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Using the representation theorem, interpolation methods for isotropic
tensor-valued functions and the extended Cayley-Hamilton theorem, we

present a way of determining U, U™ V, V™! R (without recourse to
eigenvectors) in terms of C, B and F, respectively. We consider other
more general isotropic tensor-valued functions of C and B (InU, flor
example). We obtain some siniple to calculate and new formulas for these
functions in 2-dimensional and 3-dimensional cases of deformation.

1. Introduction

The polar decomposition .
F=RU=VR RRT = RTR =1 (1.1)

has played a major role in continuum mechanics (cf Truesdell and Noll (1965),
Gurtin (1981), Marsden and Hughes (1983), Ciarlet (1988) and Bowen (1989),
for example). Here, |is the identity tensor, the invertible second-order ten-
sor F is the deformation gradient, the orthogonal tensor R is the rotation
tensor and the positive definite symmetric tensors U and V are the right and
left stretch tensors, respectively. The superscript T in Eq (1.1) means the
transpose. Using the right and left Cauchy-Green tensors C and B defined
by

U2=C=F'F V=B =FF' (1.2)

we have

u=+vC
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R=Fu-! (1.3)
V =+vB = RURT = FU-!FT

Presuming that F is known, we see from Eq (1.2) that C and B are easy to
calculate. Of course, once U and U~! are known, R and V follow readily
from Eqgs (1.3). The problem of this paper can be reduced to determination
of Uand U~!in terms of C (or F).

There are several ways of determining U and U~! in terms of C (cf
Marsden and Hughes (1983), Hoger and Carlson (1984), Ting (1985), Curnier
and Rakotomanana (1991), for example).

In this paper, we point out that by an simple application of the represen-
tation theorem to nonpolynomial isotropic tensor functions (see Appendix B),
U, U™', V and R can be calculated directly from C (or F) without recourse
to tensor square roots, eigenvalues and eigenvectors (or without recourse to
tensor square roots and eigenvectors). We consider the two-dimensional and
three-dimensional cases in Section 2 and Section 3, respectively. The method
for obtainig U, U™!, V, R and more general isotropic tensor-valued functions
of C (or B) is the same in both two and three dimensions, but the details
of derivation are different. In Appendix A we briefly summarize some use-
ful identities obtained from the Cayley-Hamilton theorem. We compare our
results with those arrived at by Hoger and Carlson (1984) and by Ting (1985).

2. 2-dimensional case

The results for plane motion are contained, of course, as a special case in
the results of the next section. However, it seems to us that their importance
in continuum mechanics and the ease with they are obtained warrant their
independent presentation.

2.1. Determination of the right stretch tensor

The right stretch tensor defined by
U=+vC= f(C) (2.1)

is a smooth function of the right Cauchy-Green tensor (cf Gurtin (1981) and
Stephenson (1980)) and is an isotropic function (see Ting (1985)).
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In this case, f(C) is a function, which is form-invariant under the full
orthogonal group O(2) (see Appendix B for more information about isotro-
pic functions). This form-invariance requirement is specified by the following
condition

VQeO(2) QUQT = f(QCQT) 0(2)={Q: QQT=Q"Q=1}
(2.2)
The representation theorem ((B.4) and Tables 2,4) states that Eq (2.2) is true
if and only if the function (2.1) has the following representation

U=al+8C (2.3)
where «, f are functions of the invariants of C
a, B = f(trC,trC?) = f(Ic,I1c) (2.4)

and

Ic = trC Ile = det C = =(tr2C — trC?) (2.5)

RO =

are the principal invariants of C.
Using Eq (2.3) and the Cayley-Hamilton theorem (A.8), we have

U? = &®l + 2a8C + B2C? = (a® = B*1Ic) + (208 + 5%1c)C (2.6)
Combining Eqs (1.2) and (2.6), we get

0'2 - ﬁ2]IC =0
(2.7)

2a + Blc =1

The solution of Eq (2.7) is

Il 1
o=y f—C P — (2.8)
Ic +2y11c Ic +2/TI¢

Substituting for « and S into Eq (2.3), we obtain

Ve —— 1 (/TTol+0) (2.9)

Vie + 211

This agrees with the form of U determined by Hoger and Carlson (1984).

