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The paper presents a method of forming an inertia matrix and linear and
geometrical stiffness matrices of a bar finite element with a single, non-
propagating transverse one-edge open crack located in its mid-length.
The presented method is based on the displacement formulation of FEM
and laws of fracture mechanics. It has been found that the crack mo-
dified the inertia matrix and the linear stiffness matrix of the element,
whereas the geometrical stiffness matrix remained unchanged. Taking
advantage of the presented element there were done exemplary numeri-
cal calculations illustrating variations of longitudinal natural frequencies
of the one sided fixed rod and variations of the values of global buckling
load in a simple truss caused by the crack. The effect of inertia matrix
form upon the values of longitudinal natural frequencies of the one sided
fixed rod were analyzed.

1. Introduction

Cracks occurring in structural elements of machines are responsible for
local stiffness variations (cf Irwin, 1956), which in consequence affect their
dynamic characteristics. This problem has been a subject of many papers,
the review of which is given by Wauer (cf Wauer, 1991). First attempts were
devoted to the analysis of simple cracked structures such as beams, shafts
and frames with a constant cross-section (c¢f Okamura et al., 1969; Henry and
Okah-Avae, 1976; Mayes and Davies, 1976; Anifantis and Dimarogonas, 1983;
Dimarogonas and Papadopoulos, 1983; Christidis and Barr, 1984; Papadopo-
ulos and Dimarogonas, 1987a,b; Ostachowicz and Krawczuk, 1991; Rajab and
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Al-Sabeeh, 1991). Real engineering constructions are more complicated and
the analytical methods of cracks modelling described in the papers cited above
are useless. For this reason some of researchers have started to employ the
FEM for modelling the damaged complex structures.

Dirr and Schmalhorst (1987), Ostachowicz and Krawczuk (1990a,b) ap-
plied classical 2-D or 3-D finite elements to modelling of cracked structures.
A crack was modelled by separating nodes of the elements on both sides of
the crack. 2-D isoparametric finite elements with the singular shape function
for the analysis of natural vibrations of the beams with double-edge cracks
were used by Shen and Pierre (1990). The crack modelling method mentioned
above requires using a dense grid of finite elements around the crack edge due
to a singular character of stress fields and deformatjons occuring there.

Other authors use the special finite elements with cracks (cf Gounaris and
Dimarogonas, 1988; Haisty and Springer, 1988; Qian et al., 1990 and 1991;
Krawczuk, 1992 and 1993; Krawczuk and Ostachowicz, 1993 and 1994) for
static and dynamic analysis of cracked structures. The characteristic matri-
ces of these elements can be formulated by means of the {lexibility method
(cf Haisty and Springer, 1988; Qian et al., 1990 and 1991; Krawczuk, 1992;
Krawczuk and Ostachowicz, 1993 and 1994) or FEM (cf Gounaris and Dima-
rogonas, 1988; Krawczuk, 1993). In the case of flexibility method crack affects
only the form of linear stiffness matrix, while for the displacement formulation
of FEM the inertia matrix, and the linear and geometrical stiffness matrices
change their forms.

In the present paper there has been made an attempt to elaborate a bar
finite element with the transverse one-edge open crack. The main objectives
are:

e Determination of the characteristic matrices of the bar finite element
with the transverse one-edge open crack applying, in contrast to Kraw-
czuk (1992), the displacement formulation of FEM

e Carrying out an analysis of the influence of the magnitude and location
of the crack upon the variations of longitudinal natural vibrations of the
clamped-free rod

o Investigation of the influence of inertia matrix form upon the longitudinal
natural frequencies of the clamped-free rod

o Analysis of the influence of the magnitude of the crack upon the varia-
tions of global buckling load of the simple truss.
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2. Bar finite element with the transverse one-edge open crack

The bar finite element with the non-propagating, transverse, one-edge,
open crack located in the mid-length of the element is shown in Fig.1.
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Fig. 1. (a) bar finite element with crack, (b) cross-section of the element at the
crack area

Since the crack is responsible for discontinuities within the displacement

field of the element (cf Papadopoulos and Dimarogonas, 1987b) there have
been assumed the following shape functions

U1y = a1 + agT Uly = U5 + AT

(2.1)

Uy = A3 + €4

Ugy = a7 + agZ
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together with the following boundary conditions at both ends of the element
(Fig.1)

Maz| o5 0 Uly =0 q2
B (2.2)
u = U =
2z =l q3 2y =l q4
and continuity conditions at the crack location
_ 1 1 —
Uy = U2p — C1 Uy, Uy = U2y
(2.3)
' 1 1
Uy = U2p uly = Ugy

where ¢}, is the additional longitudinal flexibility of the element due to the
crack, form of which is given in the Appendix, indices 1 or 2 denote the left
or the right part of the bar elemenct, respectively, and [ denotes the length
of the element.

