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2D-models of an elastic subsoil describe three dimensional problems of
the elasticity theory for the subsoil layer 0 < z3 < h in the averaged
form which is independent of the coordinate =z3. 2D-representation
of a subsoil behaviour are convenient mainly in the subsoil-structure
interaction analysis which is reduced to the plane interface problem. In
this paper two different 2D-models for periodically stratified subsoils are
discussed and compared. The problem is studied in the framework of
the linear elasticity theory and under assumption that the constituent
homogeneous layers of a stratified subsoil are sufficiently thin and their
number is large.

1. Introduction

Among different approaches to the structure-subgrade interaction analysis
an important role play two dimensional models (2D-models) of the subgrade
(cf Salvadurai (1979)). These models involve in the explicit form the subsoil
response on the structure fundation footing and can be directly applied to the
calculations of plates, beams and shells on elastic foundations. For homogene-
ous subsoils or those made of a few homogeneous layers the general approach
to the formation of 2D-models was investigated by Vlasov and Leontev (1960)
and in a series of related papers. Wozniak M. and Wozniak C. (1988) and Woz-
niak M. (1991) proposed a method of 2D-modelling for a thick elastic layer
made of a large number of thin arbitrary distributed homogeneous sublayers.
In this paper we are to study the formulation of 2D-models for stratified sub-
grades made of a large number of thin periodically distributed homogeneous
layers underlain by a rigid stratum. Such situations are met in subgrades made
of a glacial clays (warwed clays) which are composed of a great number of ho-
mogeneous thin silt and clay layers (cf Jumikis (1962)). A general description
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of the subgrade is given in Section 2. In Section 3 we consider the simplest
2D-model obtained by the direct averaging of three-dimensional equations of
the linear elasticity theory. In Section 4 we apply a procedure proposed by
Wozniak C. (1987) and formulate 2D-models based on the concept of effec-
tive modulae of a subsoil. In Section 5 we suminarize the results and discuss
some special applications. Throughout the paper subscripts ¢, 7, &,/ and a,f
run over 1,2,3 and 1,2, respectively. Superscripts A, B and «,b run over

., N and 1,...,n, respectively, unless otherwise stated. Summation conven-
tion holds for all aforementioned indices. The physical space is parameterized
by the cartesian orthogonal coordinate system Ozjzqz3 and by 7 we denote a
time coordinate. Points situated on the coordinate plane z3 = 0 are denoted
by z,z = (z1,22).

2. Preliminaries

Let the part of a subsoil layer 0 < z3 < h, interacting with the structure,
occupy region II x (0, k) of the physical space, where II is a regular region
on the boundary plane z3 = 0 and let 3 = h be a rigid basis plane. It
means that the components wu; = u;(z;,z2,z3,7) of the displacement vector
for z3 € (0,h), 2 = (z1,22) € Ol as well as for z3 = h, z € I will be
neglected. By oy = oij(z1,22,23,7), biyt; = 1;(2,7) and p = p(x3) we
denote stress components, body forces (which are assumed to be constant),
tractions on a boundary plane z3 = 0 and mass density (independent of
x1, %), respectively. The governing relations will be based on the principle of
virtual work in the form

//a,]éum dzada = /b /péu, dzgda—/]pu Su; d:cgda+/t 6u? da
I

(2.1)
da = dzdz, 6ud = §uy(2q,22,0)

which holds for every specified virtual displacement field éu; = éu;(z1, 22, 23),
such that §u; = 0 both for z3 = h and for z = (zy,22) € Oll. The part
of the subsoil bounded by planes z3 = 0, 3 = h, consists of a large number
of layers having the constant thickness §. We assume that these layers are
thin; it means that §/A is neglegibly small compared to 1. Moreover, every
layer is assumed to have identical inhomogeneous material structure being
made of n + 1 homogeneous sublayers of thickness 6y,0s,...,0,41, Where
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614 ...4 6,41 = 6. Hence, we deal with a periodically stratified subsoil, made of
n+1 constituents, n > 1. The material of every ath sublayer, a = 1,...,n+1,
is isotropic and linear-elastic with the elasticity tensor components C;‘jk, given
by

Clp = pH(8ibj + 6ubjx) + A%6i561 a=1,...,n+1 (2.2)

1

where u?, A% are Lameé constants. Hence, the stress-strain relations in an
arbitrary but fixed ath sublayer of a medium have the form

003 = 2C43p34(553)
033 = Cg333u3’3 +C§30ﬁu(a,ﬁ) (2.3)
Oaf = Cgﬁ,ysu(,y,g) +C§ﬁ33u3,3 a=1,...,n4+1

Moreover, a constant mass density in ath sublayer will be denoted by p,,
a=1,..,n4+1.

