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The paper deals with two methods of calculating of the eigenfrequencies and
the logarithmic decrement for two-layer T-beam composed of viscoelastic
stiffness-comparable layers. One of the methods is developed within the linear
theory of (visco)elasticity by assuming continuity conditions of forces (instead
of stresses) between adjoining layers. Second method is based on Kirchhoff
hypothesis and Rayleigh method. A comparison of the methods has been
presented and simple, useful relationships for calculation of the logarithmic
decrement have been established.

1. Introduction

Layered beams of non-rectangular cross-section composed of stiffness-com-
parable layers have been applied both in civil and machine engineering and because
of this they have been investigated in various aspects. In this short review a few
papers are mentioned in order to introduce a reader to the problems considered
by researchers. It is noteworth that all the papers discussed here have been de-
voted to static problems. The author has noticed that dynamic problems of the
structures had not in generall been investigated. So, Goodman and Popov (1968)
developed a theory enabling prediction of three-layer wood beam displacements
caused by a static load, assuming interlayer slip or mechanical connections of la-
yers by means of nails or complete connection between layers by means of glue.
Although all considerations of the authors have been restricted to the beam of rec-
tangular cross-section the theory presented there can be extended by taking into
account non-rectangular cross-sections. The equation of equilibrium (16) given by
the authors is the same as the equation (1a) presented by Itani and Brito (1978)
for two-layer T-beam. Problems considered in the latter paper are similar to those
found in Goodman and Popov’s work. Ansourian and Roederick (1978) have gi-
ven a theory enabling us calculation of static deflections of two-layer structure
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composed of concrete plate and steel beam assuming both an interlayer slip and
residual stresses within the steel, non-rectangular beam. Troitsky and Zieliniski
(1989) have analysed a static behaviour of the same structure, however assuming
additionally that it is prestressed by means of different tendons. Polensek and Ka-
zic (1991) have introduced a procedure for analyzing I-beams and geometrically
similar structures under bending and compressing static loads. Mori et al. (1971)
have presented FEM procedure and necessary FORTRAN programs for evalua-
ting stress concentrations of metal-FRP bonded joint where the metal member is
of T-cross-section.

In this paper two methods of calculating both the eigenfrequencies and the
logarithmic decrement of two-layer T-beam consisting of stiffness-comparable vi-
scoelastic layers have been developed. One of the method has been derived within
the linear theory of (visco)elasticity by applying of forces (instead of stresses) con-
tinuity conditions between layers. Formulation of the eigenvalue problem within
the first method has been developed assuming both isotropic and fibrous layers.
The second method is simplified since the Kirchhoff hypothesis of flat cross-sections
and the Raylaigh method have been applied. The simplified approach enabled to
derive a simple formula for calculating the logarithmic decrement of the structure.
Both methods have been compared with respect to their accuracy and the re-
sults of comparison have been presented and discussed. According to the author’s
knowledge the first method is a new one regarding formulation of the problem, ho-
wever the second one is only an extension of the Baumgarten and Pearce’s (1971)
approach given for two-layer beam of rectangular cross-section.

2. A new formulation and solution to the eigenvalue problem in the
case of isotropic layers

Below we consider an eigenvalue problem of layered simply supported beam
of .non-rectangular cross-section as for instance shown in Figure 1. The beam is
composed of any number of viscoelastic, either isotropic or anisotropic (fibrous),
layers and vibrates freely.

In order to formulate the boundary value problem the following kinematic
assumptions are applied

e = _g,-(z)dvz’) exp(iwmt) uy, £ 0

(2.1)
uz; = f;(2)W(z) exp(iwmt)

where 2 = -1, j = 1,2,3,... denotes a number of the layer, variable z is the
coordinate overlaping the beam deflection, symbol ¢ and w,, stand for time and



FREE VIBRATIONS OF LAYERED BEAM... 91

AT
y Y
'. .. .o ...'. { == hY'l
ol " {posshly fibrous)
- g ¢ A
= = ~
IR Ce— g
. ‘b’
>,
- ]

Fig. 1. An exemplary non-rectangular cross-section of the layered beam considered in
the paper

for eigenfrequency of mth mode of vibration, respectively. Functions g¢;(z), f;(z)
are unknown, however

uqz)=rvmgn(mz%) m=1,23,... (2.2)

where L is the length of beam.

