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The problem of transverse free vibration of a system of two axially loaded
beams which are separated by an elastic layer is considered. The solution
of the problem for different types of boundary conditions is performed.
The frequency equation is obtained in the case when the first beam of
the system is compressed under the force P; while the second one under

goes action of tensile force P, = —P;. Influence of the stiffness modulus
of the elastic layer on vibration frequencies of the compound system is
investigated.

1. Introduction

Vibration problems in the compound systems are of great importance
since their solutions very often have direct reference to real systems. In the
case of vibration of beam systems for many practical applications the classic
Bernoulli-Euler theory of beams is aften applied. The systems composed of be-
ams separated by an elastic layer have been considered by Khatua and Cheung
(1973), Oniszczuk (1974) Yankelevsky (1991), Roy and Ganesan (1992).

Khatua and Cheung (1973) applied the finite element method to the free
vibration problem of the sandwich type structure which is composed of mul-
tilayer beams or plates. Oniszczuk (1974) studied transverse vibration of the
system composed of two prismatic pinned-pinned and free-free beams coupled
by an elastic element. In that paper a complete solution of the problem of the
free and forced vibration of beams, neglecting the effect of axial forces, has
been given. Yankelevsky (1991) presented analysis of the system consisting of
N beams and N elastic layers. Deflection lines, bending moments and shear
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forces have been determined for all the beams of the system. Investigations
concerning the effect of the damping layer on the vibration of the two-beam
system has been presented by Roy and Ganesan (1992). The analysis of some
problems of free vibration damping in homogeneous and layered beams and
bands has been carried out by Karczmarzyk and Osinski (1992). Kukla and
Skalmierski (1993) presented a solution of the problem of single beam vibration
under an axial force varying along the length. In the case of forced vibration
the flux of energy, which is emitted by a vibrating beam, has been determined.

In the present paper a solution of the free vibration problem of the system
of two beams under axial forces and separated by an elastic layer is demon-
strated. Stiffness modulus of the elastic layer has been considered as being
constant and in the second case as described by the stepped function. Numeri-
cal examples have proved the influence of an clastic layer on the free vibration
frequencies of the system.

2. Formulation of the problem

Consider a system of two beams of the length L which are separated by
an elastic layer with the stiffness modulus 4. Let us assume that the beams
are loaded by longitudinal forces p; and p,, respectively. The differential
equations of motion at a small amplitude of vibration of the beams are given
by

04y1 82y1 02y1
Elhm-i-mw-i-k(m—yl)-i—mfhw=0 (2.1)
'y, 9y, 9*ys
Bl —— —= 4+ k(y, — —2 =0 2.2
2 T Py R~ y2) + p2Aa—s (2.2)
Here
E;I; - wmodulus of flexural rigidity of the ¢th beam (i = 1,2)
Ai — cross-sectional area
pi — mass density
Vi — lateral deflection of the ith beam
z — distance along the beam length

t —  time.
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The boundary conditions for beams of the system may be written as follows

6’ Vi 0"y,

S (0,0) = 5-2(0,) =0 i=1,2 (2.3)
™'y ™'y :
L,t Lt)=0 = )
(L) = 2R (L) i=1,2 (2.4
where m,m’ = 0,1 and n,n’ = 1,2,3 (m < n, m’ < n’). The boundary

conditions (2.3) and (2.4) represent three basic ways of the beam ends suppor-
ting: clamped (m = 0,n = 1; m’ = 0,n’ = 1), pinned (m = 0,n = 2;
m' = 0,n = 2)andsliding (m = 1,n = 3; m' = 1,n" = 3). If the
beam is free at the end z = Oor z = L then the boundary conditions have
the form

0%y Py | pi Oy
0x? ~ 023  EI Oz

=0 for i=1,2 and =0 or z =L (2.5)

All possible combinations of the boundary conditions (2.3), (2.4) and (2.5)
consist of ten cases of different attachments of the beam ends.
For the free vibration of the system we can assume

1(z,t) = Yi(z) cosw
yi(e,1) = Ya(z) coswt (26)

y2(z,1) = Yo(z) coswt

Substituting Eq (2.6) into Eqs (2.1) and (2.2) and introducing dimensionless
coordinates we get

diz d2Z |
d¢’41 + B df; + K1 (2:(6) - Z2(6)) - 2{Za(©) =0 (2.7)
diz 2Z; |
i Ly X d{; + K2 (22(€) = 21(6)) - 24Za(6) =0 (2:8)
where
¢ = T 7. _ Y, K= kLA
7 T YT R
.72 .74
I
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3. Analysis

3.1. Free vibration of beams separatcd by an elastic layer with constant
stiffness modulus

Assuming from Eqs (2.7) and (2.8) the functions Z;(£) and Z3(¢) as
follows

Z1(€) = Wret Zy(&) = Waet (3.1)

one obtains the system of equations
A+ PN+ K — Q)W — KW, =0 (3.2)
KWy — (M + P2+ Ky — Q)W =0 (3.3)

