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Differential equations and admissible boundary conditions describing a
new model of a generalized elastic foundation consisting of n SBS-layers
gFig.l) are proposed. Each SBS-layer (Shear layer — Bending layer -
pring layer) consists at outmost of three layers: a shear-sensitive layer,
a bending layer and a layer formed by springs (Fig.2). The algorithm
of finding the stress and displacements state in such a foundation is
presented.
The model of foundation being proposed has a straightforward mechani-
cal interpretation and may by utilized as a representation of many real
structures e.g.: embankments, roads, runways, railway subgrades respec-
tively, etc. Assuming true values for the constans describing properties
of corresponding SBS-layers one can arrive at a model representing any
elastic foundation.

1. Introduction

An elastic foundation can be modelled by a number of well-known me-
thods (cf Jemielita and Szczes$niak (1993); Selvadurai (1979); Henry (1986)).
The equation of unidirectional multiparameter model may be written in the
following, generalized form

La(p(z®)) = R (w(z)) (1.1)

where
w(z®) - deflection of the foundation
p(z*) - load acting upon the plane bounding.

!This paper was supported by the Ministry of Education under the contract with the
Institute of Structural Mechanics Warsaw University of Technology (No. 504/072/205/1)
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The differential operators £, and R, can be expressed as follows
n n
Ln=) A;VH Rn=) BiV% (1.2)
e =0 £=10]

Bharatha and Levinson 1980, have proved that the relations By; > 0,
Boiy1 < 0 are satisfied. It can be proven that the same relations Ag; > 0,
Aziy1 < 0 are satisfied. The physical interpretation of coefficients A;
and B; depends on the foundation model being assumed. There are several
attainable models of the elastic foundation described by Eq (1.1), one of them
is the generalized model consisting of n SBS-layers set forth by Jemielita
(1992). Each SBS-layer (Shear layer — Bending layer — Spring layer) consists
at outmost of three layers: a shear-sensitive layer, a bending layer and a layer
formed by springs (Fig.2).

The model of foundation being proposed has a straightforward mechanical
interpretation and may by utilized as a representation of many real structures
e.g.: embankments, roads, runways, tracks, respectively, etc. Assuming true
values (0 or oo) for the constans describing properties of corresponding SBS-
layers one can arrive at a model representing any elastic foundation?.

In Jemielita (1992) Eqs (1.1) have been derived employing a direct ap-
proach, which is particularly useful wlen the equation representing the (1.1)
model has to be obtained, there are hiowever obstacles in determination of
admissible boundary conditions on the cylindrical lateral edge surface of the
foundation. When the foundation has a form of infinite layer with the di-
scontinuous loading acting upon it might be difficult to establish properly the
continuity conditions which should be imposed on the loading discontinuity.
If the plate lies on such a foundation, difficulties might arise in proper esta-
blishing of natural boundary conditions on cylindrical lateral surface of the
foundation.

All the aforementioned questions can be satisfactorily answered only if the
variational approach to derivation of the governing equations of both the plate
and the foundation is applied.

The aim of the present contribution is to derive governing equations of
the foundation shown in Fig.1, along with the boundary conditions, using
the virtual work principle. These equations represent e.g. behaviour of the
embankment lying on the native foundation. Some exemplary applications of
the equations being obtained will be presented in one the forthcoming papers.

The domain occupied by the foundation is parameterized by a right-handed
normal coordinate system {2%,23}. This system is defined by one family of

21t will be shown in details in Section 5, where the equations representing models
shown in Fig.4 = Fig.8 will be derived.
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planes parallel to a reference plane and two families of cylindrical surfaces
orthogonal to these planes. The coordinate 23 is denoted by (Z,z) or the
capital letter Z. Partial differentation with respect to 2% variables will be
denoted briefly by a commma.

A stands for a reference plane of the foundation in the initial configuration.
The area occupied by the foundation in the initial configuration is denoted by
2 =Ax(0,H),where H is the overall thickness of the foundation.

The whole area 012 of the foundation is

802 =AUAoU 4, A, =S x (0, H)

where A and A stand for the planes bounding the foundation and A; being
its lateral cylindrical surface. S denotes the boundary line of the reference
plane A. This boundary line is determined by the intersection of the A
surface and the reference plane.

