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The object of this paper is to determine the mean stresses, displacements
and especially the frequencies due to rotatory vibrations of an aeolotro-
pic non-homogeneous annular disk of variable thickness. The elastic
constants, density of material and thickness of the disk are considered
to be a function of position. Interesting particular cases are considcred
and compared numerically and graphically with the established results.

1. Introduction

Expansion of research into different types of vibrations set up in elastic
bodies of different shape has been observed for a long time. Material of the
elastic medium was considered to be purely isotropic. But then considering
the physical aspect it was found that instead of assuming purely isotropic
material it would be justified to consider it as aeolotropic. There is a variety
of elastic crystals employed in engineering structures, which reveal not only
anistotropic character but also display a non-homogeneity of various types. It
is commonly seen in manufacturing industries that rotation of elastic disks,
cylinders, spheres etc. is essentially required over the arcas where rotatory
vibration set up within the bodies.

The problems of rotatory vibration of different bodies were discussed by
Love (1944). Chatterjee (1967) studied rotatory vibration of an anisotropic
thin circular plate. Mollah (1975) obtained stresses and frequencies due to
rotatory vibration of an aeolotropic non-homogeneous annular disk.

In the present contribution the Author has discussed the problem of de-
terminating stresses, displacements and frequencies due to rotatory vibration
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of an aeolotropic non-homogeneous annular disk of variable thickness. Consi-
dering the non-homogeneity of the material it is assumed that:

e Elastic constants vary arbitrarily as the nth power of radial distances

e Elastic constants, together with the material density, vary as the nth
power of radial distances.

It is also assumed that the disk thickness 2h, at a distance r from the
axis is given by the formula

h = hor?

The particular case n = 2 has been considered separately and no rotatory
vibration was found. It has been also observed that in a thin circular ring
the rotatory vibration is not possible. All the results being obtained have ben
compared with the results presented by previous researchers. The numerical
values of frequency equation roots for different interesting cases have been
obtained and finally variation of frequencies for a few cases has been shown
graphically versus variation of the disk radius.

2. Formulation of the problem

Let the z-axis be perpendicular and pass through the disk of radius &
centre. There is a hole in the disk of radius a. Emploving polar coordinates
(r,0) the stress-strain relations for transversely isotropic material were given
by Love (1944) as follows

/ ’
Orr = €11 €rr + C19€00
’ ’
Ogg = Cyo€rr + C11€00 (2'1)
7
Or0 = Cgg€ro

where ¢}, = ¢}; — 2¢gg, and
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¢t — elastic constants being functions of = only

O;r, 0gg — components of mean radial and tangential stresses, re-
spectively

Oré — component of the mean shearing stress

e, €99 — components of mean radial and tangential strains, respec-
tively

€0 — component of the mean shearing strain in the disk middle
plane.

If wu, and wug are the components of mean displacements in r and @
directions, respectively, for the rotatory vibration we assume

u, =0 up = f(r)e™" (2.2)
The strain components were given by Love (1944) as follows

d :
€rr = €y = 0 €9 = ((Tf,; - {'_‘)elwt (23)

Considering the non-homogeneity of the material we assume
! !
¢y =cenr” €1y = CioT™ Coe = CopT" neC (2.4)

where ¢;; are the values of ¢;; for the homogeneous case (n = 0).
Substituting Eqs (2.3) and (2.4) into Eq (2.1) we get
df _f

Oprr = Opg = 0 Tr6 = CGGTH(E - ?)eiwt (25)

We assume the disk thickness to be equal to 2h at a distance 7 and
h = hor? BER (2.6)

where hg is a constant.
The only non-vanishing stress equation of equilibrium (cf Timoshenko and
Goodier, 1951) is

O%uy

o (2.7)

0 10 2h
E(harﬁ) + ;%(hooo) + o = ph

where p is the mass per unit volume.
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3. Solution of the problem at a constant density

Substituting Eqs (2.5) and (2.6) into Eq (2.7) we obtain

2
S RIS TRt
where 2
/\2 — _p_w_ (32)
Ce6

3.1. Solution of the problem when elastic constants do not obey the squ-

are law (n # 2)