Making use of conditions (2.2) and (2.3) the constants a;, — ag are

a =q a5 = ¢2
a :—¢h+(13 a :—(12+f14
2 [+ ¢l 6 !
(2.4)
_qll_CIBC}I _
asz = l+c}1 ar = q2
g = 0t g = 21T
YTy o7

2.1. Linear and geometrical stiffness matrices of the element

The elastic strain energy of an element under large deformations can be
written in the following form

1
U, ==~ / Bl dit / E<2,, dV, (2.5)

where
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E - Young modulus
Vi — volume of the left and right part of the element, (¢ = 1,2)
€zzi — deformation of the element calculated from the relation

duis }é(duz'y)z (i=1,2) (2.6)

Cooi = gy dz
Substituting Eq (2.6) into (2.5) the elastic strain energy of the element is

{

AE [rrduign?  dugg od d
Ly (CORC S RICAL P

(2.7)
!
A2 ]Sy (Dt LDy
{

where A denotes the area of the element cross-section.

Neglecting the higher order terms, and taking into account relations (2.1)
and (2.4), the strain energy of the element can be rewritten in the following
form

AFEIl 1
Ve = 2 [(1+C%1)2

a3 — 0
(L+e11)2
Even in the case of relatively large deflections the quantity AE(gs—q1)/(l+¢};)

may be treated as a constant equal to the axial force F in the bar. The final
form of the element strain energy is

AFl
Ve = 2(1 + C%1)2

Taking advantage of the Castigliano theorem we obtain relations between
the nodal forces and displacements

(¢f — 2195 + 03) + (63 — 20201 + 63)]  (2.8)

F
—(g5 - 2q2q1 + 43) (2.9)

(¢} -2q103+ ¢3) + 5

oU, AFl
S = i = —
aUu., F
Sy = 3q2 = T(Qz - (14)
(2.10)
ouU, AF!l
Sy=—S= -+
SRR (R AR
ou, r
Ss= 55— =5(—q2+ q4)

8(14 {
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Relations (2.10) can be presented in the matrix form

S = (Kie + Kge )g (2.11)
where
S = col(S1,...,94) — column matrix of nodal forces
¢ = col(q1,...,q4) — column matrix of nodal displacements
Kie — linear stiffness matrix
Kge — geometrical stiffness matrix of the element.

Forms of the matrices K;. and K, are the {ollowing

1 0 -1 0
AF! 0 0 0
Ke=aFez| <10 10 (2.12)
0 0 0 0
0 0 0O
Flo0 1 0 -1
ng—‘l_ 0 0 0 0 (2.13)
0 -1 0 1

It follows from Eqs (2.12) and (2.13) that the crack affected the linear stiff-
ness matrix K. whereas the geometrical stiffness matrix of the element Kg,
appears to have the same form as for the non-cracked bar finite element pro-
posed by Przemieniecki (1968). In the case when the additional longitudinal
flexibility ¢}, is equal to zero we obtain the form of the linear stiffness matrix
K. identical to the one given by Przemieniecki (1968) for the non-cracked bar
finite element.

2.2. Inertia matrix of the element
The inertia matrix of the element can be expressed by the following relation

1
7 !
M, = pA/ N/ N; dz + pA/|~12T|u2 dz (2.14)
0 L

2

where
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p — mass density of the element
N; (:=1,2) - shape function matrix of the element in the form
] — = 0 —z_
N, = l+efy I+cf, (2.15)
0 1-7 0 7
—z 0 - 0
N, = | e leqy (2.16)
0 1-7F 0%

Finally the inertia matrix M, of the element takes the form

mi 0 my3 0
0 mMa2 0 Moy

may 0 mMa3 0
0 My2 0 my4

Me = pA (217)

where the entries of the matrix M, looking as follows

813 + 181%¢}; + 12I(c}y)?

T = 24(1 + ¢l )2

)
Moy = Myyq = §

813 — 181%c}; +12l(c}y)?

m33 = 1

24(1+ ¢11)?
o — s = 413

13 = M3a1 = 24(l+c{1)2

)

Mog = Myp =

6
When the ¢l is equal to zero, the form of inertia matrix of the element M,

is identical to the form of inertia matrix of the non-cracked bar finite element
(cf Przemieniecki, 1968).