Solving
C*—IcC+1Ic=0 (2.10)
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yields the eigenvalues of C

Cra= -21-(10 + /12 —4110) (2.11)

Since U; = +/C;, 1= 1,2 (U; are the eigenvalues of U), one derives immedia-
tely from Eq (2.9) that

1 1
Us ——————=(VC1Col + Q)= —(IIyl + C 2.12
Y R AN b TR I
where
Iy =\Ic + 2V [y =il (2.13)
are the principal invariants of U. Eq (2.12) is identical to Eq (2.3) of Ting
(1985).
If
Ice=2Ilg = C,=Cy=C (2.14)

the representation in terms of Eqs (2.9) or (2.12) is not unique. In this case
it is not difficult to show from the Wang’s Lemma and Transfer Theorem (see
Gurtin (1981)) that

U=vCl (2.15)

2.2. Inverse of U

U is positive definite, the inverse of U is a smooth and isotropic function
of the right Cauchy-Green tensor. The representation of this function is given
by

U™l =~1+6C (2.16)

where ¥ and ¢ are invariants of C.
Multiplying Eq (2.16) by U?

U=7U%46CU% = 4C+6C* = =611l + (v + 61c)C (2.17)
and comparing the result with Eq (2.3), yields

o = ——(SIIC (2 18)

B=v+dlc
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After solving Eq (2.18) we obtain the formulas for 4 and 6 in terms of the
principal invariants of C

= (14 Ic ) 1 s 1 1
VIIc? | [1o 1 2yTTG Vie \[1c 4 2yTT:
(2.19)
Substituting for v and § into Eq (2.16), yields
_ 1 I 1
UVl ——— |1 - C 2.2
(+7m)-7md e

\/IC + 211

It can be shown (after substituting Eq (2.13) into Eq (2.20)) that Eq (2.20) is
identical to Eq (4.1) of Hoger and Carlson (1984).

2.3. Determination of the rotation tensor

Since R = FU™!, we have from Eq (2.20)

1 I
R = m[(l + \/—I_"—[_C)F— \/}TCFFTF] (2.21)

Using Eq (A.10) for FFTF and the following identities
Ic = Ig = Ippr Il =1lg = II% (2.22)

after some calculations we finally obtain the simplest formula for R in terms
of F and its invariants

1

VIprr +201r

Of course, R is an isotropic nonpolynomial smooth function of F and F'.
It should noted that Eq (2.23) has not been in the literature to the best of
author’s knowlege. This formula is fundamental in showing the inner structure
of a pure 2-dimensional rotation R, namely its decomposition into the sum
of skew-symmetric and isotropic tensors. Decomposition of the deformation
gradient, defined by

R= (F—FT 4 Igl) (2.23)

F= %(F-}-FT)-{-%(F—FT):G-FR (2.24)

O  MMorvharmika 10aretve7ma 1 oy 2171
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allows for the possibility to rewrite Eq (2.23) in the form

R = ! [2R + (10)] (2.25)

\V —21;1‘|~22 + tr2U

The orthogonal tensor R is an isotropic nonpolynomial smooth function of U
and R. Since Eq (2.25) is true (see also Section 2.5), we can not agree with
Curnier’s and Rakotomanana’s (1991) (p.475) opinion " the additive decompo-
sition”, Eq (2.24), ” becomes mathematicaly and physically meaningless”.

2.4. Determination of the left stretch tensor

We present this section to show the consistency of our approach. Of course,
we can get a formula for V from Eq (2.9) with the replacement C — B, and
vice-versa.