The dependent variable f varies according to the following relation

f=Ur" (3.3)
and the independent variable r can be written as follows
i o 2T, (3.4)
2
finally we obtain
d*U  1dU p?
Frb i Ul Ll (3:5)
where
n+f+2
="' 3.6
b= (3.6)
Solution of Eq (3.5) is
U= AJ,(2)+ BY,(z) (3.7)
where
A, B — constants
Ju(2), Yu(2) - Bessel functions of order p and of the first and
second kind, respectively.
Substituting Eqs (3.3), (3.4) and (3.7) into Eq (2.5) we get
up = 152 (AT, (k%) + BY,,(kr*)] e (3.8)
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and
0o = coor 5 { Alksr® L (kr*) - #(}u(w)] +
2 .
+ Bk (kr?) - %Lyu(kw)]}ewf
where 5 \
s=— " k=—
2 L
The following recurrence relations (cf Watson, 1966)
(@) = Juma(2) = £ (2) Yi(2) = Yuma(0) - EVu(2)

transfer Eq (3.9) into
Oro = coT 2 [AFl(T) + BFy(r))e™!

where

skroJ, 1 (k%) = (n 4 B + 2)J,(kr*)

5
~—~
=
e
Il

Fo(r) = skr®Y,_1(kr®) —(n+ B+ 2)Y,(kr?)
Introducing the boundary conditions

o0=0 on r=a and r=09>

487

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

into Eq (3.12) and eliminating A and B, we get the frequency equation as

Fi(a) _ Fi(b)
Fy(a) — F(b)

Then with the help of recurrence relations

Tuer(@) = @) = Sy (2)

Vars(2) = 225, (2) ~ Vi (2)
the frequency equation (3.15) reduces to

Jus1(p) _ Jus1(np)
Yiri(p)  Yug1(np)

where p = ka’7" and np = kb*3" so that 5 = (b/a)’T" > 1.

(3.15)

(3.16)

(3.17)
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3.2. Particular cases

3.2.1. The aeolotropic non-homogeneous disk of constant thickness
Putting 8 = 0, from Eqgs (3.6) and (3.13) we get

’u_2—n_

Fi(r) = skr*J,_y (kr*) — (n + 2)J,(kr®) = fi(r)

Fy(r) = skr®Y,_1(kr®) — (n 4+ 2)Y, (kr®) = fo(r)
and the frequency equation can be written as follows

fi(a) _ fl(b)
@ = T00) (3.18)

which was obtained by Mollah (1975)

3.2.2.  The acolotropic homogeneous disk of constant thickness

Putting n = f = 0, from Eqs (3.6) and (3.10) we get =1 and s=1.
The frequency equation is

Jo(ka) _ Jp(kb)

= 3.19
Y2 (ka) 2(kb) ( )
which was obtained by Chatterjee (1967).
3.3. Solution of the problem for a thin ring
The frequency equation can be rewritten as follows
F(a) = F(b) (3.20)
where 52
ksz’]’ kz®) — 222 g (ka®

 ksesY!(kzs) — MHBERY, (ko)
Substituting for b = a4+ da into Eq (3.20) and then approaching the limit

da — 0, we get the frequency equation of a thin ring in the following form

dF(a)

=g (3.22)
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Using the formula J,(2)Y,(z) - Y,(2)J}(z) = £ {rom Egs (3.21) and (3.22)
we get
k*=0 ie. A =0 (3.23)

Thus the rotatory vibration of a thin ring is not possible.

3.4. Solution of the problem when the elastic constants obey the square
law (n = 2)

Putting n = 2 into Eq (3.1) we get

2
T2%+(3+ﬂ)r%+(A2—3—ﬂ)f=0 (3.24)

Solution of this ordinary differential equation is

f = AyrPt 4+ Byr®t (3.25)
where ,
-2+8)xV(2+08)? —4(A -3 -
P11 = +h)* 2) ( P) (3.26)
and A; and B; are constants.
Thus .
ug = [A1rPt + Byrit]elv! (3.27)
and .
org = ceer™[A1(p1 — D)7 + Bi(q1 — 1)r9 el (3.28)

Introducing the boundary conditions 0,9 = 0 when 7 = a and » = b, we get
the frequency equation p; = 1 or ¢; = 1 and then

A=0 ie. w=0 (3.29)

Thus when n = 2, the rotatory vibration is not possible.

4. Solution of the problem when also density obeys the power law

It is assumed in this case that as well as Eqs (2.4) and (2.6) the additional
formula for the material density is employed

p = por™ neC (4.1)
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where pg is constant, being the value of p for homogeneous material when
n = 0.
Substituting Eqs (2.5), (2.6) and (4.1) into Eq (2.7) we get

d’f n4+pB+1df pow? n+p+1
gt gt (o - ) =0 (42)

Substitution for
f= ur= 32 (4.3)

where wu is a function of r only, reduces Eq (4.2) to

d*v  1du , V2
where
2
k2 = PO ,_ntB+2 (4.5)
Cge 2
Solution of Eq (4.4) reads
U= AgJu(k()T) + Bgyu(k()’l‘) (46)
Thus
_ntf iwt
Ug =T 2 [AgJu(k()T) + BgY,,(kor)]e (47)

