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The paper deals with a problem ol stability of a discrete-continuous
structure under circulatory load. An example of the elastic column with
localized loss of stilTness modeled as a (lexible diminishing beam element
is discussed in detail. Stabilization or destabilization of the system is
observed, depending on localization and flexibility of a diminishing ele-
ment. Continuous and discontinuous variations of the critical force are
observed and thoroughly explained as a consequence of the mutual in-
teraction of two kinds of characteristic curves, which were distinguished
on the force-frequency plane. An analytical solution to the problem is
found by the use of the transfer matrix method.

1. Introduction

The design of structures subjected to nonconservative loads very often
occurs as a very complex question from the point of view of stability and
optimization. Particularly a study of behaviour of systems under f{ollower
forces is important in engineering practice. A comprehensive review of the
literature on this problem is given by Bogacz and Janiszewski (1985). The
presented paper considers in general the problem of stability of a structure
with localized loss of stilfness. The Beck column, being a linear elastic column
subjected to the compressive tangent load of constant magnitude acting at its
free end, is discussed in detail.

Investigations concerning the stability of the Beck column with localized
loss of stiffness, were made by Anifantis and Dimarogonas (1983). The clastic
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(cf Bogacz and Mahrenholtz (1980), (1986); Bogacz and Imiclowski (1986); Bo-
gacz and Niespodziana (1987); Bogacz et al. (1991); Immiclowski et al. (1992))
and viscoelastic (cf Bogacz and liniclowski (1986); Bogacz and Niespodziana
(1987)) models of localized weakness of the column were then developed by
Bogacz, Mahrenholtz et al. Stabilization or destabilization of such a system is
observed depending on the value of its parameters. A considerable decrease in
the critical force value is observed when the localized loss of shear stiffness is
placed near the fixed end of the column, while above lourfold increase of the
critical force is possible when the localized loss of bending stiffness is situated
in the centre of the structure. A very disadvantageous position of the weakness
occurs above the centre of the column, for which the discontinuous changes of
the critical force with a destabilization of the structure can follow a variation
of the design parameter.

An optimization and application of the active control is possible when the
phenomenon of stability of the considered structure is precisely determined.
Particularly the mutual interaction of two kinds of characteristic curves which
were distinguished by Bogacz et al. (1991) are substantial in understanding of
this phenomenon. Optimization research began with a model of the stepped
column, then Bogacz and Malrenholtz (1980) took the column with a single
segment of vanishing dimensions and stilfness, located at the centre of the
structure as an initial shape for the maximum load optimization. One of the
best results, compared with findings of Tada ct.al. (1989), was obtained using
the gradient projection method in a multi-modal analysis (cf Mahrenholtz and
Imielowski (1991)). The critical force is very sensitive to even a small variation
in the acting force direction (cf Imielowski (1993)).

In the present paper a phenomenon of the continuous and discontinuous
changes of critical force is thoroughly explained as a consequence of quantita-
tive or qualitative variation of the characteristic curves on the force-frequency
plane. Some generalizations of the results obtained previously by Bogacz et
al. (1991), Imielowski et al. (1992) were made and special attention will be
paid to two kinds of characteristic curves. New findings are discussed.

2. Formulation of the problem

The structure under consideration, i.e. the lincar elastic column with the
localized weakness placed in the cross-section zy = {y/L, is shown in Fig.1. In
the following, the column will be treated as a system consisting of two beam
segments connected by a flexible clement as an idealization of a crack or any
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flexible element of stiffness and dimensions considerable smaller than these of
the structure.

N
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Fig. 1. Beck column with localized weakness

The equation of motion for the beam segment 1, is given by the following
expression

9 9%y 9%y 9%y

W@[ax?) F P+ pATE = 0 (2.1)
where
EI - flexural rigidity
P - axial tangential load
pA - mass per unit length.