The non-zero solutions of the system of equations (3.2) and (3.3) exist if A
satisfies the characteristic equation. This equation may be written as follows
M (P 4+ POX + (K + Ky + PPy — 2} — )M\ 4+ [P(Ko — !2;‘)(+ )
34

+P2(I\’1 - .Q?)]/\z + (](1 - Q?)(I\Q - .Qg) - KN1K2=0
Below we will discuss the case of beam systems in which the beams have

identical flexural rigidity and the same mass per unit length, i.e. we assume
that the conditions: Fyly = I, paAy = p1 Ay are satisfied. Moreover, we

assume that for the longitudinal forces the relationship: P, = — P, is valid.
In the case under consideration Eq (3.4) has the form
A8 L [2(K — Q%) — PN + (2% - 2K) 2% = 0 (3.5)

where K = Ky = Ko, P = P, = —P, and 2 = {2y = {25. The roots of Eq
(3.5) are as follows
— for 24 > 2K

A2 = ta Az q = Tio
Asg =+ A7g = *if
— for 24 < 2K
Xsg = £(1+i)y Arg = x(1-i)y
where
a:(/%P2—1(+94+x/Z [3=\“/%P2—1\’+9“—\/K

i
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The solution of the system of differential equations (2.7) and (2.8) will be
derived for two cases.

e Casel, for 24> 2K

General solution of the system of equations (2.7) and (2.8) may be presen-
ted in the form

Z1(&) = C19o(al) + CoP1(af) + C3P2(al) + CyP3(al) + CsPo(BE) +

+ Ce®1(BE) + C7D2(5E) + CsP3(5E) (3.6)
Zy(&) = Cila®o(al) + b192(al)] + Colar®1(af) + bi1P3(al)] +
+ C3larP2(a) + b1Po(al)] + CalarPs(af) + b b1 (ab)] +
+  Cs[az®o(BE) + b282(BE)] + Celaa®1(BE) + b293(BE)] + (3.7)
+  Crlax@2(BE) + b2%o(BE)] + Cs[aaP3(BE) + b2®1(BE)]
where C; (¢ = 1,...,8) are arbitrary constants and the functions @;(u)

(j = 1,...,4) are defined as follows (cf Milne (1991))

Po(u) = sinh u — sinu &y (u) = coshu — cosu
®o(u) = sinhu 4 sinu P3(u) = coshu + cosu
and
S 2 _ Pa?
w =5 (3P +Va) b=
11, _ Pp3?
ag = f(§P — \/Z) b2 = I\'-

o Case 2, for 24 < 2K
General solution of the system of equations (2.7) and (2.8) has the form

Z](E) = C]¢0(a£) + 02451(&{) + C’3¢2(a£) + C4¢'3(O‘£) +
+ Cs¥ (7€) + Ce¥1 (7€) + Cr¥a(v€) + Ca¥3(7€) (3.8)

CilarPo(al) + b: P,
Csla1®2(af) + b1Po
(7€)

(7€)

—~—~

ab)] + Coa;®1(a) + bi3(af)] +

af)] + Calar$3(a) + b @1 (af)] +

)] + Celaz¥1 (7€) + b3¥3(vE)] +  (3.9)
76)] + Cglaz¥s(v€) — b3¥1 (7€)

N
—~~
A
~—
{!
—~~

Cslaa¥o(7v€) + b3¥,
Crlag¥a(v€) — b3¥o

+ + +
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where

Vo(u) = sinusinh u Wy (u) = cosusinhu + sin u cosh u

¥y(u) = cosucoshu W3(u) = cosusinhu — sinu cosh u

and b3 = 2Py%/K.

Substituting for the functions Z;(£) and Z;(§), from formulae (3.6) and
(3.7) or (3.8) and (3.9), into boundary conditions one obtains a linear system
of eight homogeneous equations in unknown constants Cy,Cs,...,Cs. For a
non-trivial solution the determinant of the coefficient matrix is set equal to
zero, yielding the frequency equation. This equation may be written in the

form
|4 ()] =0

Exemplary non-zero coefficients A;; corresponding to the beam system con-
sisting of the clamped-clamped beam and the free-free one (the case, for
24 > 2K), are the following

(3.10)

Az = a? A = (2

Ay = o Ay =af Ags = ﬂs Ay =P
Azr = by A3y = ay Az = by Asg = ay
Ag = o?ay Asq = a?by Ase = Blay Ass = B%by
Asy = Pp(a) Asy = &1(a) Asz = Po(a) Ass = $3(a)
Ass = ®o(0) Ase = 1(0) As7 = D2(B) Asg = @3(0)
Agr = 3¢3(Q) + QP¢1(Q) Ago = (13¢0(Q) + aP¢2(a)