Since V=RF", Ig = Ic and IIg = II¢, from Eq (2.21) it results

_ 1 Ic 1
V_——Ic+2\/m[(1+\/m>8 mBz] (2.26)

Using the Cayley-Hamilton theorem (A.8), we obtain

Ve (JTI51+B) (2.27)
Ip+2IIp

2.5. Determination of the right and left stretch tensors in terms of the
deformation gradients

Using Eqgs (1.1) and (2.23), we derive new formulas for U and V in terms
of F

U=z —— 1 (FTF+ IIp) (2.28)

Viprr +201r

Ve (FFT 4 11p]) (2.29)

VIrer + 211r

From a practical point of view they are most simple to calculate.
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Since Eq (2.24), from Eqgs (2.28) and (2.29), we have

U= ! [62 “ R4 (UR = RU) + ~(6r20 — 6e0® - trﬁ2)ll2.30)
~Q ~ 2
-2trR™ + tr?2U
v —[07- R~ (OR - RO) + 5(20 - u0° — )1} 2.31)

V—-2trR + tr200

and after using the Cayley-Hamilton theorem (A.8) we finally obtain the sim-
plest formulas for U and V in terms of U and R

U = [(t:0)0 + (UR - RU) + o] (2.32)
V =3 (tr0)U - (UR - RU) + o] (2.33)

where
b 1 ¢ =—trR’ (2.34)

= ~5 =

\/—2trR + tr2u
From these expressions we see the mathematical and physical meanings of the
additive decomposition of F, Eq (2.24), in the 2-dimensional case. Here a

difference between U and V is the only one, namely the sign of the term

(UR — RU).
2.6. Applications of interpolation methods to isotropic tensor functions

In this section we consider interpolation methods (see Boehler [ed.] (1987),
Chapter 13) for isotropic smooth tensor-valued functions of C (or B)

A =F(C)=aopl+a,C (2.35)
where
ar = fk(ChC?) k= 0,1 (2°36)
and Cp, Cy (C;i= B; > 0,1 =1,2) are the principal values of C (defined by
Eq (2.11)).

Since, C; = B; and B = RCRT, we obtain the relationship between Eq
(2.35) and the isotropic functions of B

A = F(B) = F*(RCRT) = RF*(C)RT = RAR" = qgl + ;B (2.37)
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From the Lagrange interpolation method for the functions (2.35) and the
Cayley-Hamilton theorem Eq (A.8) it follows that the coefficients (2.36) can
be found by solving the system of linear equations

A] =ap + (l]Cl (2 38)

A2 = ag + a1C2

where A; are the principal values of A. Considering to above this seems to be
a trivial result. On the other hand, Eqs (2.38) appear due to the requirement
(2.2).

As an alternate approach, from the Newton interpolation method for the
functions (2.35) and the Cayley-Hamilton theorem Eq (A.8), we have the
formula

A= b0|+b1(C—Cll) (239)
where by are given by
_ AL - A
bo = A b 2.40
0 1 T =G ( )

Solving Eq (2.38) or comparing Eqs (2.39) and (2.40) with Eq (2.35), we obtain
the invariants ap. As we have easily proved, the Lagrange and the Newton
interpolation formulas are identical for the smooth isotropic functions (2.35).
The coefficients (2.36) are defined by

_ CIAQ - (A, “ A] -
Cy—Cy TG -G, Cz

If the principal values of C coincide, €} = C; = C, the interpolation formula
for Eq (2.35) reduces to the results: A = Al, A = A, = A,.

(2.41)

ao

2.6.1. Ezample 1

As a simple example let us use the above method to find the function (2.1),

A=U=VC
Since, A; = U; = \/C;, from Eq (2.41), we obtain

C]\/CTz—Cz\/— VvCiC,

-G VG-VG (2.42)
W VCVT

C1-Cy VT +VC;
Eqs (2.35) and (2.42) are identical to Eq (2.12). Of course, substituting Eq
(2.11) into Eq (2.42), we have Eq (2.9).
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2.6.2. Ezample 2
In a similar way we can formulate the tensorial Hencky measure of strain,
defined by (cf Curnier and Rokotomanana (1991), for example)
1
A:an:EInC (2.43)
Since, A; =InU; = %ln C;, it results from Eq (2.41)
1
ap = =(C1InCy — CyInCy)
¢ (2.44)
1
a = E(ln Ci1—InCy)
where
a=2(C; - Cy) (2.45)

Substituting Eqs (2.11), (2.44) and (2.45) into Eq (2.35), we obtain the loga-
rithmic strain measure in terms of C and the principal invariants of C.

