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FUNDAMENTAL SOLUTIONS RELATED TO THE STRESS
INTENSITY FACTORS OF MODES I, II AND III. THE
AXTALLY-SYMMETRIC PROBLEM

BoGpAN ROGOWSKI

Technical University of Lddz

Green’s functions are obtained for the stress intensity factors of modes
I, II and III. The Green’s functions are defined as a solution to the
problem of an elastic, transversely isotropic solid with a penny-shaped
or an external crack under general axisymmetric loadings acting along
a circle on the plane paralle] to the crack plane. Exact solutions are
presented in a closed form for the stress intensity factors under each
type of axisymmetric ring forces assumed as fundamental solutions.

1. Introduction

It is clearly understood that the point force continuously distributed in
radial (Fig.2) and axial (Fig.4) direction along a ring around the axis of sym-
metry gives the fundamental solutions to tension problems while those distri-
buted in circumferential direction (Fig.3) give the fundamental solutions to
a torsion problem. The problems of the crack treated in the present paper
are solved by using three types of axisymmetric ring forces as fundamental
solutions. The stress intensity factors of modes I, I1 and III are derived in
this paper in terms of elementary functions and need no further elaboration.
The results presented for general cases are new, but some of those relating
to special cases of isotropic or transversely isotropic solids with crack surface
tractions have been already known (cf Murakami, 1987; Rogowski, 1986).
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Fig. 2. A radial force acting along a circle
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Fig. 3. A torsional force acting along a circle
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2. Basic equations

In this paper we use cylindrical coordinates and denote them by (r,4,2)
or (i=1,2,3). Let a penny-shaped crack or an external crack be located in
the plane z = 0 of a homogeneous and transversely isotropic elastic solid.

The penny-shaped crack occupies the region 0 < 7 < a (2 = 0) and the
external crack occupies the region 7 > a (2 = 0). Both sides of the cracks are
stress free.

The half-space z > 0 is subjected to axisymmetric body forces

1:
F, = —=6(r—b)é(z—h) i=1,3
2rr 2.1)
_ D
F= 27"26(7' - b)6(z—h)

distributed along a circle (r = b,z = h) in the interior of the solid, where
6(-) is the Dirac delta function and Fj, F», F3 are a radial, a torsional and an
axial forces, respectively, as shown in Fig.2, Fig.3 and Fig.4.

We consider axisymmetric deformations of an elastic transversely isotropic
solid. That is, the displacements and stresses treated here are independent
of angle 6 in cylindrical coordinates (r,6,2). We restrict our attention to
the determination of the singular stresses at the crack tip, since these are
the quantities of greatest physical interest. Due to the symmetry (Fig.5) or
antisymmetry (Fig.6) of the problem, it can be reduced to a mixed boundary
— value problem for half - space with the following mixed boundary conditions

— for a penny-shaped crack, 0<r<a

u,=0 r>a 2=0 o,=0 r<a 2=0 (2.2.a)
u, =0 r>a 2=0 0r=0 r<a 2=0 (2.2.b)
ug=0 r>a z=0 0=0 r<a 2=0 (2.2.¢)

— for an external crack, r > a

u,=0 r<a 2=0 0,=0 r>a 2=0 (2.3.0)
4, =0 r<a 2=0 0,r,=0 r>a 2=0 (2.3.b)
=0 r<a 2z=0 6=0 r>a 2=0 (2.3.¢)

under symmetric, antisymmetric and antisymmetric torsional loadings, respec-

tively. The symmetric torsional loading yields 0,9 = 0 for » > 0,2 =0.
Suitable elasticity solutions for cracked solid that represent unit ring loa-

ding are obtained using the theory of Hankel transforms (cf Sneddon, 1972).
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Avoiding details of calculations it can be shown that the displacement and
stress fields associated with the action of concentrated axisymmetric ring for-
ces meeting the mixed boundary conditions (2.2a,b,c) or (2.3a,b,c) on the
plane where the crack appears are:

(1) For axial and radial symmetric forces as shown in Fig.4, Fig.2 and Fig.5

us(r,0) = == 1o [ Jo(€r)Ja(€0) Tu(€sih) de +
0

—vola [ Jo(€r) (€0 Ha(€sih) de + [ A©)Toler) de]
0 0
(2.4)

02(r,0) = — 5 [ €A@©)o(er) de
0

(ii) For axial and radial antisymmetric forces as shown in Fig.4, Fig.2 and
Fig.6

1

ur(r,0) = ArG (3189

[—unta [ Ii(er)olet) Haleoin) de +

+1a [ B(EnTi(E0) Hs(Esih) de + [ BE(€r) de]
° 0 (2.5)

7:(r,0) = 5= [ €B((er) de
0

(iii) For antisymmetric torsional force as shown in Fig.2 and Fig.6

B W 3 P
us(r,0)= | g | e de+ / C(€)J1(¢b) de]
(26)
1 [e o]
7:0(r,0) = 5= [ €C(ON(er) dt
0
where

J, — Bessel function of the first kind of order v
H; - known functions in the form of exponentials, : = 0,1,2,3

(cf Appendix Eqs(A.11)

G, - shear modulus of material in the z-direction
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and four material parameters: s;, C, vo and v; see Appendix Eqgs (A.9)
and (A.10).
Within the context of linear elastic fracture mechanics, the stress intensity

factors are defined as

K Uz("" 0)

K = 1_]11;1+ V2(r—a)< 0,(r,0) (2.7)
Krr 026(r,0)

K UZ(T,O)

Kip ¢ = lim /2(a—71){ 0, (r,0) (2.8)
Ky T o26(r,0)

for a penny-shaped crack and an external crack, respectively.

K1, K11, K111 are the mode I, I, IIT stress intensity factors (Kanninen
and Popelar, 1985), respectively, corresponding to the cases (i), (ii) and (iii)
of loading, respecively.

3. Mode I loading
3.1. A penny-shaped crack

The boundary conditions (2.2.a) and the solutions (2.4) yield

[ A@o(er) de = ~1s [ Jo(er)o(er) Ho(esih) de +
0 0

(3.1)
+oly / Jo(€r)T1(€b) Hy(Esih) dE r>a
0
[ea©n(en g =0 r<a  (32)
0

The dual integral equations (3.1), (3.2) are converted to the Abel integral
equation by means of the following integral representation of A(¢)

A(€) = \/g/g(x) sin(éz) dz — 13Jo(Eb) Ho(€s:h) +vol1J1(E0) H (€sih) (3.3)
0
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on the assumption that g(z) — 0 as z — 0%.

This representation of A(§) identically satisfies Eq (3.1). Substituting for
A(€) into Eq (3.2) leads to the following Abel integral equation in an auxiliary
function g¢(z)

[/ ) ) dz = 13/5J0(5T)J0(5b)H0(58ih) de¢ +

Vr2 = g2 J
(3.4)
ol / €Jo(Er)Jy (Eb) Hy(Esih) dE
0

Applying the Abel solution method to invert the left-hand side of Eq (3.4),
give the formula for g(z)

oz) = 2 [1s [ Jole) sin(e) Holesih) de +
° (3.5)

- v011/J1(§b) sin(éz)H,(€s:h) df]
0

The improper integrals appearing in Eq (3.5) are calculated analytically (see
Appendix, Eqs (A.1) and (A.2)). Consequently, the auxiliary function g¢(z)
is obtained explicitly in terms of the oblate spheroidal coordinates (; and 7;
(see Appendix) as

2 1 k
9() = \g[w —31>x(c% lhn% - C%Zrln?) *

vol1b ( ks (1 N 8162 )]
(ksy —31)22 \(GE+0))(1+¢F) (G +9H)(1+¢3)

where the material parameters sy, s2, k and vg are given in the Appendix.
The singular part of the axial stress is given by a formula

o,(r,0)= \/247“1% as r—at (3.7)

Consequently, from Eqs (2.7)y, (3.6) and (3.7), the stress intensity factor at the
crack tip is obtained explicitly in terms of the oblate spheroidal coordinates

(3.6)
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¢; and #; (for the values of (; and #; for z = a, see Appendix) as