We assume a pure normal loading p; = p(2®) acting upon the reference
plane A. The summation convention over Greek indices running over 1,2
will be adopted.

2. Equations of equilibrium and boundary conditions of a
unidirectional multiparameter foundation

Consider a unidirectional foundation consisting of n layers shown in Fig.1.
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The ith SBS-layer is formed of three layers: the first, elastic one of thickness
a; bears only o33 stresses, the second layer of thickness h; is a bending one,
while the last one of thickness b; undergoes shearing (Fig.2)3.

SBS layer (i)

Fig. 2.

We seek for equations expressed in terms of displacements representing the
foundation together with the boundary conditions which have to be satisfied
on cylindrical lateral side surface of the foundation.

We write the virtual work principle in terms of the linear elastic theory

/ (592610, + %6 (1tas + w3,0) + Sz AV =

2
(2.1)
= /X6U3 dV + /(po’éuo, + 7)36u3) dA
2 o0
where
SoB G333 components of the stress tensor
Uy, U3 — components of the strain vector
X — third component of the body forces vector
Py P3 - components of the body surface loading vector.

Body forces acting in the ith SBS-layer (I'ig.2) are

9: z; € (0, bl)
c{i Ge(h)
fi z € (0, a;

We assume the body forces ¢;, d; and f; to be constant through the thickness
in each layer.

3The replacement of layers undergoing bending and shearing, respectively does
not affect the final results. Hence we can use the term "SBS-layer” or "BSS-layers
system” (Bending layer — Shear layer — Spring layer).
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Formulae for the displacement vector components in the ith SBS-layer
can be written in the form
w,-(:zﬂ) 2; € (O,b,')
us(a?,2) = 3 wi(ah) zie(-4.%) (22
(1-&wi+ &wiew 7 € (0,0

0 z; € (0,b;)
ua(xﬂ,z) = —%Lcwi(lﬁ))a Zi € (__Iéi" %L) (23)
0 z; € (O,a,-)
t=1,2,3,..,n
where
7.
& o= = £€(0,1)
' (2.4)
G = 2 Ce(-1,1)

It can be easily seen from the above equations that the strains wuz are represen-
ted by continuous functions, while in formulae for wu, discontinuos functions
appear. wp(z®) stands for a known function representing displacements of
the native foundation.

Substituting Eqs (2.2) and (2.3) into the virtual work principle (2.1) yields

Xn:{/(-Mf’“,ga + Nig1 = Ni = Q7 , - q;)éw,-(lA +
=14

(2.5)
- 9 ; R n m R
+ / (M, — M,-,,)&a—lz = (Vi = Vi )dwi] dS} + 30 3 (Rix = Bix)dwir = 0
S =1 k=1
with the following notation
Ay
2 1 ag
Miaﬂ(x’y) = / ZiSC'ﬂ dZ; Ni(xa) = ;/533 dz;
b "o

2

by
Q,‘a(:l:ﬂ) = /503 dz; R = M,-M(sk + 0) - ]V[,'m(sk — 0)
0
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gi(z%)
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M;, = Mngn,

OM;
Js

ns

Vo = Qi, + MP® jng +

Qit1

0

b;
+ /gi dz; i=1,2,..
0

an

2

= A/If;angsa = €7aﬂffangn,y

_hi
2
h.

b; 2

:/ﬁsdzi-l‘ /ﬁsti

0 _hi
2

Qin = Q?na

hi
2

/ Civ1fiy1 dZipr + /(1 — &) fi dzi + / d; dZ; +
0 _hy

tn bn
/(1—£n)fn dzn + / d, dzn+/gn dzn
0 _hy 0

Nn+1 =P

——

M;

in

= Hi"na

/ﬁ,-, = Jfl\i"sa

components of the unit vector n = [cos,sin @]

normal to the curve S (Tig.3)

Ricci permutation symbol

components of the unit vector tangent to the curve

S (see Fig.3), so = ong

value of the M;, difference at the discontinuity s
on the plate edge of the ith foundation layer

number of discontinuities

loading acting on the foundation lateral surface.

(2.6)

(2.7)

(2:8)
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Fig. 3.