Other examples are A = expC, A =sinC,A=U" (n = 1,2,...,N),
A = F{(C) 4+ F3(C), etc. which can be treated in the same way.

2.7. Applications of the spectral theoreimn and comparision with interpo-
lation methods

By the spectral theorem (Gurtin (1981)) and Eq (1.2), the right and the
left Cauchy-Green tensors C and B admit the representations

C=Cie;®e1+Crers0e;=Cre;@e; +Co(l —e; Q) (2.46)
and

B = RCRT =CiR(e; ® e;)RT + Cy[l - R(e; ® e;)RT| =
(2.47)

= CiRe; ® Re; + CQ(' — Re; ® Rel) =Cle; Qe + CQ(' - e ®é])

where e; and ¢; (]|e;]| =1, ||ei]| = 1) are the eigenvectors of Can B (also U
and V), respectively.
The isotropic smooth functions Eq (2.35) have the representations

A=F(C)=Ae,Re; + Ay(l —e; @ e;) (2.48)
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Similarly )
A‘—" FS(B)-_—' RART = Alél @él +A2(’—él®él) (249)

Suppose, that Cy # C,, then Eq (2.46) gives

1

e (C-ai (2.50)

e e =

which can be employed in Eq (2.48) with the result

A= e 1 — (€143 = C2AN + (A1 = A9)C] (2.51)
This agrees with Eqs (2.35) and (2.41).

Finally, we come to the conclusion that the methods presented here and
in Section 2.6 are equivalent.

From a practical point of view we can not agree with Curnier and Roko-
tomanana (1991) conclusion (p.474): ” Tensorial forms of these tensors (here
— Eq (2.35)) are also available but, as a rule, they are even more complicated
to obtain than the spectral forms.” From Sections 2.6 and 2.7 we can see that
the above conclusion must have the reverse meaning.

Remarks
It is not easy to calculate the eigenvectors in a 3-dimensional case using
the aforementioned way.

3. 3-dimensional case

3.1. Determination of the right and left stretch tensors

In this case, f(C) is a function, which is form-invariant under the full
orthogonal group O(3) (see Appendix B). This form-invariance requirement
is specified by the following condition

¥YQeO(3) QUQT = f(QCQ") 03)={Q: QQ"=Q'Q=1
(3.1)
The representation theorem ((B.4) and Tables 1,3) states that Eq (3.1) is true
if and only if the function (3.1) has the representation

U=+VC=al+pC+~C (3.2)
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where 5
a, B,y = f(trC,trC, trC) = f(Ie, e, I11¢) (3.3)

are invariants.
Multiplying Eq (3.2) by U, yields

U2 = C=aU+BU%+4U = [BITIy +~y(IE11Iy — Tyl 1)l +
+ [a—ﬂllu-i-‘y(lulllu—13;11(]-}-11(2])]U+ (3.4)
+ [Blv +~(I5 = 21yl Iy + 111;)]U?