3. Numerical calculations

Exemplary numerical calculations were intended to determine the effect
of the depth and the location of non-propagating, transverse, one-edge, open
crack upon longitudinal natural frequencies of the clamped-free rod, and upon
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the global buckling load for a simple truss. Additionally, there was also carried
out the analysis of influence of the inertia matrix formulation way upon the
longitudinal natural frequencies of the clamped bar.

3.1. Longitudinal natural frequencies of the cracked, clamped-free rod
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Fig. 2. The cracked clamped-free rod

relative frequency

0.8

0.7

0.975
0.0

0. 4
crack position Ly/L 0.075 0.6 crack depth a/2r

Fig. 3. Effect of the relative depth and location of the crack upon changes in the
first longitudinal natural frequency of the clamped-free rod



A BAR FINITE ELEMENT FOR VIBRATION... 455

0.8

relative frequency

0.0
0.2
0.4
crack depth a/2r

crack position Ly/L - 0.0257 ~o.6

Fig. 4. Effect of the relative depth and location of the crack upon changes in the
second longitudinal natural frequency of the clamped-free rod
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Fig. 5. Effect of the relative depth and location of the crack upon changes in the
third loneitudinal natural freauencv of the clamped-free rod
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The clamped-free rod under investigation is shown in Fig.2. For the pur-
pose of discretization there is taken advantage of 20 elements of the same
length. One of them contains the crack. The following material constants
have been assumed: the Young modulus 2.1-10!! N/m?, mass density 7860
kg/m3 and the Poisson ratio v = 0.3. The results illustrating the cffect of the
crack depth and location upon the four first longitudinal natural frequencies
of the rod are presented in Fig.3. The results are obtained for the modified
inertia matrix. The relative frequencies presented in Fig.3 + Fig.6 are calcu-
lated as a quotient of the natural frequency of the cracked rod by the natural
frequency of the non-cracked one, for each mode of vibrations respectively.

relative frequency

0.2

0. 0.4
crack position Ll/l' 0.025° 06 crack depth a/2r

Fig. 6. Effect of the relative depth and location of the crack upon changes in the
fourth longitudinal natural frequency of the clamped-free rod

Next there is made an analysis of the effect of the inertia matrix form
upon the values of longitudinal natural frequency of the clamped-free rod
with the crack of various depth located at a distance of 50 mm from the fixed
end. In the first case only the linear stiffness matrix of the cracked element
is modified. In the second case there are assumed variations in the inertia
matrix and the linear stiffness matrix of the cracked element. The results are
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presented in Table 1.

Table 1.

unmodified mass matriﬂ modified mass matrix

a/2r first mode of vibration [rad/s]
0.1 8058.44 8060.11
0.2 7864.41 7870.25
0.3 7543.06 7556.83
0.4 7075.50 7099.34
0.5 6440.45 6474.80
0.6 5638.17 5679.25
0.7 4715.42 4754.35
a/2r second mode of vibration [rad/s]
0.1 24387.08 24420.45
0.2 23854.63 23977.45
0.2 23854.63 23977.45
0.3 23046.87 23304.05
0.4 22033.35 22435.11
0.5 20927.65 21432.12
0.6 19878.41 20395.87
0.7 19014.14 19659.23
a/2r third mode of vibration [rad/s]
0.1 41350.22 41487.29
0.2 40598.54 41065.26
0.3 39590.27 40449.63
0.4 38523.96 39692.33
0.5 37564.42 38852.87
0.6 36804.38 38010.23
0.7 36261.91 37225.55

4. Buckling of a cracked simple truss

457

Influence of the inertia matrix form on longitudinal natural
frequencies of the cracked, clamped-free rod (crack location Ly/L = 0.05)

The analysis of the effect of the non-propagating, transverse, one-edge,
open crack upon the magnitude of global buckling load is carried out following
the example of a simple truss illustrated in Fig.7. The bending deformation
and hence the excentricity effect as a consequence of a side crack as well
as member buckling are excluded from the analysis. Additionally, there is
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Fig. 7. Method of discretization of the cracked simple truss

assumed that the crack is completely open (cf Anifantis and Dimarogonas,
1983). Material properties are assumed to be the same as in the case of the
rod longitudinal natural vibrations analysis. The truss is modelled by 2 finite
elements. The crack is located in the vertical element (I'ig.7). The results
illustrating the effect of crack depth upon the value of global buckling load
are shown in Table 2.