1 13 ki g
K = e ~ 9 = —
! 27r2\/a3[k—1(6%’+n% Cf+n%) " (3.8)
volib ( _kszgl B _.91{__2 )]
(ksz —s1)a N1+ NG +77)  (1+ NG +73)
3.2. An external crack
The boundary conditions (2.3a) with the use of Eq (2.4) yield
[ A©Ioer) de = =15 [ dolr)do(s) Hol€sih) de +
° ° (3.9)
+uoly / Jo(Er)J1(£b)Hy(Esih) dE r<a
0
/ EA(E)Jo(Er) dE = 0 r>a (3.10)
0

The dual integral equations (3.9), (3.10) are converted to the Abel integral
equation, by means of the following integral representation of A(¢)

A) = \/g / f(z)cos(£z) do (3.11)

In this representation the auxiliary function f(z)is assumed to be continuous
over the interval [0,a]. This representation of A(¢) identically satisfies Eq
(3.10). Substituting for A(£) into Eq (3.9) lead to the following Abel integral
equation

\/g/r __sz(i)zz dz = —13 7Jo(€r)10(€b)H0(§3ih) € +

(3.12)

+‘Uoll/Jo(fT)J](fb)H](fS,‘h) df
[4]
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Applying the Abel solution method, give the formula for f(z)

flz) = \/g[—l;:,/cos(fr)]o(fb)Ho(f.s‘-h) de +

° (3.13)

+ v011/cos(fa:)Jl(Eb)Hl(fs,'h) dﬁ]
0

Substituting for the integrals (A.3) and (A.4) (see Appendix) give the final
formula for f(z)

_ 9 "]3 k(s (1
fle) = \/;{_(k—l)r((_'22+77§_<12+’712)+ (3.14)

vol; [l o1 (k32771(1 +¢)  simp(l+ sz))]}

b ksp—s1\ ( +nf G+

where the oblate spheroidal coordinates (;, 7; are defined in the Appendix.
The stress o,(r,0) for r < a is given by

4(r,0) = —%\/g[\/(% - (d{i(;‘) zzl_ 7‘2) dz r<a (3.15)

Consegently, from Eqs (3.14), (3.15) and (2.8), , the stress intensity factor of
mode I can be obtained in terms of the coordinates (;, 7; such that

a

13(16472 3 )+

1
K = — _ - =
! 27r2\/_a3{k—1 G+m G+ (3.16)
3 Uolla[l_ 1 (k32771(1+4712)_317_72(14'(:%))]}
b ksz—si\ G+l 2+ 02
2 — 81 ¢t + 71 5+ 3

where (;, 7; are obtained from (;, 7; for z = a (see Appendix).

4. Mode II loading

4.1. A penny-shaped crack

Substituting Eq (2.5) into the boundary conditions (2.2b) the following

19 — Mechanika teorctvena 1 siosowana
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dual integral equations for antisymmetric loading cases are obtained

/ B(£)Jy(£7) d = w11, / J1(€r)Jo(€b) Hy(Es:h) dE +

(4.1)
~1 [ hEn)aEAEs i r>a

0
/ £B(E)Jy(€r) dE = 0 r<a  (42)
0

The integral representation of B(¢)

B©) = VE [ Veh(z)yp(sd) do +

° (4.3)

+ vlngo(fb)Hg(fs,‘h) - llJl(fb)Hg(fs,h)

on the assumption that /zh(z) — 0 as z — 07, satisfies identically Eq (4.1),
while Eq (4.2) is converted to the Abel integral equation

2 7 ,d[zh T
\/; / ( [xd iz)] \/?zlfﬁ) dz = —v;lgr / £J1(6r)Jo(€b) Ha(€s;h) dE +
° ° (4.4)
+ar [ i(Er)Ja(€0) Ha(€sih) dg
0
The solution to this equation is
hz) = \/g [—vllg, / Jo(fb)(Sifo — cos fz) Ho(Es:h) dE +
0
(4.5)

sinfz

£z

+ 1 [ I(€0) (ST - coséa) Ha(gsih) de]

