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In this paper it is shown that the symmetric parametrization of a shell
midsurface can be succesively applied to the analysis of a certain class of
thin walls investigations in the framework of the Kirchhoff shell theory.

1. Preliminaries

In the paper a thin, linear elastic, isotropic shell of constant thickness is
considered. In this section, following Green (1954) we introduce the basic
relations of the problem under investigation. In the undeformed shell region

1 42 z are introduced in the known way

the normal coordinates u!,u
R=r+2m

where R is a position vector, (u!,u?) € D, D being the regular region on
R?2, 2h is the shell thickness |z] < h and m is a unit vector normal to the
shell midsurface S given by

r= [a:l(u1 ,u?), a:g(ul , uz), a:;;(ul , u2)]

We define r; = 0r/0u’ (here and in the sequel i,7,... run over 1,2)
External loadings acting on the shell were denoted by (cf Krawczyk (1993))

P = Pir;+ P’m i=1,2 (1.1)

It is assumed that the shell undergoes deformation of the Kirchoff-Love type.
Let S’ be the deformed shell midsurface and

w = w'r; + wim (1.2)
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be the displacement vector field for z = 0. Therefore S’ is given by
=r+w (1.3)
and endowed with metric tensors (all "primes” are related to a deformed shell)

9i; = Ti -1 = g5 + 2vi

bij = m’ - rij = bij + 2p;;
cij = mi-mj = ¢ij + 2n;;
where g;;, bij, ¢;; are related to an undeformed shell midsurface.

For the linear theory

27;j = wk ki + wk Ik~ 2wb;;

- w3c,-j (1.4)
ij

2pij = w" i + w* jbki + wkbij|k +w®

2n: = w| ep; + wF| e + wFe;; b'-°w3| b'-‘wal
ULT; t.IC]'+' jk1+ 1]k+1 kj+] ki

where | stands for a covariant differentiation on the shell midsurface.
For any surface S, parallel to S, we have

9i; = (1= K2%)gi; — 22(1 = H2)by; g=2% (1.5)
where K, H are the Gauss curvature and mean curvature of the surface S,
respectively and
Z=1-2Hz+ Kz*
7= gub2 — (G12)°
g = 911922 — (912)2

The deformation, being considered, tranforms surface S onto surface S’ for
which
9i; = 9 + 27
where
Vii = Yij — 22pi5 + 2155 (1.6)

Let 77% be a stress tensor and define internal forces by means of

h
N = f \/g(a,{ — by dz
~h g
h —_—
MY = / \/E((S,Jc - zbi)rikz dz
g
Zh

(1.7)
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where for isotropic materials
i E —IT—js —1] =TS
™ = 17— al(1=1)g"F" +vg g 17, (1.8)
E is the Young modulus, v is the Poisson ratio, N¥ and M satisfy the
well-known shell equilibrium equations

N*’J", - bf;M’“"_ +Pi=0
' ' (1.9)
b N + M| 4 PP =0
ij

where P7, P3 are given by Eq (1.1) and bf; = ¢7"byy.

2. Symmetrical parametrization

We assume that the parametrization u',u? of the surface § satisfies the
following conditions

g12=0b12=0 (2.1)

An arbitrary and smooth and invertible transformation of parameters
ul = ul(vl,v?) u? = wl(v!, v?)

yields (cf Willmore (1969))

- vk ow

9i; = Gks vt vl

- k K]

A Ju® Ju (2.2)

5= et s
ou™
Parametrization of the surface S is called a symmetrical one if
g11 = g2z 511 = 522 (2.3)

We shall show the conditions leading to the symmetrical parametrization.
From Eqs (2.1), (2.2) and (2.3) it is obvious that

1 1 2 2
() - (g2) | +oxl(ir)" - (5iz) ] =0

1 1 2 2
[(Fm) - (Goz) T+ [(Gi) " - (52) T = 0

(2.4)
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o If b;; # Agi; then giibay — ga2byy # 0 and Eq (2.4) has only a trivial

solution
1 1 2
G -G GBS0 e

o If b;; = Agi; then Egs (2.4) reduce to one equation

onl(Gar)" - (Gia) |+ oml(Gi5)" - (Gia) ] =

In both cases the following functions

uwl = %(vl — v?) 2= %(v1 + v?) (2.6)

IS4

are solutions to the above equations.
It is easy to show that for a symmetrical parametrization

bin = by = Hgn + ég12 b} = b5 = H

bia = ba1 = Hgi12 + dg11 b1=b¥:5
where 6 = evVH?2 - I, le|] = 1.

