2
(2.)
1
D3 = A};Im(s;52) dg = 5V AqqAss

and s, s are the roots of the following characteristic equation (cf Sih and
Chen, 1981)

Alyst — 24768° + (249, + Alg)s? — 2Ahgs + Ahy = 0 (2.4)

The method of calculation of the roots s; and s, is shown in the Appen-
dix. The roots of the characteristic equation (2.4) are either complex or pure
imaginary and cannot be real.

Generally, for composite materials, stress intensity factors are not equiva-
lent to those of isotropic bodies of the same geometry and under the same
loading conditions (Sih and Chen, 1981). Nevertheless, according to compu-
tations performed by Bao et al. (1992) the stress intensity factors Kj; for
the analyzed composite beam (Fig.1) can be expressed as the stress intensity
factors of the isotropic beam multiplied by correction functions Y; (¢ = 1,3)

Kpn = B—Pv‘v\/w_aﬂ (57)1(©

6P
K1s = otzv/rah (57) Yi(Q)
Krs = 2 fraFy (1) Vi (0) (25)
2P,
Kz = BW\;ﬁ ( )Y2(C)

K = B;,Ij;ﬁfh( ) 3(¢)

where Fj + Fy are functions which take into account finite dimensions of the
beam (cf Dimarogonas and Paipetis, 1983)

tan A 0.752 + 2.025% + 0.37(1 — sin )3

B = A cos A
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tan A 0.923 4+ 0.199(1 — sin A)*

=
2 A cos A
2 3
1.30-0.65& 4+ 0.37( 3 ) 4+ 0.28( %
=05+ oan(y) +oms(s)
1-w
A
1=
4 sin A

and A = S,

The correction functions Y <+ Y3 which transform stress intensity factors
of isotropic body to the stress intensity factors of composite have the following
forms (cf Bao et al., 1992)

Y1 = (4 0.1(¢ = 1) = 0.016(¢ — 1)? + 0.002(¢ — 1)®
(2.6)
Yo=Y;=1.0
where

VE11E2 — 2G1av12
2G 12

(=

see Appendix.

Substituting Eqs (2.5), (2.6) and (2.7) into Eq (2.2) and taking Eq (2.1)
into account yield the terms of flexibility matrix of the composite beam with
the transverse, one-edge, nonpropagating, open crack

ag
11 = 2r Dy /&nylz da Cc13 = 2D2 /FIFSYI da
0
127rD 127D ~ _
C14 = ! / F2Y da C15 = BWI /(I.F1F2Y12 da
0
8D3 F3 _ 8D, F?
‘2= TR / da 3 = TR / da
0 0
12D 12D,
Ciq = 2 /F1F3Y1 da C35 = BT‘;/FQF;ng da
0 0
967Dy f 727Dy f
Cas = g3 1 / aF?Y? da cas = 7:# / aF\F,Y} da

0

0
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where @ = a/W.

3. Numerical calculations

The numerical calculations were carried out for the beam made of graphite-
fiber reinforced polyamide — Fig.1. The foilowing mechanical properties of the
material were assumed (Nikpur and Dimarogonas, 1988)

E [GPa] | G [GPa] | v
graphite 276 115 0.2
polyimde 2.76 1.04 0.33

Fig.2 shows the variations of coefficients D) + D4 versus the fiber volume
fraction and the fiber angle. The values of the coefficients D;, Dy and Dy
decrease as the fiber volume fraction increases. The coeflficient D, reaches
the maximal value for the fiber volume fraction equal to 10%.

Fig.3 presents the changes of the terms of flexibility matrix as a function
of the relative depth of the crack. In general, when the depth of the crack
increases the value in terms of the flexibility matrix increase, too.

The biggest values are reached by the terms corresponding to the bending
moments c44, C45, C55, Tespectively.

4. Conclusions

The entries of the flexibility matrix of cracked composite prismatic beam
are a function of the crack depth. On the other hand the form of the flexi-
bility matrix indicate the presence of various coupling terms which illustrate
shearing and bending and also shearing and tension modes deformation due
to the crack. In isotropic materials only the coupling of bending and tension
deformations is observed.

The coupling effects of deformations due to the crack, complicate static
and dynamic behavior of the constructional elements made of unidirectional

8 — Mechanika teoretvezna 1 stosowana
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Fig. 2. Changes in coefficients Dy = Dy
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composite materials. This complication, however, provides a more powerful
tool to diagnose the existence of cracks in composite bodies.
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Appendix
The mechanical properties of unidirectional composite materials are cal-
culated using the following formulae (cf Sih and Chen, 1981)
Eqy = Ef + Em(l — @)

(Ef+ En)+ (Ef - Ep)9
Foy = F33 = FE,,
»m o (Ef+ En)~(Ef — En)®

l/fd5 + l/m(l — 45)

V12 = 13 (A 1)

14 vy — VIZgﬁ'
1—v2 — t/mz/n%ﬁ
(Gf + Gm) + (Gf - Gm)ds
Gi12=G13 =G,
TR T G 4 G — (G~ Gn)®

Vo3 = U3 = VP + v (1 — P)
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where the lower index f denotes fibers and the lower index m denotes a
matrix of a composite, F is the Young modulus, G is shear modulus, v
denotes the Poisson ratio, @ is the fiber volume fraction and lower indexes
1,2,3 denote material principal axes system connected with the fibers of the
composite — Fig.1.

In the case when the geometric axes are rotated through v degrees with
respect to the material principal axes, terms of the strain-stress matrix are
given as (cf Sih and Chen, 1981)

Ay = Apm® + (2412 + Agg)m®n® + Agon*
Ay = Agam® + (2412 + Ass)m®n? + Appn?
12 = (A1 + A2z — Age)m®n® + App(m* + n?)

(A.2)
Al = 2(2A11 + 2422 — 4A12 — Age)m®n? + Age(m* + n*)

All6 = (—2A11 4 240 4+ A66)m3n + (2A22 — 2419 — Aee)’nms

A%e = (—2A11 + 2412 + Ass)mn® + (242, — 241, — Age)m®n

where m = cosy, n =siny and A;; are the elements of strain-stress matrix
of the composite along the principal axes. Under plane strain conditions, these
are related to the mechanical constants of material by (cf Sih and Chen, 1981)

1 Ey ,

Ay = E—u(l -~ —Eun)

1
Agy = —(1 - V2
n= (1= 1)

Ay = —%(1 + 1/23) (A3)
22
1 1
Ags = —— Apg = ——
66 G12 44 G23

Ass = Ase Ags =0
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Podatnosé belek kompozytowych z peknieciami

Streszczenie

W pracy przedstawiono metode wyznaczania macierzy podatnosci, belki wykona-
nej z materialu kompozytowego, wywolanej peknieciem zmeczeniowym. Prezentowana
metoda ma ogdlny charakter i moze by¢ wykorzystana w przypadku analizy réznego
rodzaju struktur z peknigciami o dOWO]nej postaci geometrycznej, pod warunkiem,
Ze Znane s3 wspolczynniki mtensywnoscx naprezen analizowanego quchm Oma-
wiana macierz podatnosci moze by¢ wykorzystana do budowy macierzy sztywnosci
belkowych elementdw skoriczonych z peknieciami.
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