The exact solution for the segment of constant mass and stiffness distribu-
tion is assumed in the form

yi(z,t) = wi(z) exp(iwt) (2.2)
where

w;i(z) = Aysinh Ajz + Agcosh Ajz + Azsin Aoz + Aycos Az (2.3)

_ P P \2 pAw?
Mz = \l$ﬁ * \/(2131) T (24)

and w is the frequency of vibration.
Boundary conditions for the column (the Beck problem) are given by

w1(0) = wi(0) = wy(L) = w"(L)=0 (2.5)
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and the conditions of equilibrium of forces and continuity of displacements in
the cross-section z, are given by

wi(z1) = wy(ay)

wi'(z1) = wy'(21) (2.6)
wi(z1) — we(z1) = y5wi'(2))
wi(z1) = wy(21) = ypwy(a)

where 75, = yrEI/L and ~% = ysET/L® are nondimensional parameters of
the rotational flexibility and the flexibility in a direction of the shear force,
respectively, In an analysis sometimes the stiffuess parameters, defined as
Ky = 1/v5 and k% = 1/7%, are used for convenience.

A4y

Fig. 2. (a) Complete deformation of thie additional segment; (b) deformation with
the first eigenform (rotation); (c¢) deformation with the second eigenform (transverse
displacement)

Conditions (2.6) accept a general case of the local loss of stiffness, i.e. loss
of the rotary stiffness and loss of stiflness in the direction of shear force. For
a model of the local weakness taken as an additional beam clement of dimen-
sions tending to zero, the rotation is an idealization of the deformation with
the first natural form and is shown in I'ig.2b, whereas the transverse displace-
ment represents the deformation with the second eigenform as shown in Fig.2c.
A rotationally-slidable joint, presented in Fig.3, satisfies the complete defor-
mation of such an additional segment, rotation and transverse displacement
simultaneously. Such idcalization is a generalization of the usually developed
model of the elastic hinge-joint (cf Bogacz and Mahrenholtz (1986); Bogacz
and Niespodziana (1987)) and the model of the transverse-slidable joint (cf
Bogacz and Imielowski (1986); Bogacz and Niespodziana (1987)).

An analytical solution to the problem is possible by the use of the transfer
matrix technique. The variables y, ¢, M, Q, have a similar constitutive form
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Fig. 3. Model of rotationally-slidable joint

and in the method there arc closed in the state vector G defined as
G =[y,p,M,Q]" = [w,w, —EIw", ~Elw"]T (2.7)

For a generalized scgment (beam or joint) the transfer matrix T, enables
a relation between the states vectors for its both boundaries

G?+1 = TiG? (2-8)

where G? = G(z; = 0) and Gy, = G(zi41 = 0).
The successive multiplying results in the global transfer matrix T. For
the complete structure we get

Goyy =Tn T.THGY = TGY (2.9)

The partial transfer matrix T; for the segment can be found using the
solution of Eq (2.3) and is given by Bogacz et al. (1991). However, for the
rotationally-slidable joint T; is obtained from Eqs (2.6). The nonzero elements
of the transfer matrix for the joint presented in I'ig.2 are

ti=1 tia =75 toz = T1h (2.10)

The boundary conditions (2.5) lead to the characteristic equation which
expresses the relation between force and frequency

laz  ta4

= ®(P,w)=0 2.11
_— (P,w) (2.11)
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In the following, an analysis of the characteristic curves (eigencurves) on
the force-frequency plane, determined by the successive real roots of Eq (2.10),
is taken into account. The critical state is defined by the critical force. The
structure loses its stability by flutter with P, determined as a lowest double
root of Eq (2.10). For P > P, the respective eigenfrequencies became con-
jugate couple w;; = wp £ ip, an amplitude of vibration increases, due to the
exponential term of Eq (2.12)

yi(x,1) = wi(z) exp(iwg £ p)t = w;(x) exp(iwg) exp(£pt) (2.12)

On the force-frequency plane the flutter critical force is determined as ma-
ximum, minimum or a point of intersection of curves on the PX = P (w*)
plane appearing with w* > 0. The structure loses its stability by divergence
with P occuring with zero frequency. The calculations are done for nondi-

CcT

mensional values P* and w*, where P* = PL?/ET and w*? = w2 Lp/L1.