Using the integrals (A.3) + (A.6) (see Appendix) give the final formula for
the auxiliary function h(z)
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h(z) = f{—x(k:f_?’ﬁ [ksz( — arctan (3 — C—%%T%) +
(4.6)

1 [km(l— _m(l-1 )]}
b(k—1)L (¢ +nt ¢34 n3

The singular part of the shear stress is given by

2 ah(a
0. (r,0) = \/;ﬁ as r —oat (4.7)

Defining the stress intensity factor of mode IT asin Eq (2.8),, and substituting
for h(a) we obtain

-8 (% — arctan{ — a2 i 1712)] +

_ 1 v113 T % ———C

K= 212\/‘1—3{_;9321_ 81 [k32 (5 ~ arctang, - & :’_7%) ’ (4.8)
m G Lia km(1-7f) (- 75)

_SI(E—MCtancl 2+ )] +(k—1)b[ (_':12+1'71 G+ ]}

where (;, 7; are the values of (,-, n; for z = a (see Appendix).

4.2, An external crack

Substituting Eq (2.5) into the boundary conditions (2.3b) the following
dual integral equations for antisymmetric loading cases are obtained

[ BOI(Er) de = vi1s [ (e o(er) Fa(sih) de +
0 0

(4.9)
1 / T (Er) 1 (€b) Ha(€s:h) de r<a
0
/§B(§)Jl(§r) dE =0 r>a (410

0

The integral representation of B(¢)

B(¢) = \/g / (z) sin(£z) da (4.11)
0
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satisfies identically Eq (4.10), while Eq (4.9) is converted to the Abel integral
equation

\/— / \/% a:—vllgr7]1(57')]0({17)}[2({3,'@ de +

(4.12)
~tir [ B(Er) (€0 Ha(Esib) de
0
The solution to this equation is
t(z) = \/g[vll;;/Jo(fb) sin(éx) Hy(€Es;h) dE +
° (4.13)

= 11 [ hiev) sin(ga) ilgsih) de]

Substituting the analytical formulae for the improper integrals (Eqs (A.1) and
(A.2) in the Appendix) we get

2 vyl3 ksane 1M
i = — —
@ = Vilma-w(Grs ar)

(4.14)
1;b ( k¢ G2 )]
22(k-D\1+ D@+ 1+ GG+ )
The stress o,.(r,0) is
71 r1(a) fd(z)y dz
azr(r,O):[4ﬂ[ am+r ( )m] r<a
(4.15)

The mode II stress intensity factor of the external crack is obtained as

1 1 uvls ksfp  siTh
K = vl ks \Grd Gt e
4 _hb ( kG _ G )]
(k=1a 1+ PUE+7) 1+ GNG+73)
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5. Mode III loading

5.1. A penny-shaped crack

The boundary conditions (2.2¢) with the use of Eq (2.6) vields the following
dual integral equations of axisymmetric torsion of the penny-shaped crack

[e@niende=-2 / LENBE)ethde  r>a (5.1)

[ec@nende=o r<a (52)
0
The integral representation of C(§)
C(6) = VE [ Vap()Jyn(a€) de - (et (53)
0

under assumption that /zp(z) — 0 as = — 071, satisfies identically Eq (5.1)
and gives the Abel integral equation

o0

VE [N Ly e = T [epennienest s (5.4)

2 _ 2
\/’I‘ T 3

Applying the Abel solution method to invert the left-hand side of Eq (5.4)
and then substituting for integrals Eqs (A.4) and (A.6) from the Appendix
one obtains the final formula for ¢(z) where

2 1273
o(z) = \/j 5.5
@ =Vraar @+ 9
where (3 and 73 are defined in the Appendix.
The singular part of the stress o, is given by

2 ayp(a
o.4(r,0) = \/-47”‘\}‘% as r—a’ (5.6)

The solution (5.5) and Eq (5.6) give

K s 5.7
= e (1+ 3G + ) 0

where (3, 3 are the values of (3, 73 for z = a (see Appendix).
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5.2. An external crack

The boundary conditions (2.3c) and the solutions (2.6) yield

[e@ner de=-F [nEnneet=ta  r<a (58)
0 0

[ec@ner de=o r>a (59)