The equations of foundation equilibrium follow from Eq (2.4)

_A’[zpaga'f'NiH_Ni—Q?a:(Ii i=1,2,...,n—1
’ ’ (2.9)
_A/Iga,ﬁa _ Nn _ Q?L,a =q.+p

together with 227 admissible combinations of 2n boundary conditions stipu-
lated on the cylindrical lateral surface of the foundation.

Most important of them are the natural boundary conditions

~

M| = M;, Vinl . = Vi, 1=1,2,3,...,n (2.10)
s 5
and the rigid boundary conditions
. dw; N .
1MS_w1 Sl =@ i=1,2,3,...n (2.11)

The terms supplied with circumflexes appearing in Eqgs (2.10) + (2.12)
stand for known functions.

From the formula (2.5) it also follows that on the foundation boundary, at
the twisting moment discontinuitics s in the ith bending layer, the following
condition has to be satisfied

R = R for ¢=1,2,3,..,n k=1,2,...,m (2.12)
From Eq (2.6)4 it can be seen that the quantitics Rk, called corner forces,

might appear on the plate layer edge at the points where the twisting moment
jumps.



894 G.JEMIELITA
3. Internal forces and stresses

The stresses appearing in Eqs (2.6) can be determined by applying the
following governing equations

0 z; € (0,b;)
7.E- ” h; h;
Sap(”,2) = § ~ g [(1 = v)wies + 1V wides]  Zi€ (<%, %) (30)
0 z € (0,a;)
Sa3(27,2) = Giw; o for 2 € (0,0;) (3.2)
S33(z7,2) = —k;v; for z;€(0,q) (3.3)

where wv; stands for the spring layer deflection in the ith SBS-layer, which
can be obtained from

v(2%) = wi(z®) — w1 () (3.4)
L;
k; = a (3.5)
where_
E; - Young modulus value for the spring layer
E; - Young modulus value for the bending layer
v; — Dbending layer Poisson ratio
G; - Kirchholf modulus value for the layer sensitive to shear
bap — Kronecker delta.

The values of S,p stress in the bending layer (second one) have been
calculated from the governing equations of the isotropic Hookean body under
the plane stress-state assumption.

The values of S33 stress in the spring layer have been calculated on the
assumption that the stress-state is uniaxial.

Substituting for the stresses {from Eqs (3.1) = (3.3) into formulae for the
internal forces (2.6) yields

M;,

Q,’a(l‘ﬂ) = /50,3 dz; = G’iw.,-,a G; = Gib; (3.7)
0
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17
M@ﬂ:;/&ﬂ@z—hw (3.8)
4]

where D; represents the flexural rigidity of an isotropic plate given in the
following form
E:3
12(1 - v?)
The stresses S33 in the ith SBS-layer, together with the stresses S,z
in the bending layer can be deterinined by imposing the local equilibrium
conditions on a 3D-body*

D; = (3.9)

§Pe 54 53 3 =0 (3.10)
S+ 883+ X =0 (3.11)
Substituting Eqs (3.1) into Eq (3.10) and iinposing the compatibility con-

ditions of tangent stress on the shearing and bending layers interface, after
integration yields

Giwia z; € (0,0;)
Giwiq LI}
Seala™, ) =1 (1= G)[Fgte = P n (14 OViwia] - Ge(-1,D)
0 z; € (O,ai)
(3.12)

1=1,2,..,m

It should be noticed that in the present model the shear stress S,3 reveals
a discontinuity on the shearing and spring layers interface.
Substituting Eq (3.12) into the equilibrium equation (3.11) we have
S33(27, aiv1) = (gi + GiViwi)z z; € (0, ;)
$33(27,00) + F(1+ ) [ D2+ G — )V iwit

v ~(_h; b
Sl 2) = b3 GV — Shid] Ze(47)
Sa3 (:L"Y, %1-) —Zi f; zZ; € (0,(11')
(3.13)
where
i=n,n-—1,.,1 Saa(2%, ang1) = —p(a®) (3.14)

1This way of Sas determination demands some comnient. Tt is impossible to deter-
mine them from the governing equations ol bending and shearing layers, respectively,
due to the obvious reasons. In the spring layer theses values can be calculated from
the governing equation (3.3), more accurate values, however should be solved from
the equilibrium condition (3.11).
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4. Equations in terms of displacements

