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Hammond and Doggett (1976) present the method for determination of
a damping coefficient of vibrations in flutter tests in terms of the Fourier
transformation. The invented formula for the damping coefficient is
complex and demands for many simplifications to be accepted when
producing it. It has been proved in the present contribution that the
plain and precise formula for the damping coefficient can be invented
without any simplifications when employing the Fourier transform. This
method has been tested both on the model and the experimental data.
It is currently being used in the analysis of flutter characteristics of an
aircraft in flight.

1. Introduction

The term ”flutter” means the self-excited aeroelastic vibrations of an air-
craft in flight. In accordance with this definition these vibrations do not
originate either from the operating power unit or from the separation of an
air flow on various aircraft parts, e.g. in flights at high angles of incidence.

Typical examples of flutter vibrations are bending-torsional vibrations of a
wing. When the bending frequency close to the frequency of torsion it can be
found in the resulting configuration of angles of incidence that a wing starts
to absorb energy from the incoming air flow and converts it into the energy
of rapidly extending wing vibrations. The similar increase of the bending
vibrations of a wing can appear in the phase-delayed relative motion of the
aileron system.

The flight testing of flutter tendency consists in the precise analysis of
aircraft vibrations, which appear in flight with stepwise increasing speeds.
When the natural vibrations due to the turbulence of ambient air are small
and difficult to analyze the excitation is being applied by means of the impulse
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or harmonic method. These forced vibrations (see Fig.1) are then analyzed
with respect to vibration mode, frequency, amplitude and damping coefficients
of particular vibration components, respectively.
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Fig. 1. Vibrations of an aircraft with underwing stores after the impulse excitation,

mesured by means of vibration sensors. The upper part shows the results of test on

the ground at V = 0 speed and the lower part — results of flight tests at the speed
V =870 kph

The damping coefficient value for vibrations of the aircraft structure has
been taken as the basic one.

The A.C.23.629-1 Advisory Circular to the US Airworthiness Regulations
FAR-23 demands for the damping coeflicient ¢ value to be not less than 0.03.
It means that the relative vibration damping coefficient { should not be less
than 0.015 within the whole range of permissible flight speeds.

The freely decaying signal for the vibrating one-degree-of-freedom system
in the form

y(t) = Aexp(—(wot) sin(wnpt + ) (1.1)

has been analyzed by Hammond and Dogget (1976).
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The frequency wy for a system without damping may be written as

/lc
Wy = —_
m

In mechanical systems £ is a stiffness constant and m is a generalized
mass of vibrating system.
The natural frequency of a system can be written as

Wy = woy/1 — (?
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Fig. 2. Theoretical form of the freely diminishing signal y(t) for the linear

one-degree-of-freedom system and the function u(t) — the movable analysis window

Fig.2 presents the character of freely decaying signal y(t) and the function
u(t) in the form

u(t) = 1 for 7<t<T+r
)10 for t<rand t>T+T

The Fourier transform at the point w, for the y(t) function multiplied by
u(t) can be written as

74T
V(o) = [ ytyexp(—junt) d (1.2)
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Hammond and Doggett (1976) present the result of transformation of
Eq (1.2) after many simplifications, e.g.

wo & wy (k1

¢? - value to be neglected as being small compared to unity
and after expanding some functions into the Maclaurin series, which yields

A
In Y (jw,)| = —Cwpm+1In — +
n|Y (jwn ) (wnT ﬂ2 )

+% In [(wnT)2 + wnT(sin 2(wnT + @) — sin 2w, (7 + T) + go])] + (1.3)

—gwnT(

2w, T + sin 2(w,7 + ¢) — 3sin 2w, (7 + T) + go])
wnT + sin 2(w, T + @) — sin 2{wn (7 + T) + ¢]

On the assumption that
T = kT, k=1,2,3,..

the formula becomes

(w,T (

1.4
5 )