3. Influence of system parameters on a shape of the eigencurves

A configuration of eigencurves on the load-frequency plane typical for the
Beck column is given in IMig.4f. It is obvious that the localization of the discon-
tinuity on the free end of column does not influence its stability. The condition
of disappearance of the bending moment is satisfied as an assumption. Also
the condition of disappearance of the shear force is fulfilled, because the cir-
culatory force acts tangentially to the free end of the column by definition.

Appearance of the localized loss of stiffness in any other position results in
variation of a shape of the characteristic curves. Quantitative and qualitative
variations cause the continuous and discontinuous changes of the critical load.
It was observed that the thorough stability analysis of the system is possible
when the simultaneous rotation and transverse displacement of joint is taken
into account. Only for a such model, two kinds of the characteristic curves
can be easily distinguished on the force-frequency plaue. Any variation of the
shape of the eigencurves may be then treated as a result of interaction between
curves of this two kinds.

Let us begin the consideration with the structure characterized by a perfec-
tly flexible joint, i.e. wxj = &% = 0.0. Configurations of characteristic curves
for z; = 0.0, 0.1, 0.3, 0.5, 0.7, 1.0, are shown in I'ig.4. Tt is seen that for two
selected localizations z; = 0.0 and 2; = 1.0 only one typc of eigencurves is
observed. In the former case, successive double roots of Eq (2.10) tend to zero,
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Fig. 4. Configuration of characteristic curves for the column with a perlectly flexible
joint, K% = Kk = 0.0, located in dilerent cross-sections
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in calculation wj. = 0.00006. The column loses its stability by divergence.
However in the latter one, the configuration of eigencurves is typical for the
Beck column. Successive double roots occur at greater frequency. The column
loses its stability by flutter.

Let us consider a localization of the joint at a small distance from the fixed
end of the column. It is seen that a few curves of the "flutter” configuration
is added to the ”divergence” one. In Fig.4b for z; = 0.1, two additional
curves of the second configuration are observed within the considered range
of frequencies. When the joint takes a position closer to the centre of the
column, the "flutter” curves bring near the origin of coordinates, whereas the
?divergence” curves displace from it. It is seen from Fig.4d that for z; = 0.5
the curves coincide in pairs which, for P* = 0.0, become double roots of the
characteristic equation. The critical force diminishes to zero.

A graph of P; = P%(zy1) for K} = k% = 0.0 is depicted in Fig.5a. The
thick line is determined from an analysis of the first four frequencies. It is
seen that for z1 < 0.622, instability of the divergent type (wZ. = 0.00006)
occurs with the first and the second natural form. Ilowever for z; > 0.622 the
column loses its stability by flutter with the third and the fourth mode. It is
seen that for z; = 0.622, the column loses its stability oscillating at first four
frequencies. Variation of localization of the joint about this position results in
a switch of the critical frequency from w}. = 0.00006 to w?, = 28.56. On the
graph for some values of z; there is marked a drop and then a steep increase
of P. The successively marked areas appear a consequence of meeting and
then of crossing-over of the successive 7th, 6th, 5th, 4th and 3rd curves of
the divergence type by the first flutter type curve. The first of them, denoted
by VII takes place for the joint situated near z; = 0.1, as shown in Fig.4b.
However, the last one, denoted by III, takes place for the joint positioned near
x1 = 0.3, and is explained in Fig.4c. Because an infinite number of such areas
follows the crossing of both configuration of curves, we conclude instability of
the structure with a perfectly flexible joint.

Let us consider a column with a joint for which the stiffness of transverse
or of rotational degree of freedom tends to but does not reach the zero value.
It is seen from Fig.6, that now the point of intersection of the eigencurves is
always placed above the horizontal axis and determines the value of critical
force always bigger than zero. High sensitivity of the critical force to the
joint stiffness is typical for this set of system parameters. However, the first
eigenfrequency remains approximately equal to zero. The critical force is of
the divergent type with the critical frequency tending to zero and appears as
the point of instability of the first and the second eigenfrequencies.