Employing Eqs (4.3), (3.11) and (2.5) we get
Orp = cost 3 [Aa®y (1) + Bado(r)]elet (4.8)

where

g
-
—~

3
o

Il

korJ,_1(kor) — (n+ B + 2)J,(kor)
(4.9)

=
[+
—~

=3
~—

I

korY,_1(kor) — (n + B + 2)Y,(kor)

Introducing the boundary conditions (3.14) and using Eq (3.16) one obtains
the frequency equation as follows

Ju+1(po) _ Ju41(mopo) (4.10)
Yo41(po)  Yio+1(nopo)
where py = koa and ngpo = kob so 1o = b1,

a
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5. Numerical results and discussion

It is well known (cf Gray and Mathews, 1985) that the g¢th root p(® of

the equation
Ju(p) _ Ju(np)
= >1 5.1
Vo) " Yaw) (51

is

-a? —4af + 203
(C) I +g+ﬂ a+V 5.2
where
2 _
5, = qm o= 4pc -1
n—1 8n

g = 44w~ (A — 25)(n° — 1)

B 3(8n)3(n—1)

_32(4p? — 1)(16p* — 45612 + 1073)(n° — 1)
’s 587501 - 1)

To calculate the gth natural frequency w(%) we assume the disk to be made of
zinc, for which the elastic constants together with the density of the boundary
layer (r = a) are given by Hearmon (1961) for the homogeneous case

¢}y = ¢11 = 14.30 x 10*! dynes/cm?
¢y = €12 = 1.70 x 10! dynes/cm?
p=po=71gm/cm>

Tables 1 and 2, respectively, present the ¢th natural frequencies w(9
(¢ = 1,2,3) calculated from the frequency equations (3.17) and (4.10) for
different values of é (6 = b/a). Different types of thickness and different types
of the material non-homogeneity have been considered. In calculations we put
a = 2 for each case.
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Table 1. w(9), the
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qth frequencies calculated from Eq (3.17)

b=1b/a
Curve | n | 15 [ 20 25 30 ] 35 [ 4.0
w | 3.04 [ 1.60]1.12]0.86 | 0.70 | 0.54
13 0|0 |w@] 596 |3.02]205]1.56]1.27] 1.07
wB) | 891 |4.48[3.01 228 1.83 | 1.54
w) | 480 | 275 2.07 | 1.73 | 1.52 | 1.36
F 1|0 [w®] 038 [517]3.74]3.02]2.58]2.29
wB [ 14.01 | 7.66 | 5.50 | 4.40 | 3.73 | 3.27
w® [ 489 [2.8812.22|1.88]1.67[1.53
F 1 1 |w® | 9.43 [9.24|3.83]|3.12]2.68] 2.39
wB | 14.04 | 7.70 | 5.56 | 4.47 | 3.80 | 3.35
w [ 310 | 1.67 | 1.18 | 0.88 [ 0.60 | 0.24
Fy 0 | -1|w® | 599 [3.07]210]1.61]1.31]1.11
wB | 893 [4.51|3.04231]187]1.58
w | 474 [ 265196 [1.61]1.38]1.24
Fy 1 | -1 ]w® ] 935 | 512]3.68]295]|250]|2.20
wB [ 1399|762 |5.45 | 4.35 ] 3.67 | 3.21
w | 469 [2.58[1.87|1.51]1.29]1.13
Fs 1 | -2 |w®@ ] 932 [508]3.64]290]245|2.14
wB [ 1398760542 |4.32]3.63 ] 3.17
w | 3.00 | 1.54 | 1.06 | 0.82 | 0.69 | 0.61
Fy 0 | -1 |w® | 594 [2.99]2.02]1.52]1.23]1.04
wB | 889 [4.46 299 225]1.81]1.51
wM | 190 [ 0.89|0.60 | 0.58 | 0.88 | 1.71
Fs | -1|-1]w®] 376 | 1.73[1.08]0.77 | 0.60 | 0.50
w3 | 5.63 [2.59]1.61]1.14 | 0.86 | 0.69
w298 | 1.51]1.02]0.77 | 0.64 | 0.56
Fy 0 | -2 |w® ] 592 [297]1.99]150]|1.20]1.01
w® | 888 [4.45[2.97|2.23]1.79] 1.49
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Table 2. w(9), the gth frequencics calculated from Eq (4.10)

6=>/a

Curve 1512025 30 3540

n=0 w1 13.05)1.60]1.12]0.87]0.70 | 0.54

Ly g = w® [596]302]205]1.56]1.27]1.07

n+06=0 | w® [891]4.48]3.01[2.28]1.84 [ 1.54
) [3.10]1.67 [ 1.18 [ 0.89 | 0.60 | 0.24

