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In the design of thin-walled column-beams must be taken into account
the overall instability and the instability of component plates in the form
of local plate bukling. This investigation is concerned with thin-walled
closed and open cross-section elastic beams under axial compression or
a constant bending moment. Buckling analysis includes cross-section di-
stortion. The beams are assumed to be simply supported at the ends.
The asymptotic expansion established by Byskov and Hutchinson is em-
ployed in the numerical calculations in the form of the transition matrix
method. The calculations have been done for several types of beams.

Notation

postbuckling coefficients in the nonlinear equili-
brium equations (2.8) (Byskov and Hutchinson,
1977)

width of the ith wall of beam
— plate rigidity of the ¢th wall
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N,-(;), N,-(;), Ni(;g — in-plane stress resultants for the ith wall in the

first order approximation
5 - Eq (2.5)

U, Vi, Wy — displacement components of the 2th wall middle
surface

uf, v?, w? ~ pre-buckling displacement fields

u‘(-"), vgn), wgn) ~  buckling displacement fields

A — load factor

A — scalar load parameter

An — value of A at the bifurcation mode number n

& — amplitude buckling mode number n

£n — imperfection amplitude corresponding to &,

on =0,103/E -~ dimensionless stress of the mode number n.

1. Introduction

Analysis of buckling in conservative systems belongs to the main problems
that have been studied in mechanical sciences for a number of years. One of
the most important trends in the investigation of the stability of thin-walled
structures has been the problem of the interaction of various buckling modes
(the so-called coupled buckling).

Analysis of the results obtained by the author in interactive buckling invsti-
gation together with some published reports have drawn the attention again
to the questions of global and local loss of stability in thin-walled structures.

Thin-walled structures consisting of plate elements having a number of
buckling modes differing from one another both in quantitative (e.g. by the
number of half-waves) and in qualitative (e.q. by global and local buckling)
respects. Due to the ortogonality of linear buckling modes the critical load
values are determined independently for different modes. In the case of finite
displacements different buckling modes are interrelated even under loads close
to their critical values (eigenvalues of a respective boundary problem). The
investigation of stability of equilibrium states requires an application of a non-
linear theory that enables one to estimate the influence of different factors
on the structure behaviour (for instance, :ow geometrical changes affect the
distribution of internal and external force ).

The linear theory which allowed one t ., separate the two different buckling
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modes has had a strong influence on the understanding of the non-linear the-
ory of stability. The allowance for interactive buckling is necessary for the
determination of limiting load capacity and of the imperfection sensitivity of
structures close to optimum where the values of critical loads are identical or
nearly so. In the case when the post-buckling behaviour of each mode taken
separately is stable, their interaction may results in an unstable behaviour,
and, consequently, in greater imperfection sensitivity.

The concept of interactive buckling involes the general asymptotic theory
of stability. Of all versions of the general non-linear theory, the Koiter theory
(cf Koiter, 1976) of conservative systems is the most popular owing to its ge-
neral character and development, even more so after Byskov and Hutchinson
(1977) formulated it in a convenient fashion. In this theory the perturbation
method is used for the analysis of equilibrium states. The expression for po-
tential energy of the system expands in a series relative to the amplitudes of
linear modes near the point of bifurcation; the latter generally corresponds to
the minimum value of critical load (the so-called bifurcation load). Therefore a
precise determination of eigenvalues and eigenmodes for different buckling mo-
des is an importent factor enabling a more detailed analysis of the structure’s
behaviour.

A rapid development of science and technology as well as a widespread
use of computer aided methods (CAD/CAM) enables a more and more per-
fect structure designing; in accordance with the theory of catastrophes, these
structures show singularities of increasing order. The safety and reliability
requirements of thin-walled structures are also more and more rigorous and
can be matched only if investigations are carried out continuosly.

Mathematical models tend to a higer precision and closer approximation
of real structures which enables us to analyse more and more exactly the
phenomena occurring during and after the loss of stability.

A more comprehensive review of literature concerning interactive buc-
kling have been done by Ali and Sridharan (1988), Manevich (1981), (1982),
(1985) and (1988), Moellmann and Goltermann (1989), Pignataro and Luongo
(1987), Sridharan and Ali (1985) and (1986), Sridharan and Peng (1989) and
Kolakowski (1987b) and (1989b).