The following differential equations system for the multi-layered foundation
can be arrived at upon substituting the forces from Eqs (3.6) + (3.8) into the
equilibrium equations (2.9)

R.W = Q (4.1)
where
( Ki =k 0 0 0 0 0
—ky Ky —ks 0 ... 0 0 0
0 —k K —ky - 0 0 0
I (4:2)
0 0 0 0 —kno1 Knci —kn
0 0o o0 o0 0 —ky, Hn |
dimR,, = (n x n)
wT = [’(Ul,’LUQ,’LUg, ...,wn] dimW = (n x 1)
(4.3)
QT[ql,qz,qs, ---,fYn] dimQ = (nx 1)
Ki=Hi+ kip M = ki — GiV? + D;V*
(4.4)

an:qn+p

In the author’s opinion the differential equation of the foundation deflection
w(z®) = w,(2*) is most important. Employing formally the Cramer’s rule
yields

det R, (w) = det C, (4.5)
where
( K:l —kg 0 0 ree 0 0 q1 i
—kg K:g -—kg 0 e 0 0 q2
0 -k K —ky - 0 0
Cn = . . ’ .3 . l . . . q3 (46)
0 0 0 0 ot _kn—l K:n—l In—1
. 0 o0 o0 0 -+ O —kn Qo

dim C,, = (n x n).
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Taking into account the foundation model shown in I'ig.1 it can be seen
that the above cquation describes the displacements of the reference plane.

Applying Eqs (4.1) we can write the formula for cach w; in terms of one
function w, = w only. Neglecting the body forces in Eq (4.1) we arrive at Eq
(2.16) in Jemielita (1992)5.

5. Example
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Fig. 4.

Consider the foundation consisting ol three SBS-layers (Fig.4). For this
type of foundation Eq (2.24) can be rewritten as

det Ry(w) = det Cy (5.1)
where
Ki =k 0
detRyw =det | =k Ko —k3 | w=
0 —k;} H;}

= {ikoks = [kokaGiy + ka(kn + k2)Ga + (kuks + kaka + kaks)Gs| V2 +
+ [(k2 + k3)G1Gs + (k1 + k2)GaGs + k3G Gy + kaksDy +

51t can be easily shown that for ¢; =0,7i=1,2,...,n—1 and ¢, = p the operator
L, = detC,. In Jemielita (1992} the printer’s error appeared in Eq (2.2). In the
formula for B;, matrix only the operator K appearing in the ith row should be
supplied with the mark ™ over it.
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+k3(k1 + k2)Da + (kiko + kiks + k’zks)Da]V‘l + (5.2)
—[G1GaGs+ (ksDa + (ka + k3)Ds) Gy + (ksDy + (1 + k2)Ds) Gz +
+((k2 + ks)Dy + (kv + k2)D2) G VO + GG Dy + G1Ga Dy +
+G1Gy D3 + k3Dy Dy + (ky + ko) D2 D3 + (ko + kz)Dle] Ve +
—(G1D2D3 + Gy Dy Dy + Gi3Dy D)V + D1D2D3V12} w

Ki k2 ¢
delC3 = det ——ICQ K:?_ g2 = 1621{53(]1 +
0 —ks @

+ha(ky + ky — GV + D1 V)g; + {klkz + kykg + koks +
—[(kz + k3)Gy + (k1 + /»’2)6'2] v+ [5'15"2 + (ke +k3)D1 + (5.3)
+(ky + k2) Do| V* = (G1 Dy + G2 D1)VE + D1D2V8}(73

From Iqs (4.1) it follows

1 . o 1
wy = Tk [(/st — k3w — Kafs — /»'3(/2] = m{ [/»‘2/93 +
- ((/Cz + k3)Gs + /'735'2) V4 ((/fz + k3) Dy + CoGs + k3D2> v+ (5.4)

- (éng + é;;Dg) ve -+ DQD:;VSJU) - (/»'2 + ks — 52V2 -+ ng'l)?]"g — k‘g(/g}
1 1 A o2 1 ~

Wy = — [st - qs] = — [(’fs — G3V*+ D3VTuw — (/3] (5.5)
ks ks

Taking the above relations into account we can write the formulae for di-
splacements, stresses and internal forces, respectively, in terms of the deflection
w(z?).