The modelling procedures in this paper will be based on some auxiliary
concepts. A continuous function F defined on [0, k] which can also depend on
z € II will be called the é-macro function if for every 2/,2" € [0, h] condition
|z'—2z"| < 6 implies |F(2')—F(2")| < A, where A is an admissible computation
accuracy related to the calculations involving function F. Similarly, a function
F which is continuous in [0, k] and has in (0, /) continuous derivatives up to
kth order is said to be é-macro function if F together with all its derivatives
are d-macro functions (with admissible computational accuracies Ay, ..., Ax
related to calculations of the pertinent derivatives of F'). For an arbitrary
function f = f(z3) which is é-periodic, i.e. f(z3) = f(23 + §) holds for
every x3, we shall introduce denotation

6
<f>= %/f(a;;;) das
0

If function f(z3) in every ath sublayer is constant and equal to f,,
a = 1,..,n4 1, then

n+1
ba
<f>= Zaafa GGET (2.4)
a=1

For every é-periodic function f = f(z3) and an arbitrary continuous function
F = F(z3), which is independent of the parameter §, we obtain

h

h
/fF dog =<[> /Fdx3+0(6) (2.5)
0 0
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where O(6) — 0 as § — 0. Under assumption that F is a §-macro function
we replace in Eq (2.5) terms O(6) by O(X). In this case terms O(8) in
formula (2.5) will be treated as sufficiently small and neglected in the course
of modelling. This statement will be called the §-approzimation assumption.

3. Direct 2D-modelling

Direct modelling will be based on the kinematic 2D-modelling hypothesis:
we state that the distribution of displacements across the thickness of the layer
(in zz-axis direction) can be assumed in the form

ui(z1, 22,23, 7) = v (23)W(z,7) z = (21,22) (3.1)

where y4(.) are postulated a priori differentiable é-macro functions defined
in [0,h] and WA(-) are arbitrary sufficiently regular unknown fields, defined
for every instant 7 on the plane region II. Because for z3 = A the displa-
cement vector components can be treated as equal to zero we shall assume
that y4(h) =0 for A =1,...,N. The postulated a priori §-macro functions
y4(-), A = 1,..., N, will be called the macro-shape functions; in the simplest
case we can assume N = 1 and ~v(23) = (h — a3)/h (cf Vlasov and Le-
ontev (1960)). The new unknowns W(-, ) are said to be the generalized
displacement fields and are independent of =z3-coordinate. Let us observe,
that under the aforementioned kinematic hypothesis, functions wu;(z,z2,*,7T)
are assumed to be d-macro functions and hence, using Eqs (2.1) and (2.3) we
can apply the é-approximation assumption neglecting in formulae (2.5) terms
O(é). Denoting

n+1
Tij =< Cijkl > U(ksi) < Cz'jkl >= Z a’aC?jk[ (3'2)

a=1

where components of C%,, are given by Eq (2.2), we obtain from Eq (2.1) the
variational condition

h
//(Taﬂéu(av,@) +Ta38Uay3 +T346U3,0 +T336u3,3 ) drada =
e (3.3)

h
= // <p> (b; — 4;)0u; dxgda+/ti6u? da
1o n
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which holds for éu; = y46WA. Under denotations

h h
T4 = [ Tar’ dag T/ = [Tarts dos
‘ ° (3.4)
h
fA=<p> /7A(b,- — i;) dag 7§ = v4(0)
0

Eq (3.3) can be written down in the 2D-form (independent of z3-coordinate)

/ (TASWA o +TASWA — fASWA — ti7d6WA) da = 0 (3.5)
J .

which holds for every virtual field §WA = §WA(z), z = (21, 22) € II. Intro-
ducing constants

h h
GAP = /7”73 dzs G3P = /7”,3 7P dzs
0 0
(3.6)
h h
Gy = /’YA,s’YB,s dx3 g4 = /7A dzs
[}] 1]

we obtain from Eqs (3.4) and (3.2)

T4 (2, 7) =< Cpays > GABWE 5 (2,7)+ <Cpaza> GFAWS (2,7)