In the present paper the buckling analysis of thin-walled structures under
nonuniform compression in the elastic range is examined on the basis of the
Byskov and Hutchinson method with the co-operation between all the walls
of the structures being taken into account. The study is based on the nume-
rical method of transition matrix. The background of this method has been
discussed by Unger (1969), Kloppel and Bilstein (1971) and Bilstein (1974).
An attractive feature of this method is that it is capable of describing the
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complete range of behaviour of the thin-walled structures from global to local
stability. In the solution obtained, the effects of interaction of certain modes
having the same wavelength, the shear lag phenomenon and also the effect of
cross-sectional distorsions are included.

2. Structural problem

The long thin-walled prismatic beams of length ! and composed of plane,
rectangular plate segments interconnected along longitudinal edges, simply
supported at both ends are considered.

A cross-section of this structure consisting of a few plates and assumed
local Cartesian coordinate systems are presented in Fig.1.
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Fig. 1. Prismatic plate structure and the local coordinate system

The membrane strains of the ith wall are as follows
1, 9 2
Eiz = Uiz + 5 (Wig +00,)
1
€iy = Viy + E(w?,y + ut?,y) (21)

28izy = Vizy = Uiy + Vig + WiWiy
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while the bending strains are given by
Kiz = — Wi zzx Kiy = — Wi yy Kigy = —Wizy (22)

The differential equilibrium equations resulting from the virtual work prin-
ciple for single wall can be written as

_Nia:,a: - Nia:y,y - (Niyui.y).y =0

—Ni!lay - Nia:y,a: - (Nia:vi,a:),a: =0 (23)

D;VVw; - (Nia:wi,z),z - (Niywi,y),y - (Nia:ywi,z).y - (Nia:ywi,y),z =0

The geometrical and statical continuity conditions at the junctions of plates

may be written in the form
0 +
Ui+1| = Uil
+
COS @ — V;

+

0 .
| sin ¢

Wip1| = Wy

0 + +
i sm<p+'v,~| cos @

Vig1| = Wy

0 +
wi+1,y| = wi,yl

(2.4)

0
Dit1(Wit1,yy + VWit1,22)| — Di(wiyy + vWizz)

0 + . .
N(,-+1)y| — N,-yi cos — Qf,sinp =0
» 0 + . « |t
Q(i+1)y| + Niyl sin @ — Qiy cosp =10
0 +
N(i+1)z‘y, - Niryl =0

»

where: Q7 is an equivalent the Kirchhoff transverse force

;'.y = Niywi,y + Nizywi,z - Di[wi,yyy + (2 - V)wi,a:zy]
(2.5)
Y= Piin
The prebuckling solution consists of homogeneous fields which are assumed

as
ud = —z;A v = vygA w) =0 (2.6)
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where A is a linear function of y according to the actual loading. This
loading is specified as the product of a unit loading system and a scalar load
factor A.

The boundary conditions permit the first order solution to be written

u'(") = U,-(")(y) cos m;rx
o™ = V'-(")(y) sin m;rx (2.7)
mrz

w™ = w(y)sin

where: U,-(")(y), Vi(")(y), W'i(")(y) (with the mth harmonic) are initially
unknown functions using the modified mecthod of transition matrix. The re-
straint conditions on the unloaded longitudinal edges of the adjacent plates
are determined by applying the variational principle. The system of differen-
tial equilibrium equations (2.3) is solved by the modified reduction method
in which the state vector of the final edge is derived from the state vector of
the initial edge by numerical integration of the differential equations in the
y-direction using the Runge-Kutta formulae.

The global buckling mode occurs at m = 1 and the local modes at m > 1
(with b; < I). Each buckling mode is normalized so that the maximum
normal displacement is equal to the thickness of the first constituent plate.

The equations of equilibrium take the form

A A
(1_. E)£J+a'-7‘]£'€"+".: A_JEJ J: 1,2,...,N (2.8)

Formulae for the postbuckling coefficients a;;; involve only the buckling
modes.

3. Results

Many varieties of typical structures were tested and taking into account
the above in all cases good or even very good agreement was found with
the results known from the literature (wide stiffened plate, open- and closed-
section column-beams).

From the calculations carried out basic varieties were selected of typical
thin-walled column-beams with open and closed cross-sections.
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3.1. Closed column

For a compressive thin-walled column of square cross-section the geome-

trical dimensions of which are the following (cf Kolakowski, 1989b)
L 67.30 % _ 100.0 =0.3
b = 07 R, = 100. v=0.