An increase of the first eigenfrequency from zero value, is caused by the
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Fig. 5. (a) Critical force versus joint location for the column with perfectly flexible
joint K% = k) = 0.0; (b) shape of eigencurves for the unstable structure;
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Fig. 6. Influence of the joint position on a shape of characteristic curves for the
Jjoint with equal to zero stiflness of the rotary degree of freedom

stiffening of the second degree of freedom of the joint (x§ > 0.0and x% > 0.0).
On the force-frequency plane a shift of the first eigencurve {rom the vertical
axis is observed. The column loses its stability by flutter. Let us turn to the
effect of the joint position. The graphs of P* = P*(w*) for dilferent z; are
presented in Fig.7. The "movement” of two kinds of eigencurves with respect
to the origin of coordinates is seen. On the graph the first curve of a "flutter”
configuration changes its position and crosses the 3rd, 4th and 5th curves of
the "divergence” one. The curves intersect each other for a so called ”critical”
positions of the joint, e.g. z1 = 0.186, z; = 0.23796 and z; = 0.3277, as
depicted in Fig.7. For the successive ”critical” positions z; the respective
critical forces determined as a point of intersection of curves are bigger than
the previous ones and do not influcnce the P2 appearing a the first and the
second natural frequency. Such behaviour is typical for each localization below
the centre of column.

It is an important observation that a variation of the joint position does
not influence minimal distances d; and ds between the curves. Beyond the
"critical” position, and positions diflering slightly from the critical ones, the
distances djp, d2 depend proportionally directly on the joint stiffness value.
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It is depicted in Fig.6 for (k%j,k%) taking values equal to (0.0,1.0) and
(0.0,10.0), respectively.
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Fig. 8. Switch-over of eigencurves for the case of interaction between eigencurves of
both kinds

Let us discuss the joint positioned above the centre of the column. In such
localization interactions between the two first eigencurves of each configura-
tion take place. The qualitative changes of the characteristic curves result in
discontinuous variation of the critical force. This phenomenon is explained in
Fig.8. Bogacz and Mahrenholtz (1986) and Bogacz and Niespodziana (1987)
also described it. For the set of parameters (y; — 0.0,75 — 00,21 = 0.495)
the column loses its stability oscillating with the first and the second modes
while for (yf — 0.0,7% — oo,z; = 0.75) instability occurs with the second
and the third natural frequencies. The discontinuous change in the critical
force value is connected with a discontinuous variation of the critical frequ-
ency.

For the localization of the joint above the centre of the structure a skip of
the critical force may occur also at high eigenfrequencies. It is obvious that
an analysis of the first four frequencies may occur insufficient in determining
the critical force value.
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Fig. 9. Critical force versus joint stiffness for z; = 0.0 and z; = 0.6
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4. Influence of system parameters on the critical force value
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Fig. 10. Discontinuous changes of critical force for the joint located above centre of
column z; = 0.6

In consideration the joint stiffness is taken from the range x%, s} € (0, 00).
The typical graphs of PX = P (k%, k%) are presented in Fig.9 and Fig.10 for
the localized weakness placed at =z; = 0.0, z; = 0.5 and 27 = 0.6. It
is seen that for localizations of the joint below the centre of the structure
only continuous variation of the critical force takes place. A considerable
decrease of the critical force follows the location of the joint near the base of
the column. When the joint flexibility does not change, any higher position
(but not exceeding the centre of the column) results in an increase of the
critical force. Particularly advantageous from the point of view of critical force
maximization, is a column with the joint stiffness characterized by xj — 0.0
and % # 0.00r k% — 0.0 and x} # 0.0. This high value of the critical force
is kept independently of the stilfness value for the second degree of freedom of
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the joint. The highest value of P., equal to 80.8FE1/I? (about fourfold increase
in a comparison with the uniform column) is observed for the joint of stiflensses
Kk — 0.0 and k% # 0.0, localized in the cross-section z; = 0.5'. The same
value was obtained by Bogacz and Malrenlioltz (1986) for a structure with an
elastic hinge-joint. For the column with the joint of tending to zero value of the
shear stiffness only double increase of the critical force, i.e. up to 39.9E1/I?,
is possible for this localization.