We also have

= gyl + o (3 2522

)

F212 — %[g ( (2)51)122 _ 38.(1)111) 12389121]

= o 328 28) -
1

dg11 dgn
1 e — — —
I'i; = 59 [911 o0z 120 ]

F122=L[ 9911 _ %]

The Gauss and Codazzi formulae for symmetrical parametrization are

lz—mz_‘:I(

OH OH _ d6g11 0bgi2
902911 T 12T 1 T g2
oOH oH _ 86911 8(5[/12

9ol I T 52912 T T T T
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where ) ]
l=—(Hgn + 8g12) m = —(Hgi2 + 6911)
V9 \/ﬁ(
Example
Let . .
r= [a cosh Y cos u?, acosh Y sin u?, ul]
a a
and assume
u! = a(v! + v?) u? = vl — o2
Hence
g11 = go2 = 2a% cosh?(v! + v?) g12=0
bi1 = by =10 b1z = 2a
b 2
K =-(22) H=0

g12
Iy =T, =T{, =T} = ~TIp = ~If) = tanh(o' +0?)

3. Equilibrium equations

Let us assume that a symmetrical parametrization on the surface 5 is
given. From Eq (1.5)

1 26z
—11 _ =22 _ 11 L, 11 _ 12
g =3"=29 +— [6&9 +(1-Hz)g ]

1 26z
—12 _ =21 _ 12 12 _ 11
g =9 =759"+757 [629 +(1 - Hz)g ]

Since

bz=2z2eVH? - K = zelk1 — k2

where kj, ko are main curvatures of the surface S, then at the points in which
b;; = Agij, it is

_ 1

For thin shells and k; & k, we obtain 62 = 0. Moreover, assume

wtd

g

77~ gV (3.1)

N —
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From Eqs (1.8) and (3.1) we obtain

P = [P 0o g 225 (3.2)
where

= _I_SVQ [(1=v)y' + vikg']

7= _Euz (1= v)p" + vplg'] (3.3)

# = i}z (1 = )77 + vnfg')

Performing integration of Eq (1.7), taking into account Eqs (2.7), (3.1)
and (3.2) we obtain
N = ohr 4 2p3 [HZ#J' —-2H7 4 %”f] + 0(h®)
3
(3.4)
iy _ 3 _ o2y 5
M 3h (79 — 277 4 o(h)

where 0(h®) are terms of an order A®. Substituting Eq (3.3) into Eq (3.4)
and neglecting 0(h®) we obtain

V= B[] )+ (] + B -0t
MY = 2Eh3 [(1 - 1/)( (w"r + wj|i) + ggkwkg"f +w3lij) + (3.5)
+ (Hw I +28Hw +w)gH]
where
w = g9l wS[i. = 97g"w?| w|" = g"w|

Taking into account the above results, the equalibrium eqiations (1.9) can be
written down in the form

N"f‘, - HM"J'I_ +Pi=0
! ' (3.6)

Hgi;i N9 4+ M| 4+ P3=0

13
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For H = 0 Eqs (3.6) reduce then to

NY| + P =0 M“U+P3:0
where

W= P ] ) ]

MY = —3(313_—1’;) [(1 - u)w3|ij + uwg"f]

In this case, for w> we obtain the following partial differential equation of the
fourth order

= 30 =) ps (3.7)

o Nnik T ij kr]. 3
(1= v)g™ g7 + vgig* | w i = 2B

The above equation has a form similar to that of the well known Kirchhoff
plate theory. For further analysis and applications of the results derived in
this contribution the reader is referred to Krawczyk (1993) and the related
papers.
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O réwnaniach réwnowagi pewnych typéw powlok

Streszczenie

W pracy rozpatruje si¢ parametryzacjg symetryczng powierzchni srodkowej. Przy
zalozeniu H? a K rozpatruje sig¢ réwnania réwnowagi liniowej teorii cienkich powlok
przyjmujac wiezy Kirchhoffa-Love’a. Ponadto, podano wyrazenia dla sil i momentéw.
Otrzymane wyniki moga by¢ zastosowane w praktyce inzynierskie;j.
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