From Eq (3.4) follows that

BITTy + (I3 111y ~ [yIIly) =0
a— BIIy +(Iyllly — 211y + I13) = 0 (3.5)
Bly + 7(18 = 2Iylly + 111{]) =1

After solving Eq (3.5) we get «, 8 and « in terms of the principal invariants
of U '

Iyl

72
Iy - Iylly

S Iy - Iylly (3.6)

1
1=, — IpIly

Since, C and U are the positive definite symmetric tensors and U; = v/Cj,
(¢=1,2,3), from Eq (3.6), we obtain

o= —\/ 010203(\/61 + \/62 + \/63)7

B=—(Cy+ Co+4 Cs++Ci1C2 + /CaC3 + V/C1C3)y (3.7)

1
1= T T+ VC)(VTs + VT3 (VT + V/C5)

This agrees with the form of U determined by Ting (1985).
Since, C = U?, we have

det C = (det U)? or Iy =1l (3.8)

and .
trC = trU? or Iy = 5(1,3 - Ic) (3.9)
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Taking the trace of U given by Eq (3.2) yields
Iy = trU = 3a + BtrC + ytrC? (3.10)
and using Eqs (3.8) and (3.9), yields
If = 2134rC — 81V det C + 21r2C — trC? = 0 (3.11)

Since, 2tr2C — trC? = I% — 41I¢, Eq (3.11) coincides with that arrived at by
Hoger and Carlson (1984), (p.116), with the aid of different methods.

The usual procedure for solving quartics (3.11) leads us to the following
formula

uU\3 u\ 2 U
(Z> _ IC(Z> + IIC(Z> —IIIc=0 (3.12)
From the characteristic equation of C

C3—IcC*+ IIcC - IIlc =0 (3.13)
it can be seen that the roots of Eq (3.12) and (3.13) are related as follows

u; = 4C; 1=1,2,3 C;>0 (3.14)

1 2 2
Ci=3lc+ §,/IC — 31l cos[gw(z 1) - ¢] >0 (3.15)

218 —9IcTlc + 27111
VI2(12 = 311c)P

Since, —8vdetC < 0 and Eq (3.14) is true, the solution of Eq (3.11) is given
by

where

and, in turn

cos31p = (3.16)

o= S+ i+ V) = VO VG VG (3T)

when C; are distinct. Of course, the other three roots of Eq (3.11) are of no
use for us.

Formulas (3.2) and (3.7) become expressions for the left stretch tensor V
with the replacement C — B into Eq (3.2).

Remarks

If d=A4I13 - IRIIE + AI3T1Ic — 18IcIIcIIc + 27111 < 0, we have
Cy # Cy # Cs, C; > 0, (casus irreducibilis of Eqs (3.12) and (3.13)) and the
representation given by Eq (3.2) is unique. If ¢ = 0, we have the case of two



SIMPLE DETERMINATION OF STRETCH AND... 665

repeated eigenvalues and the representation of U is given by Eq (2.9) (this
follows from the Wang’s Lemma, see Gurtin (1981)). If 12 = 3I/c, we have
the case of three repeated eigenvalues and U is given by Eq (2.15).

Using the method presented in Section 2.1 (the knowlege of the invariants
of U is not required), we get

V2 = (a®+28y11Ic +~+ I +
+ [208 =287IIc +~y¥(I11g — Ic11c)]C + (3.18)
+ [207+ B2+ 2B71c + 7 (1E ~ 11¢)]C?

Combining Eqs (1.2) and (3.18), we have

a? +20y111c + 72101110 =0
2af — 206v11c +v*(I11c — IclIc) =1 (3.19)
2ay + 8%+ 28yIc + Y} (1E - 1) = 0

Rewriting Eq (3.19); 3 in the form

v2+ 2l Icw+ IcIlIc =0

(3.20)
20+ w?+2lcw+ 13 —1Ic =0
where
v = a w = ﬁ (3.21)
v v
yields
vl = 2IcT1Icv? + 8111w + ITIA(IE —411c) =0
(3.22)
_ 2111¢c
T w2+ Icllc
From Eqs (3.22) and (3.13) it follows
T 3 x 2 T
— - —_— 11 Il = 3.23
(arrz) 1o i) + 1e(r) —111e =0 323)
and
z; = 4111cC; i=1,2,3 (3.24)

Since, 8I11% > 0, the solution of Eq (3.22) is given by

v= — (VT + /3 + VEB) = ~VITTo(/C + VG +VTa)  (3.25)

)
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Using Eqgs (3.21) and (3.22); we obtain

w= 5[V + VG + V) + ]

1
2 _
7= wv—1Ig)+ I11c - Icllc (3.26)

a = vy B =wy

It is not difficult to show that the formulae agree with those for «, § and ~
obtained above.