T (z,7) =< Csazp > [GEAWE(2,7) + GABWE 5 (2, 7)]

(3.7)
TA(2,7) =< Csazp> |GEEWE (2,7) + GFEWE 5 (2, 7))
T{(z,7) =< Ca333> GEEWE (2,7)+ < Ca30p> GFEWE 5 (2, 7)
and )
fA =<p> gbi— <p> GABWE (3.8)

Eqgs (3.7) will be referred to as the generalized constitutive equations. Let us
also assume that the generalized displacements W are independent func-
tions. Then the variational condition (3.5), after substituting Eq (3.8), yields

TA o (z,7) = TA(2, 1)+ <p> g%b; + ti(z, )78 =<p> GAPWE(z,7) (3.9)
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Eqgs (3.9) will be called the generalized equations of motion; together with
the generalized constitutive equations (3.7) they represent the 2D-model of
a stratified subsoil under consideration since all fields that enter Egs (3.7),
(3.9) are independent of =z3-coordinate. Substituting the right-hand sides
from Egs (3.7) into Egs (3.9) we obtain the system of 3N linear partial
differential equations in 3N unknown generalized displacements WA(z, 1),
z = (z1,22) € I, 7 € [10, 74].

The main drawback of the direct 2D-modelling method described in this
section lies in the kinematic hypothesis (3.1) in which y4(.) are differentiable
§-macro functions. It follows that also displacement gradients u;,3 are é-mac-
ro functions. On the other hand these gradients suffer jump discontinuities
across the interfaces between adjacent homogeneous sublayers of the stratified
medium. This fact gives a motivation for introducing an alternative 2D-model
which will be proposed in the subsequent section.

4. Effective 2D-modelling

Effective modeiling will be based on the approach to elastic media with
periodic material structure which was proposed by Wozniak C. (1987) and
analysed in a series of papers. The idea of this approach is based on two
assumptions. First, we postulate the micro-macro kinematic hypothesis by
imposing on the displacement fields in a subsoil the constraints of the form

Ui(xl,l‘g,l‘:g, T) = Ui(zlvzz')z:% T) + ha(l'g)Q:‘z(zl,Zz,Zg,T) (41)

where U;, Q% are independent regular é¢-macro functions and hq(-) are
continuous §-periodic functions defined in [0, §] by means of

0 if I3 € [0, Za—l] U [Za+1, (5]
ho(z3) =< (23— 24-1)/a if &3 € [24-1, Za] (4.2)
(za41 — 23)/ Qg1 if T3 € [2a,Za41], a=1,..,m

where z3 = z, is the interface between ath and (a+ 1)th sublayers and where
we have denoted zg =0, 2,41 = 6. Since of h,(z3) = he(z3Fnd),n =1,2,...,
functions h,(-) defined by Eq (4.2) in [0,6] are uniquely defined for every
z3 € R and are called the micro-shape functions. At the same time fields
U; and Q¢ are said to be macro-displacements and correctors (or microlocal
parameters), respectively. The physical sense of the kinematic assumption
(4.1) is evident; terms h,Q? describe the disturbances of displacements due
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to the inhomogeneous periodic structure of the subsoil. From Eqs (4.1), (4.2)
it follows that

u; = Ui + 0(6) (43)

Uiy; = Uiyj +ha3 Q1635 + 0(8)

The second assumption of the proposed method is that in the course of mo-
delling terms O(é) in Eq (4.3) can be neglected as sufficiently small ones; this
assumption has a physical sense for subsoils made of a large number of thin
homogeneous sublayers and will be called the micro-inhomogeneity approxi-
mation.

Substituting Eq (2.3) into the principle of virtual work (2.1), using the
kinematic hypothesis (4.1) together with the micro-inhomogeneity approxi-
mation, and applying formula (2.5), after simple reculations we arrive at the
principle of virtual work in the form

h
//(< Ciikt> Uk + <Cijiaha,s > Q%)6U;,; drsda =
o

(4.4)
h h
- /b; <p> /wi dzsda — / <p> /U.,-wi dzsda + /tiéUi da
r3=
i1 0 i1 0 i ’
and we obtain the following variational condition for correctors

h
//(< Cajkthars > Uk + < Cjakaha,s b > Q})8Q% dxzda = 0 (4.5)
o

Under assumption that §Q? are arbitrary independent functions, Egs (4.5)
imply the system of linear algebraic equations for correctors