These equations have a form similar to that of Eqs (4.9), (4.10).
Thus, the integral representation for C(¢)

C(€) = \/g/d)(z)sin(fz) dz (5.10)

gives the final formula for an auxiliary function (z)

_ ]2 12(3
v(@)= \[rxz(1+<§)(<3+n3) (5:11)

where (3, 773 are the oblate spheroidal coordinates associated with the material
parameter 33 (see Appendix).
The stress o,4(7,0) is

o.0(r,0) = \/_gﬁ[—m;‘fz—(a_—)ﬂ.}_r/%('pi‘”)) xfz_ 7-2J r<a
(5.12)

The stress intensity factor of mode III for an external crack reads

G
27r2\/_(1 + 3G+ 1)

where (3, 773 are obtained from (3, 73 for z = a.

Kir =

(5.13)

Appendix

The following integrals are used to evaluate the auxiliary functions appe-
aring in this paper

/ Jo(€b) sin(£z)e=E%h dE = W (A1)
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7]1({b) sin(Ez)emh dE = 6;5263 e (A.2)
/ Jo(£b) cos(€x)e™4h de = (C%nz) (A.3)
7J1 (€b) cos(Ez)e ¢ dE = %[ %:%] (A.4)
) :

7%J0(§b) sin(£z)e ¢k de = ’; — arctan (; (A.5)
0

7%!’1(617) sin(fz)e™ ¢ " d¢ = %(1 — ) (A.6)
0

The oblate spheroidal coordinates (;, n; are related to b, s;h, z by the
equations

b2 =221+ ¢})(1 - n?) sih = z (i (A7)

where —1 < 7; < 1and (; > 0. The surfaces (; = 0 and 7; = 0 are the
interior and the exterior of circle b = z, h = 0, respectively; here therefore

h=0 b<z ;=0 N = 1—2—22
h=0 b>z (G = z—z—l 7 =0 (A.8)
b=0 (=t =1

The coordinates (;, n; for z = a are denoted by (;, 7.
Three sets of oblate spheroidal coordinates (;, ; (+ = 1,2, 3) are associated
with three material parameters s; (i = 1,2, 3) which are given by equations

$i:  c33cqa8? — [cr1633 — c13(€13 + 2¢44)]8% + c11€44 = 0 1= 1’(2A 9)

g, = 11~ C12 _ G,
, =z az U
2044 Gz

where ¢;; are five elastic constants of a transversely isotropic solid and G,
and G, are the shear moduli along r- and z-axes, respectively; z being the
axis of elastic symmetry of material.
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Other material parameters are given as

— 0333% — C44 C - (k + 1)(‘31 — 32)
€13+ C44 (k —1)s159 (A.10)
k.‘;‘g - $ _ kS‘Z ) |

v =

=k~ Dsis k-1

Expressions for functions I7;(£s;h) that appear in analysis are as follows

Ho(ésih) = ;(ke—f-‘fzh —e—¢n h)

k-1
1
[{l(f-gih) = ks——S(ks2e_£Slh — Sle_f-‘fzh)
C (A.11)
.Hg(és,'h) = kszl——SI(ksze—fszh _ Sle—fslh)
H3(€S,;h) = ﬁ(ke—f-ﬂh _ e—fszh)

Each of these functions tend to unity as h tends to zero.
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Rozwigzania podstawowe dla wspélezynnikéw intensywnosci naprezenia
typow I, Il 1 II[. Zagadnienie osiowo symetryczne

Streszczenie

Otrzymano funkcje Greena dla wspdlczynnikéw intensywnosci naprezenia typéw
I, II'i II1. Funkcje Greena zdefiniowano jako rozwiazanie zagadnienia sprezystego,
poprzecznie izotropowego ciala z kolowa lub zewngtrzna szczelina, gdy na plaszczyinie
réwnoleglej do plaszczyzny szczeliny dzialaja dowolne osiowo symetryczne ohciazenia
rozlozone na okregu. Przedstawiono rozwiazania scisle, analityczne w postaci zam-
knietej, dla kazdego typu obcigzen, jako rozwiazania podstawowe
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