Fig.2a presents the global buckling modes and Fig.2c a few first local buc-
kling modes at m = 67. Fig.2b shows only the displacements v for the top
and bottom flanges, and the displacement w for the web. These displacements
correspond to global buckling modes for the column in the scale of 10000:1.

(a)

(c)

(32136 07814 0.5199
N

m=1
L
IT—

Fig. 2. Several global and local modes for square box-column

It can be concluded from comparison of the obtained stress values
of = 0.3614, corresponding to the global buckling, with the stress values
o = 0.3621, calculeted from the Euler’s formula, that taking into account
the additional expressions 0.5v%, and 0.5u?_ in formulae for &;; and ¢y,
respectively, has provided a true description of the global and local buckling
of thin-walled structures.

Fig.3 + Fig.5 present plot of in-plane stress resultants Ni(;'), N,-(;), Ngy)
distributions for the global and local buckling modes. On the basis of the plots
presented regarding the global mode (in Fig.3 + Fig.5) we find that Nirl) is
the only component that can be taken with accuracy sufficient for practical

purposes, while in the local mode the force components Ng), Ni(; ), Ni(fy) are

of the same order and attain their maximum values at (or near) the corner.
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Fig. 3. Plot of in-plane stress resultant NV for global and local buckling modes
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Fig. 4. Plot of in-plane stress resultant N!Sl) for global and local buckling modes

Furthermore, assuming simplified boundary conditions for the walls at the
corners, it is not always possible to neglect the equivalent shearing Kirchhoff

forces @Qf,, the values of these being respectively QL(E)I)y = Ni(;) and
“(2) _ Ar(@
Qi = Nicnyy

The constructions designed in the forms of a wide plate and a closed cylin-
drical shell, respectively, reinforced by longitudinal stiffeners have been ana-
lysed in a most detailed manner with the application of general methods of
stability analysis of structures. .

Since the effect of shear lag is more pronounced in stiffened plates than in
unstiffened plates of the same extensional rigidity, the designer is even more
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Fig. 5. Plot of in-plane stress resultant N,ﬁ_.‘,) for global and local buckling modes

concerned with the interaction of shear lag and collapse by buckling in the case
of wide stiffened flanges. As regards the skin plate (cf Kolakowski, 1989a), the

shear lag effect on a distribution of NS) stress can be observed. In this case

the sectional force components Ni(zl), Ni(;), N'-(;J are of the same order.
(

Omision of the in-plane stress resultants Nt-(_:), Niy"), Ni(:y) in the analysis
may lead to quite large differences as compared with the case when they are

taken into account (for more detailed analysis see Kolakowski (1987b) and
(1993)). The technical theory of stiffened plates even if used for stiffened
plates may lead to considerable discrepancies in comparison with the assu-
med description of global buckling by means of the nonlinear von Karman’s
equations (cf Kolakowski, 1987b and 1989a).

In the buckling analysis of the thin-walled stiffened plate the local mode
of skin plate and the local mode of stiffeners should be taken into account (cf
Kolakowski, 1987b, 1988 and 1989a; Manevich, 1981, 1982, 1985 and 1988).

3.2. Open beams

The buckling analysis of thin-walled open beams has been investigated in
cold formed steel structures.

Fig.6 shows the cross-section of the considered beams. Let us consider the
channel-section beam analysed by Benito and Sridharan (1984-85) shown, in



418 Z . KOLAKOWSKI

hy

b

—
=
—
=
—d
o,
w

l———
l————

o,

Fig. 6. Open cross-section considered

T'ig.6, dimensions of which are

—=10.5 — = 0. — =1 — =
b, 0 b, 0.5 7 Iy 1
b )

h_2_50 5;—13 v=0.3

The ratio of the flexural-torsional (primary global) stress to the primary
local stress is found here as equal to 0.99 and the ratio of purely flexural
(secondary global) stress to the local stress is determined as equal to 1.42
(Benito and Sridharan (1984-85) give the values of 1.04 and 1.44, respectively).