Agz = o3Py (a) + aPP3(a) Apy = &3 Py(a) + aPdp(a)

Ass = P93(B) + BPP(B) Ass = B3Po(B) + BPD2(B)

Agr = 0%°0,(B) + BPP3(B) Ags = B3P,(B) + BPPo(B)

An = a1®o(a) + b P2(a) A7y = a1 d1(a) + 01 P3(a)

A7z = a1 P2(a) + b1 Po(a) A7y = a1 P3(a) + 019, (a)

Azs = a2Po(B) + b292(B) A7e = a2P1(B) + b83(B)

A77 = a2P2(B) + b2 Po(B) Azs = 093(8) + b291(P)

Agl = (12(0,1452((]) + b1¢0(a)) A82 = az(a1¢3(a) + b] 1 a))
Ags = az(a1¢0(a) + b1¢2(a)) Agy = (12(0.1451 (a) + ()1453(01))

Ags = B%(a292(8) + b2%0(6))
Ag7 = %(a290(8) + b282(5))

Eq (3.10) is solved numerically.

Asge = $%(a:83(0) + b2®1(6))
Agg = B*(a2®1(B) + b293(8))
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3.2. Free vibration of two beams separated by an elastic layer with a
step-wise varying stiffness modulus

Assuming now that the stiffness modulus of elastic layer, k appearing
in Egs (2.1) and (2.2) is a piecewise constant function. It means that the
dimensionless stiffness modulus, K can be written as follows

K

> [H(E - 650 - H(E - )

=1

where 0 = & < & < ... < &n = 1, K; is the constant stiffness modulus of
the elastic layer in interval (&;_1,&;) for j =1,2,..,m and H(-) denotes the
Haeviside function. In particular intervals of constant stiffness modulus, the
functions Z;() are given by Eqgs (3.6) and (3.7) or (3.8) and (3.9). At points
£€=¢;,(j=1,2,..,m— 1) the continuity conditions are satisfied

ZiP(&) = 2301(&) i=1,2 j=l..m-1 k=0123

where Z,-(Jk)(f) denotes the kth derivative of the Z;(¢) function for
-1 < & < &. For £ =0and £ = 1 the boundary conditions in the
form (2.3) + (2.5) are satisfied.

Employing the boundary and continuity conditions we get the linear system
of 4m homogeneous equations. The free vibration frequencies 2 are found
from the condition that the determinant of this system of equations vanishes.

4. Numerical examples

The above theoretical considerations have been applied to a numerical
analysis of beam systems for different types of beam-ends supporting.

In example 1 the systems consisting of beams separated by an elastic la-
yer with constant stiffness modulus are considered. Influence of the stiffness
modulus of the layer which separates the beams, on free vibration frequencies
of the system is studied. Various boundary conditions for beams have been
investigated. The beams of the system are loaded by axial forces: the first
beam is compressed (P, = 1) whereas the second beam of the system under
goes the action of tensile force (P, = —1). In Fig.1 the curves of dimensionless
vibration frequencies of the system in relation to the value of dimensionless
stiffness modulus of the elastic layer, have been shown. It can be observed
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Fig. 1. First six mode values of {2, for beam systems for various values of K;
(a) - clamped-clamped beams, (b) — pinned-pinned beams, (c) - free-free and
clamped-clamped beams, (d) - free-free and pinned-pinned beams
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that each frequency of the single beam corresponds to two frequencies of the
compound system.

In example 2 the effect of an elastic layer which separates the beams upon
the system vibration has been investigated in the case when the elastic layer
appears only in the interval <&;,1-¢;>. In Fig.2 the curves of dimensionless
free vibration frequencies of the system in relation to ¢ and for modulus
K = 1000, have been shown.

12.0 12.0
22 [@ 22 [®

11.0 1.0}

10.0}- 10.0
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8.0t 8.0F
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Fig. 2. First six mode values of 2, for beam systems with elastic layer at interval
< &1,1—¢& > for various values &, K = 1000.0; (a) — clamped-clamped beams,
(b) - pinned-pinned beams
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Drgania swobodne ukladu dwéch belek oddzielonych warstwa sprezysta

Streszczenie

W pracy przedstawiono problem drgan swobodnych ukladu skladajacego sie z
dwdéch obciazonych osiowo belek, ktére sa oddzielone warstwa sprezysta. Rozwiazanie

problemu obejmuje réine przypadki warunkdéw brzegowych. Rdwnanie czestosci
drgan wlasnych otrzymano dla przypadku ukladu, w ktérym jedna belka jest sci-
skana sila P, a druga jest rozciagana sila P, = —P;. Zbadano wplyw wspdl-

czynnika sprezystosci warstwy oddzielajace) belki na czestosci drgan wlasnych ukladu
zlozonego.
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