Table 2. Influence of the depth of the crack on global buckling load of
the cracked simple truss

a/2r | buckling load [N] | relative buckling load
0.0 430800.0 1.0000
0.1 430320.0 0.9988
0.2 427260.0 0.9917
0.3 423190.0 0.9823
0.4 417440.0 0.9689
0.5 409500.0 0.9505
0.6 398480.0 0.9249
0.7 383100.0 0.8892

The global buckling load obtained for non-cracked truss agrees with the
exact result obtained by Timoshenko and Gere (1961).
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5. Conclusions

The paper presents a method of generating a bar finite element with the
non-propagating, transverse, one-edge, open crack situated in the mid-length
of the element. The presented method is based on the displacement formu-
lation of the FEM and laws of fracture mechanics. The described method
makes it possible to construct bar finite elements with various types of crack
(double-edge, internal, etc.), if the stress intensity factors for a given type of
crack are known. The above element can be used for a statical and dynamical
analysis of truss constructions with material defects in the form of cracks.

As a result of the calculations done it was possible to state that:

o The crack reduces the longitudinal natural frequencies of the clamped-
free rod (Fig.3 + Fig.6). The decrease in the longitudinal natural frequ-
encies values depends on the depth and location of the crack. An increase
in the crack depth reduces natural frequencies depending on the mode
shape of vibration. The largest decrease oin natural frequencies is noti-
ced in the case of cracks located in the vibration nodes whercas in the
case of the crack located at a loop of the wave the change of natural
frequencies is negligible.

e The analysis of the effect of the inertia matrix form upon the values of
the longitudinal natural frequencies has proved that the differences in
calculated frequencies rise while the modes of vibrations increase (Ta-
ble 1). For small cracks of depths down to approx. 0.2 of the cross-section
diameter of the bar, the differences between longitudinal natural {requ-
encies are insignificant. The inertia matrix modification by taking into
account the flexibility coefficients related to the existence of the crack
raises the values of the natural frequencies in relation to the unmodified,
consistent inertia matrix.

e The value of global buckling load drops together with the increment of
crack depth in comparison to the global buckling load for the non-cracked
truss (Table 2).
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Appendix
The additional flexibility of the element due to crack ¢}, can be calculated
by using the Castigliano theorem 2nd part (cf Przemieniecki, 1968)

o a2yt
T 95;08;

(i=j=1) (A1)

where U! denotes the additional elastic strain energy of the element caused
by the crack, §;, S; are independent nodal forces acting on the element. In
the case of the presented element an independent nodal force is the force
~ for more details see Krawczuk (1992).

The additional elastic strain energy caused by the crack can be expresed
by the following relation (cf Krawczuk, 1992)

1 1=02 )
U' = KjdP (A.2)
E
P
where

v — Poisson ratio

P - area of the crack

K; - stressintensity factor corresponding to the first case of crack

evaluation (cf Henry and Okah-Avae, 1976).
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The stress intensity factor can be expressed as a function of the indepen-
dent nodal force S

Ky = %\/mf(“_h‘) (A.3)

where ay, h are explained in Fig.1, f(g’,f) is the correction function taking
into account the finite dimensions of element (cf Okamura et al., 1969)

oy fa ) com e
h/ ™ A cos A .

where A\ = may/2h.

Substituting Eqs (A.3) and (A.4) into Eq (A.2) and making use of relation
(A.1) we arrive at the additional flexibility of the element caused by the non-
propagating, transverse, one-sided, open crack in the form

¢ = M]aﬁ (3)d j z (A.5)

Ernr
0

where 7 is the radius of the element cross-section, a = a/r, § = ar/h,
& = ag/r, b = b/r are explained in Fig.1.

Pretowy element skoriczony do analizy drgan i stabilnosci konstrukcji
kratowych z peknieciami

Streszczenie

W pracy przedstawiono metode tworzenia macierzy bezwladnosci oraz sztywno-
$ci liniowej i geometrycznej pretowego elementu skoriczonego z pojedyriczym, po-
przecznym, mepropagumcym Jednostronnym otwartym peknicciem zmeczeniowym.
Prezentowana metoda opiera si¢ na przemieszczeniowym sformutowaniu MES oraz
prawach mechaniki pekama Wykazano, ze pekniecie wystepujace w elemencie mo-
dyﬁkuje postacie macierzy mas i sztywnosci liniowej podczas gdy macierz sztywno-
$ci geometrycznej elementu pozostaje bez zmian. Wykorzystujac opracowany ele-
ment wykonano przykladowe obliczenia ilustrujace wplyw pekniecia zmeczeniowego
na zmiany czestosci wlasnych drgan wzdluznych preta jednostronnie utwierdzonego
oraz zmiany wartoscl sily krytycznej w prostej kratownicy. Przeprowadzono takze
analize wplywu postaci macierzy bezwladnosci na wartosci czestosci wlasnych drgan
wzdluznych jednostronnie utwierdzonego preta z peknieciem.
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