We went out of the way to obtain Eqs (3.12) and (3.23) because we can
not agree with the final results given (without a proof) by Hoger and Carlson
(1984) (pp. 116-117).

By applying the representation theorem (B.4) (Tables 1 and 3, Appen-

dix B), a formula for U in terms of U and R (or F and ?T) of the form

U = ol + qgﬁ + 0302 + a4ﬁ2 + as(ﬁﬁ — ﬁﬁ) + asRUR +

+ as(U'R - RU®) + asR(UR - RU)R (3.27)
ap = fk(trﬁ,trﬁ2,trﬁs,trﬁz,t1'l~1§2,tr02§2,tr02§20§) k=1,..,8

can be obtained theoretically. However, the formulae for the coefficient ay in
terms of the invariants of U and R are extremely complicated.

3.2. Inverseof U

The representation of U~! is given by
U™ = 8l + eC + oC? (3.28)

where 6, ¢ and ¢ are invariants of C.
Multiplying Eq (3.28) by C and using the identity (A.1), yields

U=6C+eC+ oC=@llIcl+ (8- Ic)C + (e + Icp)C? (3.29)
Comparing this with Eq (3.2), we have

a=lllc B=6—1Ilcp vy=¢+ @l¢ (3.30)
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After solving Eq (3.30) we obtain the formulae for §, ¢ and ¢ in terms of the
invariants of C

aIIC aIC «
6 = - = _ — = — .
b~ T, TV I = (3-31)
where a, # and v are given by Eq (3.7).
Substituting Eq (3.6) and the identity
Ilc =115 -21yllly (3.32)

into Eq (3.31), we finally obtain 6, ¢ and ¢ in terms of the principal invariants
of U,

6§ = ¢[(1U11{~; — ITIy(I% + IIU)]
e = —¢|[Iy + (I} - 211v)] (3.33)
w=vly

where
1

T Iy(Iully — IT1y)
Eqgs (3.28) and (3.33) are identical to Eq (3.2) of Ting (1985).

» (3.34)

3.3. Determination of R

Since R = FU~!, we obtain from Eq (3.28) that
R=F(614+cC+pC?) = 6F+cFFTF+ oFF "FFTF = (81 + B + ¢B?)F (3.35)

where é, ¢ and ¢ are given by Eq (3.31) or by Eq (3.33).

3.4. More general isotropic tensor-valued functions of C or B

In this case, isotropic smooth tensor-valued functions of C and B have
the representations

A = F(C) = aol + ¢, C + aoC? (3.36)
A = F*(B) = aol + a,B + a,B? (3.37)
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where
ar = fr(C1,C2,Cs) kE=20,1,2 (3.38)

and C; (Ci = B; > 0,7 =1,2,3) are the principal values of C (defined by
Eq (3.15)).

In the way similar to that described in Section 2.6 we can find the coefli-
cients (3.38). If, C1 # Cy # C3, we have

ag = A1CC3b1 + AC3C 102 + A3C1Cobs
a) = -—Al(Cz + Cg)b] — Az(Cg + C])I)2 - A3(Cl + Cz)bg (339)
az = A1by + Azbs + Asbs

where
h = (Cr - Cz)l(cl - C3) be = (Ca — 03)1(02 —- ()
(3.40)
by = !

(C3 = C1)(C3 = Cy)

If, for example: Cy # C2 = Cjs, the representations of functions (3.36) are
given by Eqs (2.35) and (2.41).