1 A
In Y (jwn)| = —Cwnt + §Csin 2(wnT + @) + In 3 + In(w,T) —

In|Y(jew,)|}

"
Fig. 3. Transform Y versus the shift of the analysis window

The form of Eq (1.4) indicates that the graph presented in Fig.3 can be
obtained by computing |Y (jw,)| for successive values of 7. The coefficient
(¢ represents the slope of a curve in Fig.3. Simplifications accompanying in-
venting of the formula (1.4) give way to some doubts about correctness of the
received result and precision of the computation of ( in this way.
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2. A correct formula for the damping coefficient as the ratio of
Fourier transforms

The outline of evidence was given by Lenort (1989b). The Fourier trans-
form was there defined for the T-long vibration section, e.g. for 7 = 0 and
for the T'-long vibration section shifted to the right, not for an arbitrary value
of 7, but for 7 =T, = 27 /w,.

The Fourier transform of the vibration section y(1) for w = w,, which
starts at the point 7 = 0 can be expressed as

T
Valin) = o [ 3(0)exp(~ont) dt (2.1)

By substituting Eq (1.1) into Eq (2.1) we obtain

T
2
Y1 (jwn) = 7 / Aexp(—At) sin(wnt + @) exp(—jwnt) dt (2.2)
0

where the following notation is used

A= Cup = —o2n (2.3)

v1i-(?
For the T-long vibration section which is shifted to the right by = = T,
Eq (2.2) takes the form

T+T
Y2 (jwn) = % / A exp(—~At) sin(wnt + @) exp(—jwy,t) di (2.4)
T.

Introducing a new variable
z=t—-T.

into the limits of integration we obtain

S35

z2=0 for

[/
z=T for 1 + T

Thou Eq (2.4) takes the form

T
Ya(jwn) = %/Aexp[—)\(z—i-Tc)] sin[wn(2+T:)+¢] exp[—jwn(2+T:)] dz (2.5)
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Bearing in mind that

wnT, =27
we have
sin[(wnz + wnT:) + @] = sin(wn2z + @) (2.6)
and
exp[—jwn(z+ Tc)] = exp(—jwnz)exp(—jw,T.) =

(2.7)

= exp(—jwpz)(cos2m — jsin27) = exp(~jwnz)

Taking into consideration Eqs (2.6) and (2.7) from Eq (2.5) we have
o T
Y2(jwn) = exp(—/\Tc)T / Aexp(—Az)sin(wnz + @) exp(—jwnz) dz  (2.8)
0

Since for
y(t) # 0 Ya(jwn) # 0

we can write the ratio of transforms

T
Z [ Aexp(—At)sin(wnt + ¢) exp(—jwnt) dt
0

Y2 (jwn T )
2(jn) exp(—AT.)% [ Aexp(—Az)sin(wpz + @) exp(—jwnz) dz
0
from which, substituting for z = ¢ we have
Y1(jwn)
T = exp(AT, 2.10
T = exp(AT.) (210)
hence ()
1 Y] jwn
A= —In———< 2.11
T, Y2(an) ( )

Let us notice that when inventing the formula (2.11) it was not necessary to
assume that T = nT, where n =1,2,3,...
Eq (2.11) can be generalized

1 1 Yl (an )

A= —Ip 21U%n)
kT, Yii1(Gwn)

k=1,2,3,.. (2.12)
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In general Y (jwy) is a complex number and and using simplified notation
we rewrite Eq (2.10) as Y7 = Y, exp(AT,) therefore

ReY; = ReY; exp(AT,) ImY; = ImY; exp(AT,)
Then we have | ReV.
A= T In ReY, (2.13)
and | Imy
A= 3 In Y, (2.14)
as well as 1
A= In 2.15
Tc |Y2| ( )
Eq (2.15) represents the generalization of the well-known equation
1, A
A= —In— .
3 n yw (2.16)

where the amplitudes A; and A; have been replaced by modules |Y;| and
|Y2| of the Fourier transform.