< Ciakahayz bpyz > Q% = = <Cajrtha,z > Uk (4.6)
The general solution of Eqs (4.6) can be written down in the form
Q% = =K} < Cajihy,z > Uk (4.7)
where K{’jb are determined by

< Ciarahara by > K = 8565 (4.8)
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Now, substituting Eq (4.7) into Eq (4.4), denoting
Eijk =< Ciji1> — < Cijmsha,s > K2, < Canrihy,z > (4.9)
and
5,']' = EijklU(kﬂ) (4.10)

we obtain the following form of the principle of virtual work

h h
//SijﬁUi,j dil?sda:/bi <p> /6U,~ dzsda +
Ino I 0

h
—/ <p> /ini d:rg,da—l-/t,-&U,o da (4.11)
11 0 1

§UP = §Uy(z1,22,0)

The proposed 2D-modelling approach will be based on the kinematic 2D-
modelling hypothesis assumed in the form

Ui(z1, 29, 23,7) = 74 (23) W (2, 7) z = (21,2;) (4.12)

which from a formal point of view is similar to that appearing in Eq (3.1) but
is related now to the macro-displacements U; which are §-macro functions.
Hence, the drawback of direct 2D-modelling, discussed at the end of Section 3
has been removed from the proposed approach. Using Eqs (4.11), (4.12) and
following the line of modelling applied in Section 3, we obtain the generalized
equations of motion in the form

SA (x$T) - S;A((D,T)+ <p> gAbi + t,‘((t,T)’)’é‘ =<p> GABIX/iB(m,T) (413)

10

where we have denoted
h h
S{; = /S;a'yA dzs Sf = /5,37’1,3 dzs
0 0

The aforementioned definitions combined with Eqs (4.10) and with the kinema-
tic hypothesis (4.12), under denotations (3.6) lead to the following generalized
constitutive equations
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Sfa(2,7) = EpoysG*PWE ) (2,7) + EpassGg W4 (z,7)

S5u(2,7) = Eaazg|G§ WL (2,7) + GAPWP 5 (2, 7))
(4.14)

53(197—) = E3013ﬁ [GI?BBW;GB(LT) + G?BWSB’)@ (E’T)]

S5(x,7) = E3333G5 WE(2,7) + E33apG4 P WE ) (z,7)

The constant coefficients E;;x; defined by Eqs (4.9) are called the effective
elastic modulae. That is why the proposed approach will be referred to as the
effective 2D-modelling approach. Eqs (4.13), (4.14) involve only fields indepen-
dent of z3-coordinate and hence constitute 2D-model of a stratified subsoil
under consideration. This model leads to the system of 3N linear partial
differential equations in 3N unknown generalized displacements WA(z, 1),
z = (z1,z3) € I, 7 € [1o,74). It has to be emphasized that the 2D-model
described by Eqs (4.13), (4.14) is free of physical inconsistency discussed at
the end of Section 3 taking into account the jumps of displacement gradients
u;,3 across the interfaces of the stratified medium. This result was obtained
by using the micro-macro kinematic hypothesis (4.1) leading to formulae (4.3)
with discontinuities of wu;,3 across interfaces.

5. Conclusions

It can be seen that the 2D-model obtained in Section 4 has a mathematical
form similar to that derived in Section 3. The difference lies in the generali-
zed constitutive equations; in the direct approach we deal with the averaged
modulae < Cjjg > while in the effective approach we have to introduce the
effective modulae E;jx. The interrelation between these modulae is given by
Eqs (4.9) and (4.8) which can be also written down in the explicit form

Et]kl =< Ct]kl > - Z Z(Cz]mS CZTT::} (ankl - Cg:I:I)I(%bn (51)
a=1b6=1

where (no summation over a!)