L, n+f=1 | w® [599]3.07]210]1.61]1.32]1.11
)
)
)

8.93 | 4.51 | 3.04 | 2.31]1.87]1.58
3.00 | 1.54 | 1.06 | 0.82 | 0.69 | 0.61
Ly |n+8=-1|w® [504[299]202]153]1.23][1.04
wB [8.89 [ 4.46 [ 2.99 [ 2.25 [ 1.81 [ 1.52
w® 1298 [1.51[1.02]0.77 | 0.64 | 0.56
Ly |n+f8=-2]w® [592]297]1.99]1.51]1.20]1.01
w® [8.88 [ 4.44 [2.97 [2.23]1.79 [ 1.49

15 2.0 25 30 35 4.0

Fig. 1. Curves showing variation of the first frequencies w(!) (from Table 1)
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In Fig.1 and Fig.2 variation of the first natural frequencies w(!) from
Tables 1 and 2, respectively, are shown graphically versus 4§, for different
values of n and f.

o

15 2.0 25 3.0 35 4.0

Fig. 2. Curves showing variation of the first frequencies w(!) (from Table 2)

It can be seen from Fig.1 (see the curves I, Fy, F7, Fy and F3, F3, Fs, Fg,
respectively) that the first natural frequencies for homogeneous cases (n = 0)
are always of lower values than those calculated for non-homogeneous cases.
Except the curve Fg (n = f = —1), for which one finds that the first natural
frequency decreases as ¢ increases approaching approximately the value of
2.75 and then rapidly increases with the increase of §. All the curves shown
in Fig.1 for the non-homogeneous case (F,, F3, F5 and I%) display a concave
character decreasing slightly and tending to a straight line as ¢ increases. For
the homogeneous case (F7 and Fy) the aforementioned conclusion holds also
true when [ < 0, it can be seen that the first natural frequency becomes
constant as 4 increases.

It is interesting to note that for the homogeneous case (n = 0) the curves
Fy and F, initially display the concave character and then become convex as
§ increases, for § > 0. The curves L; and L, in Fig.2 are of the same nature
as the curves Fj and Fj in Fig.1.

Fig.3 + Fig.6 show diagrams of the second and the third frequencies w(?)
and w®), respectively, from Table 1 and Table 2. The second frequency
courses (Fig.3 and Fig.4) are of similar nature to the third frequency courses
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7.0

6.0¢

5.0

30

20

L0

Fig. 3. Curves showing variation of the second frequencies w(? (from Table 1)
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2.0 3.0 s 40

Fig. 4. Curves showing variation of the second frequencies w(® (from Table 2)

(Fig.5 and Fig.6) the corresponding cases. The curves Fz shown in Fig.3 and
Fig.5, respectively, tend to a straight line as é increases.

General conclusions formulated for the first natural frequency courses hold
true for the second and the third natural {requency courses, respectively,
except the Fg course (Fig.3 and [ig.5), natures of which disagree with the
Fg curve shape from Fig.1.
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Fig. 5. Curves showing variation of the third frequencies w(® (from Table 1)
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9.0

B3

8.0

6.0F

5.0F

4.0r

3.0F

2.0F

1.0f

20 3.0 2.0

Fig. 6. Curves showing variation of the third frequencies w(® (from Table 2)
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6. Conclusions

e For the non-homogeneous material (n = 1) the values of natural frequ-
encies in the case when the disk thickness increases (8 > 0) with the
radius are higher than those calculated in the case when the disk thick-
ness decreases (3 < 0). The values of natural frequencies in the case of
constant thickness disk (§ = 0) are always lower than those calculated
for B > 0 and higher than those calculated for § < 0.

e The natural frequencies due to the rotatory vibration of a non-homo-
geneous disk are always of higher values than those calculated for the
homogeneous case due to the disk thickness variation.
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Drgania rotacyjnc aeolotropowego niejednorodnego pierscienia kolowego
o zmiennej grubosci

Streszczenie

Celem pracy jest wyznaczenie naprezef, przemieszczen 1 czestosci drgan ro-
tacyjnych aeolotropowego niejednorodnego pierscienia kolowego zmiennej grubosci.
Przyjeto, ze stale sprezyste, gesto§é materialu 1 grubosé pierscienia sa funkcjami
polozenia. Rozpatrzono rézne szczegdlne przypadki a wyniki w postaci numerycz-
nej 1 graficznej poréwnano z wczesnie] otrzymanymi rezultatami.
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