After having computed |Y;| and |Y3|, using Eq (2.15) we can determine A
and then using Eq (2.3) and knowing w,, { can be determined as well. A can
be computed also from Eq (2.13), even when only the real parts of the Fourier
transforms are known or from Eq (2.14) when only imaginary parts of trans-
forms Y7 and Y3 are computed. It is obvious that for the real data the best
estimate of ( is obtained from Eq (2.15). To the computation of the Fourier
transform Y7 we take e.g. N = 1024 of the y(t) value instead of one value
of Ay and the estimate of the damping coefficient obtained from Eq (2.15) is
definitely much more precise than that obtained from Eq (2.16).

Egs (2.13), (2.14) and (2.15) can be generalized in the same way as Eq
(2.12).

Computation of the damping coefficient ¢ using Eq (2.15) has been verified
on the model (see Fig.4) and the real (see Fig.5) data, respectively.

The presented method enables one to assess the damping coefficient of raw
signals, which are noise-distorted or composed of a high number of vibration
components, providing that their frequencies are sufficiently far from each
other.
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It can be proved that the shift 7 can appear not only in the form
r = kT, k=1,23,..

but also )
T = §lcTC k=1,23,..

)

Fig. 4. Example of analysis of the damped model vibrations, composed of two

components: f; = 10 Hz, {; = 0.01 and f, = 20 Hz, {3 = 0.01. The damping

coefficients for such a simple case are computed precisely. The analyzed signal
denoted by dots overlaps the approximating curve denoted by a solid line

Fig. 5. Example of record of the real signal of aircaft vibrations measued in flight at
the speed of 870 kph — denoted by dots and the result of analysis — the
approximating solid line. Three main components are: f; = 15.3 Hz, {; = 0.037;
f2=19.2 Hz, (5 = 0.092; f3 =24.2 z, (3 =0.041

The above holds true when the level of damping has to be determined
for short vibration sections. In practice the value 7 = T, has been used
most often. The width of an analysis window T depends on features of
the object under consideration. When evaluating the flutter tendency, the
time T is, as a rule, less than 0.5 sec (see Fig.5). When employing the Fast
Fourier Transform (FFT) there should be in the section T at least two cycles
2T, of vibrations with the known frequency. For small values of T, near
to 0.5 sec in order to obtain the satisfactory resolution it would be useful
apply the so called "making up” with zeros. That is the reason why for short
vibration sections (cf Lenort (1989a)) the algorithm for quick computation
of the discrete Fourier transform has been worked-out. It enables one to
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determine the natural frequency w, and the damping coefficient value for
decaying signals y(t).

This method opens the way to improves the resolution by increasing the
frequency of sampling evaluated signals. It enables the quick computation of
individual transform points, which is useful when determining the damping
level.

As it is well known the FFT is presumed to compute the whole set of
transform points independently of current needs of the user.

3. Conclusions

The presented method of computing the damping coefficient by means of
the Fourier transformation is very useful when applied to the analysis of real
signals, rough, noise-distorted signals, signals distorted by random disturban-
ces, as well as signals composed of a high number of vibration components.

The method has become the part of the computer-based system of vibra-
tion analysis and is currently being used in the analysis of flutter characteristics
of an aircraft in flight.
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Zastosowanie przeksztalcenia Fouriera w badaniach flatterowych

Streszczenie

W pracy Hammond i Doggett (1976) opisano metode okreslania wspélezynnika
tlumienia drgan w czasie badan flatterowych przy pomocy przksztalcenia Fouriera.
Wyprowadzona tam zaleznos¢ na wspolczynnik tlumiennia jest skomplikowana i w
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czasie jej wyprowadzania poczyniono wiele zalozen upraszczajacych. W niniejszym
artykule podano dowdd bez uproszczen i wyprowadzono prosty i $cisly wzdér na
wspOlczynnik tlumienia przez zastosowanie transformaty Fouriera. Metoda ta zo-
stala przetestowana na danych modelowych i doswiadczalnych. Jest stosowana do
analizy wlasnosci flatterowych samolotu w locie.
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