1 a=1,c 1 a a 1
4 K +1 fac Ca+1 Ifa-H s = §9¢§.
— —Claa iy " ( j3k3 T+ C SLS) - 3314 it
a, ’ a, ’ J Qgy1 7

(5.2)
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and where we have assumed K = 0if ¢ = 0or ¢« = n+ 1. Hence, we
conclude that 2D-models proposed in Section 4 can be used if Clima = C?jf,::,
for a =1,...,n. The components C¥,, of the elasticity tensor in ath sublayer
are given by Eqs (2.2) since we have assumed that every sublayer is made of
an isotropic material. Formulae (5.1), (5.2) are the basis for calculations of
the effective modulae and constitute a special case of more general approach
proposed by Wozniak C. and Wozniak M. (1993). If n = 1, i.e. every periodic
layer is made of two isotropic homogeneous sublayers, then from Eqgs (5.1),
(5.2) we obtain the known result (no summation over i!)

o3 0y )‘1

Eiziz = (— +

- . — 1 2
CL. C2. Eijop = 01Cij0p + @2C0p
13:3 313

in which the elasticity tensor components Cliy a = 1,2, are determined by
Eqs (2.2).

In most cases we introduce in Eqgs (3.1) and (4.12) one macro-shape func-
tion and hence, one generalized displacement vector field W/}(z,7). In this
case superscripts A, B take the value 1 (since N = 1). Let us also assume
that 43 = v1(0) = 1, b, = 0 and denote G = G, G5 = G}, G33 = Gi}.
Introducing new unknown Ws(z,7) = Wl(z,7)— <p> gb3(G33E3333)~" and
setting W,(z,7) = Wl(z, 1), we obtain {from Lqs (4.13), (4.14) the following
system of governing equations for W;

GEiajgWjsap +G3(Eigjs — Eizjp)Wj,p —Ga3Eais;W; + t; =< p> GW; (5.3)

where components [E;;z; labelled odd number of subscripts "3” are equal to
zero. Let us observe that under aforementioned assumptions the generalized
displacements W,; have a simple interpretation coinciding with the displace-
ments of the boundary plane z3 = 0, provided that in formulae (4.3) terms
O(6) are neglected. Hence, Eqs (5.3) represent the interrelation between di-
splacements W;(z, 1) of the boundary plane and loadings t;(z, ) acting on
this plane. Introducing into Eqgs (5.3) the response 7; = —t; of the subsoil we
shall describe the structure-subgrade interactions which take into account the
periodically stratified character of the subsoil. For vertical r3 and horizontal
ro components of the subgrade response, respectively, we obtain formulae

T3 = G E3038W3.08 +G3( Esasp — E3308)Wonp —G33E3333Ws— <p> GW& 2

Ta = GEaﬁ'ytsI/V'yaﬁ& +G3(Eaﬁ33 - ESaSﬁ)I/VS’ﬁ _GSSESQSﬁLVﬁ_ <p> GW&

In many special problems horizontal components W, of the boundary displa-
cements can be neglected and hence the subsoil response given by Eqgs (5.4)
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reduces to the form
r3 = G E3,33W3,05 —Ga3E3333Wa— <p> Wa (5.5)

For subgrades made of two periodically distributed isotropic sublayers formula
(5.5) yields

(231 (s3] .

a; a2 .
™ Wa— + W
)‘1+2/“'1+)\2+2p,2) s—(a1pitazpz)Ws

i +;;)_1W3,0101 _G33(

T3=G(

and describes in the explicit form the effect of periodic inhomogeneity of the
stratified subgrade on its response. It has to be remembered that the resulting
relations have a physical sense only if the thickness & of a single representative
layer is sufficiently small compared to the thickness h of the part of a subgrade
interacting with the structure.

The applications of effective 2D-modelling of stratified subsoils to the
subgrade-structure interaction analysis, which were restricted here to the case
described by Eqs (5.4), can be also extended on situations in which we have
to deal with a few macro-shape functions y4. More detailed treatment of this
problem including numerical calculations will be subject to separate investi-
gations.
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Dwuwymiarowe modele uwarstwionego podloza sprezystego

Streszczenie

Dwuwymiarowe modele podloza sprezystego opisujg tréjwymiarowe zagadnienia
teorii sprezystosci dla warstwy podloza 0 < 23 < h w sposéb przyblizony, niezalezny
od wspolrzednej z3. Dwuwymiarowe reprezentacje zachowania podloza sa wygodne,
szczegllnie w analizie odd21alywan podloze-struktura, zredukowane_] do plaskiego za-
gadmenia kontaktu. W pracy omdwiono 1 poréwnano dwa rozne modele dwuwymia-
rowe periodycznie uwarstwionego podloza. Problem rozwazany jest w zakresie liniowej
teoril sprezystosci, przy zalozeniu, ze jednorodne warstwy skladowe uwarstwionego
podloza sa dostatecznie cienkie i liczba ich jest duza.
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