Fig.7 presents the two first global and local values of nondimension stresses
oy in terms of the angle ¢; ;11 between walls. In this figure an auxiliary angle
a is introduced between walls of the channel (p;ip1 = 90° £ o). If o
changes, a substantial decrease is found in the value of the first overall load
op at angles @12 = 90° + a; p3 = 90° — a; the second global load 03
(m = 1) at angles @12 = @23 = 90° + «; and a relatively small change in
the value of 0§ at 12 = 90° + @ and @23 = 90° — a. In the latter case
the stress o3 reaches its maximum value at & = £10°. The exception is the
first overall load o} at @12 = @23 = 90° + o which increases along with
the increase in angle a. It is a result of different buckling modes for diflerent
a angles (see Fig.8).

At the same time the values of local load ¢3 (m = 10) remain vir-
tually constant, their changes being practically negligible. This fact can be
explained in the following way. While determining approximate values of load,
corresponding to the local modes under conditions of meeting, we are able to
take into account only the situation where the angle is constant and bending
moments are equal, moreover, the deflection function w; for individual plates
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Fig. 7. Relationship between stresses o}, and the auxiliary angle o
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Fig. 8. Two global modes at different angles ;41
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is assumed to be zero at the points of the junction.

The Byskov and Hutchinson theory, applied here, reduces all kinds of im-
perfections to the ones which correspond to initial deflections of a thin-walled
structure: non-linear cofficients a;;; in Eq (2.8) remain constant. Not all
kinds of imperfections can be reduced to a single type. Calculations of slight
deviations of load and geometrical dimensions allow us to obtain ”proper”
imperfection sensitivity of constructions as well as to find out, whether the
assumed model of a single type imperfection is correct.

Fig.8a + Fig.8e present the first two global buckling modes for various
extreme values of angles between walls of the channel under consideration
(Fig.7). In the cross-section with a vertical symmetry axis (Fig.8a,b,c) two
distinct global modes can be found, namely the flexural-torsional and the
flexural (Euler) ones. In the two other cases (Fig.8d,e) this distinction is more
difficult to find.

In the thin-walled column analysed by Benito and Sridharan (1984-85),
their dimensions being as follows

b1 b3 h'l h'3

— = {. — = . — =1 — =1
e 0.5 » 0.5 » e
b2 _ 59 i~78 v=203

hy b, -

the ratio of the global stress value corresponding to the flexural-torsional buc-
kling (the primary global mode) to the stress value of the local mode is 2.385,
while the ratio of the stress of the global Euler mode (the secondary global
mode) to the stress of the local mode is 3.545 (Benito and Sridharan (1984-85)
give the values of 2.63 and 4.22, respectively). Thus taking into account the
components: usf) £ 0, v,(f) £ 0, w,(;i) # 0 in the first order displacement
field causes a decrease in the global stress values.

(b)

Fig. 9. Global and local buckling modes

Fig.9a shows the two global buckling modes for the considered channel.
In this case two kinds of buckling can be seen: flexural-torsional and flexural.
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It should be noted that the obtained stress values corresponding to global
buckling modes are less perceptible than the stress values calculated for the
bar model (Benito and Sridharan, 1984-85). In the other case Fig.9(b) presents
a few local modes at m = 6.

il

padl | KN |
z

|
, e

xy
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) I

L/
scals 100:1 scale 10:1

Fig. 10. Plots of in-plane stress resultants NED, N!Sl), N,(;;) for the flexural-torsional
buckling mode

Subsequent Fig.10 and Fig.11 present exemplary plots of in-plane stress
resultants N NO N distributions for the flexural-torsional and the

w w0 Ty
purely flexural one, respectively. The in-plane stress resultans Ni(;) for both

the global modes and Ni(zlg for the global Euler mode are of the same order
and they cannot be neglected since the maximum error is more than 10%.
Fig.12 shows the global modes for an open column, its geometrical dimen-

sions being as follows

bl b3 hl h3

— =0.3077 — = 0.3077 — =0.8 — =0.8
b2 b2 h2 hg

! by

— = . — = 52. = 0.

by 5.0 ha 52.0 v=>03

The primary global buckling mode refers to the Euler’s one, while the
secondary global mode corresponds to the flexural-torsional one.
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Fig. 11. Plots of in-plane stress resultants Nr(l), Ny(l), Ng) for the purely flexural
buckling mode
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|
m=1

Fig. 12. Global buckling modes for open ¢olumn

Special attention must be paid to the fact that and in this case the plate

model for the global mode should be assumed.