Upon neglecting body forces (¢ = ¢2 = 0, ¢z = p), we arrive at the
equation given by Jemielita (1992) (IXqs (4.2) and (4.3))S.

6In Lq (4.3) given by Jemielita (1992) the printer’s ervor appears. The coelfi-
cient of V¢ operator is [(kg +k3)Dy + kiDs + /\TgD;}} G, while it should be

[(kz + k3) D1y + (k1 + ko) Dg] Gs.
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Applying the above equations we can obtain the equations for model shown
in Fig.5 + I'ig.8. Substituting into Eqs (5.2) + (5.5) for

Di=Dy=D3=0 G3=0
d1=d2=(13:0 {j3=0

we obtain the equation

~ kiy ~ 1~ ~ . kG
{ki = [Gi+ (14 2)Go| VP4 —CiGV o =g+ (1+ = 2V +
ko ko ky ko
(5.6)
k1 1 1 ki = 1o2 1 = = o4l ~
1+ —+4+ — 14+ — Vitd — v
+{ + +k3 [(/.w2 L3>G’ /»3( +k2>GQJ +k2k3G‘G2 }q3
representing the foundation shown in Fig.5, together with the relations
_ G2 (12 1 1 G2 2
=1 oy )w o (k?+k3 oy V) (5.7)
Wy = W — []_3 (58)
k3
dbiibeed?
wVv 23333333333 3k,
I
3333335333323k
[T IR - o,
P ? $ s P: < < 3’ :: /{1

Fig. 5.

If G, =G, Di =D, Dy =D3 =0,dy =d3 =0,Gy =Gy =0,
g2 = g3 = 0, f3 = 0, k3 = oo the equation of the foundation shown in
Fig.6 appears

~ ky D
(k1 = GV?+ DVHw = ¢ + ( + —2 - EW e v4)(q2 +p) (5.9)

and .
w, = w — F(q2+p) (5.10)
2
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Fig. 6.

g3 = 0, f3 = 0, k3 = o0, the equation of the model shown in Fig.7 can
be obtained

While for D1:D2=D3:0, d] :dg—d3:0, G3=0,

O R e L

ko
(5.11)
and

_ C::’Q 2 . ].
wy = (1 T \Y )w - E((]g +p) (5.12)

Viebbiiid ?
wv I TITIIITITIT - 6.
$33333333 3k,
NN o
e S

1

TTT7777777777777 777777717777 777

Fig. 7.

Upon~putting D] = D2 = D3 = 0, d] = dg = d3 = 0, G'l = G,

G, = G3 =0, g0 = g3 =0, fa = 0, k3 = oo one can obtain the
equation representing the model presented in I'ig.8
~ kG
(b = GVHw =g + (14 12 = 2V (g2 + p) (5.13)
ko ko
and

1
wp = w— k—((j-z + p) (5.14)
2
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Fig. 8.

The equations given by Kerr (1984) can be arrived at upon neglecting the
body forces in Eqs (5.6), (5.9), (5.11) and (5.13), respectively.
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Réwnania 1 warunki brzegowe uogdluionego podloza sprezystego

Streszczenie

W pracy wyprowadzono réwnania rdzniczkowe 1 dopuszczalne warunki brzegowe
modelu uogdlnionego podloza sprezystego skladajacego si¢ z ukladu n warstw SBS
(rys.1). Kazda warstwa SBS (Shear leyer — Bending layer — Spring layer) sklada sie co
najwyzej z trzech warstw: warstwy czulej na Scinanie, warstwy przenoszacej zginanie
oraz warstwy sprezyn (rys.2). Wyznaczono przemieszczenia 1 naprezenia w takim
podlozu. Proponowany model podloza ma prosta interpretacje mechaniczng i jest
mozliwy do odwzorowania w naturze w postaci np. wielowarstwowych nasypow, drég,
paséw startowych, itp. Przyjmujac odpowiedniec wartosci stalych charakteryzujacych
poszczegdlne warstwy SBS mozemy uzyskaé praktycznie dowolny model podloza.
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