It is to notice that for a localization of the joint below the centre of the
structure the obtained surfaces P} = PX(k%,K}) are concave. The minimal
value of the critical force occurs for rotary stilfness about two times smaller
then the shear rigidity. However, when the joint is located above the position
z1 = 0.5 the critical force represents a point on the discontinuous surface in
the space of system parameters. The lines of discontinuity indicate a skip of
the critical force and take place for the critical values of structure parame-
ters, when qualitative variations of the shape of the characteristic curves take
place. Points of the surface which are placed on the both sides of the line of
discontinuity are represented by a qualitatively dillferent configuration of the
eigencurves. An example of the discontinuous surface is shown in Fig.10 for
the flexible element placed in the cross-section z; = 0.6.

5. Conclusions

In the paper an influence of localized weakness on stability of the Beck
column is discussed. In general the local loss of stiffness is modeled by an
additional element, i.e. joint, with a possibility of simultanecous rotational
and transverse displacement. A location of such an element can stabilize or
destabilize the system, depending on its position and flexibility. It was shown,
that for a local weakness placed below a centre of the structure, the instability
occurs with the first and the second eigenfrequency. For other localizations the
column may loss its stability oscillating at higher frequencies and an analysis of
the only first four eigenfrequencies may appear to be insufficient to determine
a value of the critical force.

The graphs of P% = PZ%.(x%,K}R), for various joint positions are presented.
For the model of the column with a generalized {lexible element, realizing
simultaneous shear and rotational displacement, the critical force is never

I'The phenomenon of a considerable increase of the critical force when the dimini-
shing segment is located in the centre of the column has an application to the shape
optimization of this structure (cf Imielowski and Mahrenholtz (1994))
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higher then the one obtained for the column with the localized loss of bending
stiffness or shear stiffness (cf Bogacz and Mahrenholtz (1986); Bogacz and
Imielowski (1986)). There is noticed a near fourfold increase of the critical
load P, = 80.8EI/I3, when the idecal flexible hinge-joint is located in the
centre. It can be seen that for transverse-slidable joint only double increase
of P, is possible for this position. It was shown that when stiffness of at
least one degree of freedom of the joint tends to zero, the critical force takes
its maximal value independently of the stiflness value of the second degree
of freedom. From the point of view of maximization of the critical force the
model of the structure with the single elastic hinge-joint located in the centre
of the column is suitable for considerations as an initial for optimization.

When the joint is located above the central position, the critical force repre-
sents a point on the discontinuous surface in the space of system parameters.
Such positions of the flexible element occur very disadvantageous because a
small variation of the system parameters can result in a drop of the critical
force with a destabilization of the structure.

It was shown that the discontinuous changes of the critical force follow the
qualitative variation in configuration of the characteristic curves, whereas the
continuous changes are caused by quantitative variation in this configuration.

Due to the fact that the linear approach does not always describe well
a nature of the phenomenon, the next investigations will be devoted to the
nonlinear generalization of the above studies brought for discussion with the
findings presented by Kounadis (1991a) and (1991b).