3.4.1. Ezample 3

In a similar way to that described in Section 2.6 we can form the tensorial
Hencky measure of strain, defined by Eq (2.43). Since, A; = InU; = %111 C;,
(1=1,2,3) from Eq (3.39), we get

1
ag = 5[111(01)02031)1 + 111(02)0301[)2 + In(Cg)C1C2b3]

ay = _%[m(cl)(c2 + Ca)b1 +10(C)(Ca + Ci)bs +1n(C3)(Ci + Ca)bs]
(3.41)

1
az = 3[In(C1)by +1n(C2)bz + In(Cs)bs]

where b; are given by Eq (3.40). Substituting Eqgs (3.41), (3.40) and (3.15)
into Eq (3.36), yields the logarithmic strain measure in terms of C and the
principal invariants of C.

Other examples of the functions (3.36) and (3.37) can be treated in the
same way.
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Appendix A

Identities obtained from the Cayley-Hamilton theorem

The reader is referred to the following papers: Rivlin (1955), Spencer and
Rivlin (1958/59), Wesolowski (1964), Spencer (1971) and Boehler (1987) [ed.].

Three-dimensional case
The Cayley-Hamilton theorem for a second order tensor J reads

P-LP+I)-111=0 (A.1)
where
I = tr) = %(tr?J ~ tr)?)
(A.2)
11, = detd = étrSJ - %u-mﬂ +orf
Multiplying (A.1) by J and using (A.1), yields
W= (- II)P+ I =TI+ 1511151 (A.3)
Similarly, from (A.3), we get

P=(I3 =201+ TTI)NV + (1111 — 13115+ 113)) 4+ (130115 — 11,111))]

(A.4)
If in (A.1) we replace J by aJ + 0K+ cL, where «, b, ¢ are arbitrary scalars,
K, L are second order tensors, and equate to zero the terms with the same
coefficients we obtain important identities, for example

PPK 4 JKJ + KJ? = (trKWJ2 + trJ(JK + KJ) + (trJK — trdtrK)) +
—%(ter - trJ3)K + [trJ2K ~ trJKtrJ + %trK(tr?J - trJz)]I = (A.5)
= IKJ2 + IJ(JK + KJ) + (IJ]\" - ]JIK)J - II;K+ (Ipl\r— — Iyl 4+ I[\"IIJ)I

JKL 4+ JLK 4+ KJL + KLJ + LJK + LKJ = trJ(KL 4+ LK) + trK(JL + LJ) +
+trL(JK + KJ) + (trKL — trKtrL)J + (trJL — trJtrL)K + (trJK — trJtrK)L +
+(trJKL + trLKJ) — trJtrKL — trKtrJL — trLtrJK + trdtrKtrL)l = (A.6)
= I;(KL + LK) + Ir(JL + L) + [ (JK + KI) + (I, — IicIr)d +

+(Iy = I I)K+ (I — [Tk )L+

+(Iyxr + Ioxg = 1ol — Inlop — Iplyx 4 I3 I 1)
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The identities (A.1) and (A.5) are recovered from (A.6) by setting J =K =1L
and J =L, respectively. A derivation of Eq (A.6) which is independent of Eq
(A.1) was given by Rivlin (1955).

From Eqgs (A.1) and (A.5), yields

KJ 4 JKI2 = —1(2K + KI2) + I3UOK + K + (I + L) + "
AT

1
V(L ~ I31)) = TT1,K + [51,\-(@3 + 283+ (Lo — IyTon + 131K)]|

Two-dimensional case
In this case the counterparts of (A.1) and (A.6) are

Y-+ rni=0 (A.8)
and
JK+KJ = (trK)d+ (tr YK+ (trKI = trKer ) = T d+ K+ (g — I 1g)] (AL9)

respectively.
From Eqs (A.8) and (A.9), we get

JKY =Ty + I K =TT 101 (A.lO)

Appendix B

Nonpolynomial representations for isotropic scalar-valued and sym-
metric tensor-valued functions