A comparision of results presented in Fig.8a, Fig.9a and Fig.12 clearly
shows that an allowance for displacement fields, u(™, v{™ and w{™ causes
a decrease of the theoretical value of global critical load in relation to the
theoretical value of global critical load for a bar-beam model as the slenderess

ratio of column becomes lower.
I AN
st
i

Fig. 13. Cross-section and stress distribution for open beam

The open channel beam loaded by equal and opposite bending moments
at the ends, which result in a constant bending moment throughout the beam
whose geometrical dimensions are

b hq !
—=0.5 — =05 — =T.
b2 h,2 b2 8
ba

h—2 =50 v =10.3

Overall buckling therefore takes place as lateral buckling. The lateral glo-
bal stress value o7 for the plate model is equal to 4.619 and for bar-beam
model is determined as equal to 5.484. The lateral buckling mode is illustra-
ted in I'ig.14.
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tension comprassion

Fig. 14. The lateral buckling mode for open beam

The next figure (Fig.15) presents the exemplary plots of in-plane stress re-
sultants N, N N ) for the lateral buckling mode. The resultants N

iz ) wy ? try iz

N,-(;g are the components that can be taken in the buckling analysis. Rational

dimensions of the column-beams can be determined on the assumption of the

plate model.
tension compression
< /m
N«

(1)
N;l] Niy //{(?(

scale 10:1

scale 100:1

Fig. 15. Plots of im-plane resultants N;Sl), N_.,(l), N;S;) for the lateral buckling mode

In all cases analysed a plate model was adopted for the description of global
buckling. This leads to a lowering of the theoretical value of limiting load, as
the characteristic curve for independent mode of buckling is not symmetrical.

For a column-beam with the double symmetrical cross-section regarding
only one local buckling mode of a pertect beam (for an uncoupled local buc-
kling) a stable-symmetric post buckling eguilibrium was obtained.

For a beam with a single symmetry axis of the cross-section, taking into
account only the uncoupled local one, a stable-asymmetric post buckling path
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was obtained (for more detailed analysis (cf Kolakowski, 1993)).

Unsignificant changes in the load and geometrical parameters of the struc-
ture may in some cases lead to substantial qualitative and quantitative diffe-
rences (cf Kolakowski, 1989a,b).

4. Conclusions

The buckling analysis of thin-walled closed and open cross-section beams
under axial compression and a constant bending moment by means of the
transition matrix method has been presented. Global and local modes are
described by the von Karman’s plate theory.

Attention was paid to the influence of displacements u,(”) and wf”)
upon critical load values and upon the post-critical behaviour for uncoupled
bucklings.

The applied method describing buckling of thin-walled structures from glo-
bal to local loss of stability can be easily adopted in computer-aided systems,
CAD/CAM.

(n)

’ vi

References

1. ALt M.A., SRIDHARAN S., 1988, A versalile model for interactive buckling of
columns and beam-columns, Int.J.Solids Structures, 24, 5, 481-486

2. BENITO R., SRIDHARAN S., 1984-85, Mode interaction in thin-walled struc-
tural members, J.Struct.Mech, 12, 4, 517-542

3. BILSTEIN W., 1974, Beilrag zur Berechnung vorverformier mit diskreten
Langssteifen ausgesteifter, ausschliesslich in Langsrichtung belasteter Rechteck-
platten nach der nichtlinearen Beultheorte, Der Stahlbau, 7, 193-201 and 9,
276-282

4. Byskov E., HuTcHINSON J.W., 1977, Mode interaction in azially stiffened
cylindrical shells, AIAA 1., 15, 7, 941-948

5. KLopPEL K., BILSTEIN W., 1971, Ein Verfahren zur Ermittlung der Beul-
lasten beliebiger rechtwinkling abgekanteter offener und geschlossener Profile
nach der linearen Beultheorie unter Verwendung eines abgewandellten Reduk-
tionsverfahrens, Veroffentlichungen des Institutes fiir Statik und Stahlbau der
Technischen Hochschule, Darmstadt, 16

6. KLOPPEL K., Schmied R., Schubert J., 1966, Die Traglast mitlig und ausser-
mittig gedrickier dunnwandiger Kastentrager unter Verwendung der nichtline-
aren Beultheorie, Der Stahlbau, 11, 321-337