References

1. AniranTIS N., DiMAROGONAS A., 1983, Stability of Columns with a Single
Crack Subjected to Follower and Vertical Loads, International Journal of Solids
Structlures, 19, 4, 281-291

2. Bogacz R., IMIELOWSKI SZ., 1986, On the Discontinuous Changes of Criti-
cal Force for Columns with Transverse-Slidable Joint under Follower Load, in:
Stabilily of Steel Structures, Ed.M.Ivanyi, Akademiai Kiado, Budapest, 1990,
1, 355-363

3. Bogacz R., IMIELOwsSKI Sz., MaHRENNOLTZ O., 1991, On the Shape of
Characteristic Cuves of Non-Conservative Loaded Structures with Jump Phe-
nomenon, ZAMM, 71,4, T182-T185

4. Bogacz R., JaNiszEwsKl R., 1985, Analysis and Synthesis of Column Sub-
jected to Follower Forces from the Point of View of Stability, Advances in
Mechanics, 3 (in Russian)



REMARKS ON STABILITY OF DISCRETE-CONTINUOUS STRUCTURE... 919

5. Bogacz R., ManreNHOLTZ O., 1980, Optimally Stable Structures Subjected
to Follower Forces, in: Structural Control, H.11.E.Leipholtz Ed., North-Holland

Publishing Co., IUTAM 1980

6. Bogacz R., MAHRENHOLTZ O., 1986, On Stability of Column under Circula-
tory Load, Archives of Mechanics, 3, 281-287

7. BoGgacz R., NIESPODZIANA A., 1987, On Stability of Continous Beck Column
with Localized Loss of Rigidity, IFTR Reports, 27, 1-27 (in Polish)

8. Imierowskl Sz., 1989, Influence of Localized Internal Damping on Stability
of Column Subjected to Circulatory Load, Ingineering Transaclions, 37, 4,
715-727

9. IMIELOWSKI SZ., 1993, Sensitivity Analysis of Stepped Column under Circula-
tory Load, ZAMM, 73, 4, T859-T862

10. ImiErowsKI Sz., Bogacz R., MaureNHoLTZ O., 1992, On Optimization of
Columns with Local Flexibilities Subjected to Circulatory Load, ZAMM, 72,
6, T547-T550

11. IMIELOWSKI SZ., MAHRENHOLTZ O., 1994, Optimization and Sensitivity Co-
lumns under Circulatory Load, Appled Mathematics and Computer Sciences
(submitted to publication)

12. KounNaDIs A.N., 1991a, Chaoslike Phenomena in the Non-Linear Dynamic
Stability of Discrete Damped or Undamped Systems under Step Loading,
Int.J.Non-Linear Mechanics, 26, 3/4, 301-311

13. KouNabpis A.N., 1991b, Some New Instability Aspects for Nonconservative
Systems under Folloer Loads, Int.J. Mech.5ci., 33, 4, 297-311

14. PesTEL E.C., LeEckKIE F.A., 1963, Matriz Methods in Elastomechanics, Mc.
Graw-Hill Book Company, New York

15. TADpA Y., MaTsumoTo R., OKU A., 1989, Shape Determination of Nonconse-
rvative Structural Systems, Proc. of 1-st Int. Con[. ”Computer aided Optimum
Design of Structures”: Recent Advances (Ed. C.A.Brebbia and S.Hernandez),
Southampton, 13-21, Berlin, Springer

Uwagi o statecznodci ukladéw dyskretno-ciaglych poddanych obcigzeniu
cyrkulacyjnemu

Streszczenie

W pracy rozwazane sg zagadnienia statecznosci ukladéw dyskretno-cigglych pod-
danych obcigzeniom niekonserwatywnym. Na przykladzie kolumny ze zlokalizowang
nieciagloscig sztywnosci, modelowang wezlem obrotowo-przesuwnym, badany jest
wplyw parametréw ukladu na stateczno$c. Uklad jest obciazony silg cyrl\ulachna,
Badany jest przypadek sily styczne; do swobodnego korica kolumny. Omdéwiono zja-
wiska stabilizacji 1 destabilizacji konstrukcji oraz ciaglych i skokowych zmian sily
krytyczne] bedace rezultatem wzajemnego oddzialywania dwéch rodzajow krzywych
charakterystycznych na plaszczyZnie obcigzenie-czgstosé. Do rozwiazania zagadnienia
wykorzystano metode macierzy przeniesienia.

Manuscript received April 6, 199/, accepled for print April 20, 1994