Let A; (¢ =1,...,N)and W, (p=1,...,M) denote N symmetric second-
order tensors and M skew-symmetric second-order tensors respectively (for 3-
dimensional or 2-dimensional cases). The scalar-valued and symmetric tensor-
valued functions f(A;,W,), F*(A;,W,) are said to be isotropic if following
equations

f(ALW,) = f(QAQT,W,Q") (B.1)
QF*(A;,W,)QT = F*(QAQT,QW,QT) (B.2)

hold for any orthogonal tensor Q (Q € O(2) and Q € O(3) for 2-dimensional
and 3-dimensional cases, respectively).
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Determination of the nonpolynomial representations for isotropic functions
(B.1) and (B.2) for O(3) has undergone repeated corrections by Wang (1969),
(1970), (1971), by Smith (1970), (1971) and by Boehler (1977). The irredu-
cibility of the sharpened Smith’s and Boehler’s functions has been proved by
Pennisi and Trovato (1987). In Korsgaard’s (1990b) and Zheng (1993) papers
the representations of (B.1) and (B.2) functions have been obtained by diffe-
rent methods than in the aforementioned contributions. The representations
of 2-dimensional functions (B.1) and (B.2) by direct methods independently
of the 3-dimensional case have been obtained by Korsgaard (1990a).

The general representation theorem for scalar-valued functions (B.1) sta-
tes, that f can be expressed as a function of the invariants of the functional
basis of the argument tensors

f(AW,) = f(1) . (B.3)

where [, (s =1,...,5) are the invariants of the functional basis (Table 1. and
Table 2., for 3-dimensional and 2-dimensional cases, respectively).

Table 1. Functional basis for the full orthogonal group O(3)

trA;, trA], trA}, trA;A;, trA7A;, ttA;AS, trATAS, trAAjA,,

W2, W, W, trW,W W, Ljk=1,.,N; i<j<k
trA;W2, trAZW2 trAZW2AW,,, trA,W, W, , trA,W2W,, trA;W, W2, trA;A;W,,
trAZA; W, trAié?WP, trA,W2A;W,,, pg.r=1,..M; p<qg<r

Table 2. Functional basis for the full orthogonal group O(2)

trA;, trA?, trAA;, 5,j=1,..,N; i<j
trW2, trW,W,, pg=1,..M; p<gq
trAiAij

The representation for the tensor-valued function F*® Eq (B.2) with a
generating set of tensors G°® can be expressed as the linear combinations

L
F (A, W,) =) filAi,W,)G] (B.4)

=1

where the scalar-valued function fi(A;,W,) are general functions of the inva-
riants of the functional basis obtained from Eq (B.3). The general representa-
tion theorem for tensor-valued function (B.2) state, that G® are the generators
given in Table 3 and Table 4.
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Table 3. Generators G° of a symmetric tensor-valued function for the
full orthogonal group O(3)

A

AT AA; +AjALATA; + AAT L AAT + ATA, =1 N5 i< j
W2 W, W, + W, W, W2W, — W, W2 W, W2 - WW, pg=1,..M;p<gq
AW, — WA, WA W, AZW, — W A2 W,(AW, — W,A)W,

Table 4. Generators G*® of a symmetric tensor-valued function for the
full orthogonal group O(2)

I, A;, AW, — W, A; t=1,.,N; p=1,..,. M
P p
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Proste wyznaczeme tensoréw wydluzenia i rotacji oraz bar dueJ ogdlnych

izotropowych tensorowych funkeji deformacji

Streszczenie

Stosujac twierdzenia o reprezentacjach, metody interpolacji izotropowych funk-
¢ji tensorowych i rozszerzone twierdzenie Cayleya-Hamiltona wyznaczymy U, U™!,
V, V', R (bez obliczania wektoréw wlasnych) jako funkcje odpowiednio C,BiF.
RozpatrUJemy takze bardziej ogélne funkcje izotropowe C lub B np. InU. Otray-
mujemy pewne nowe i latwe do stosowania wzory na powyzsze funkcje zaréwno dla
dwuwymiarowej jak i tréjwyniiarowej deformacji.
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