426

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Z . KOLAKOWSKI

. KOoITErR W.T., 1976, General theory of mode interaction in stiffened plale and

shell structures, WTHD Report 590, Delft, 41

KoraKowsKl Z., 1987a, Mode interaction in thin-walled trapezoidal column
under uniform compression, Thin-Walled Structures, 5, 329-342

KorakowsKl Z., 1987b, Mode inleraction in wide plate with closed section
longitudinal stiffeners under compression, Engineering Transactions, 35, 4, 591-

609

KotaKowsKI Z., 1988, Some aspecls of mode interaction in thin-wallcd stiffe-
ned plate under uniform compression, Engineering Transactions, 36, 1, 167-179

KorAKowsKI Z., 1989a, Mode interaction in wide plate with angle section

longitudinal stiffeners under compression, Engineering Transactions, 37, 1, 117-
135

KotakowskIl Z., 1989b, Inleractive buckling of thin-walled beams with open
and closed cross-section, Engineering Transactions, 37, 2, 375-397

KoLAKOWSKI, Z., 1989c, Some thougths on mode interaction in thin-walled
columns under uniform compression, Thin-\Valled Structures, 7, 23-35

KorakowsKl, Z., 1993, Interactive buckling of thin-walled beams wilh open
and closed cross-sections, Thin-Walled Structures, 15, 159-183

MANEVICH A.l., 1981, Vzaimodeistvie form poteri ustoichivosti szhaloi pod-
kreplennoi paneli, Stroitel’'naya Mekhanika i Raschet Sooruzhenii, 5, 24-29

MANEVIcH A.l., 1982, K teorit svyazannoi poteri ustoichivosti podkreplennykh
tonkostennykh konstrukcii, Prikladnaya Matematika i Mekhanika, 46, 2, 337-
345

MANEVICH A.l., 1985, Usloichivost’ obolochek i plastin s rebrami lavrorogo
profilya, Stroitel’naya Mekhanika i Raschet Sooruzhenii, 2, 34-38

MaNEVICH A.lL., 1988, Svyazannaya polerya ustoichivosti s:hatoi podkre-
plennot paneli, Mekhanika Tverdogo Tela, 5, 152-159

MoELLMANN H., GOLTERMANN P., 1989, Interactive buckling in thin-walled
beams, Part 1, Theory, Part II, Applications, Int.J.Solids Structures, 25, 7,
715-728, 729-749

PiGNATARO M., LUONGO A., 1987, Asymmetric inleractive buckling of thin-
walled columns with initial imperfections, Thin-Walled Structures, 5, 5, 365-386

SRIDHARAN S., AL1 M.A., 1985, Interaclive buckling in thin-walled beam-
columns, J.of Engng.Mech. ASCE, 111, 12, 1470-1486

SRIDHARAN S., ALI M.A., 1986, An improved interactive buckling analysis of
thin-walled columns having doubly symmetric sections, Int.J.Solids Structures,
22, 4, 429-443

SRIDHARAN S., PENG M.H., 1989, Performance of azially compressed stiffe-
ned panels, Int.J.Solids and Structures, 25, 8, 879-899

UNGER B., 1969, FElastisches Kippen von beliebig gelagerten und aufgehangten
Durchlaufirdgern mit einfachsymmelrischen, in Trdgerachse verdinderlichem
Querschnill und einer Abwandlung des Reduktionsverfahrens als Lésungsme-
thode, Dissertation D17, Darmstadt



ON CERTAIN ASPECTS OF GLOBAL... 427

O pewnych aspektach globalnych i lokalnych postaci wyboczenia w
cienkosciennych slnpach-bcelkach

Streszczenie

Projektowanie cienkosciennych slupéw-belek musi uwzgledniaé globalne niesta-
tecznosci oraz niestatecznosci plyt skladowych odpowiadajacych wyboczeniu lokal-
nemu. Praca poswiecona jest cienkosciennym sprezystym belkom o zamknietych i
otwartych przekrojach poprzecznych poddanych $ciskaniu osiowemu i zginaniu. Na
koricach zalozono swobodne podparcie. Zastosowano asymptotyczne rozwiniccie By-
skova i Hutchinsona przy wykorzystaniu numerycznej metody macierzy przeniesienia.
Obliczenia przedstawiono dla réznych typéw belek.
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