The assumptions (2.1) are not exact in respect of requirements of the set of
equations of motion of the theory of elasticity however, it is shown in the paper,
that they are exact enough considering correctness of computational results thus
practical accuracy of the formulation of problem considered here. Within any layer
of the beam occurs plane stress so upon the basis of Hooke:s law we obtain

(03); = (022); = (04); = (023); = (0zy)j = (012); = 0 (2.3)
(ws = (em)s = — 2o + (622);) (24)

On the ground of Eq (2.4) one can notice that within the vibrating beam the
strains (€,,); are not equal to zero however the assumptions (2.1) satisfy Hooke’s
law provided that (e,,); does not depend on the space variable y. By taking into
account the definition of infinitesimal strain one can write in this case

uy, = C(z,2,t)y + D(z, z,1) (2.5)

where C(z,z,t) may be easily evaluated, however D(z,z,t) will be equal to
zero when the beam vibrates transversely without twisting and zz plane of the
Cartesian coordinate system divides the beam into two parts of equal width.
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For an isotropic material the constitutive equation can be written in the well
known form

(or)j = 2p5(ert); + Sradj(Err); k,l,r=1,2,3 (2.6)

however equations of motion of the jth layer being in plane stress are, within the
linear theory of elasticity, as follows

0%y 0%y %u;
2y e (O8O ) O s
i Vhusy + iy (5 + e ) — P =0

0uz;  O%ugj 0%u,;j
iV + 5% (s + r2) =P =0 @7
8%u
o =0

where V2 = 9%/8z% 4+ 8%/82%, pj, A; are the Lame constants and p; is the mass
density of jth layer. The factor x; is defined as follows

k= 1t
J_l—uj

(2.8)

where v; denotes the Poisson ratio. It is obvious that during sinusoidal vibration
of the beam, the third equation of motion is not satisfied. This equation is not
taken into account in further considerations because it has been assumed that di-
splacements u,; and accelerations 3%u,;/8t? of the particles within transversely
vibrating beam are rather small in comparison with displacements and accelera-
tions in directions z and z, respectively. By using the expressions (2.1) and (2.6)
one can transform Eq (2.5) to the following form

d2 [ ]
“Hitr 2 dz? ; + [(’\I + 2”'1)0‘ PJWm]QJ + ('\I + K; A =0
(2.9)
a2 f; d
N+ 205) T ~ (sl = psud)fy + 02 (X + 1) S = g
am = mY M= op 2 =% (2.10)
L J M=y Y 1— v; )

After solving the set of equations of motion one obtains finctions f;(z), g;(z).
A form of the functions in the case of elastic layer depends on quantitative re-
lationships between geometrical and material parameters appearing in Egs (2.9).
The problem mentioned has been discussed by Levinson (1985) for elastic, isotro-
pic plate thus it is not discussed here. In the case of viscoelastic layer both the
parameters pj, A}, v; and the functions f;(2), g;(2) are complex. Taking into
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account the correspondence principle one can write the functions for isotropic layer
in the following form

fi(2) = Xy, cosh(zp1;) + Xa; sinh(zp15) + X3, cosh(zf2;) + X4, Sinh(zﬂ"(bé)ll

9i(2) = Xj, cosh(z1;) + X3, sinh(2f1;) + X3, cosh(2;) + X, sinh(262;)

where , ,
2, — b __pjwm 2 _ 52 _ Pi%m 2.12
ﬂlg (227 F'J ﬁ2J ay, /\; + 2#1 ( - )

The vector X _’, is dependent on vector X; thus there are only five unknown values
in Eqs (2.11) i.e., the vector X; and the natural frequency wn. For any layer
denoted by subscript n # j we have another unknown vector X,. Thus for mth
vibration mode of a beam consisting of p layers one obtains 4p + 1 unknown
parameters while one of them is the eigenfrequency wy,.

After substitution of the functions (2.11) into expressions (2.1) one obtains
the displacement field within the jth layer and by using the displacement field
functions and constitutive equations one can derive the stress field.

Let us introduce the homogeneous stress boundary conditions on the free sur-
faces of beam (2.13), the continuity conditions of displacements (2.14) and the
continuity conditions of forces (instead of stresses) (2.15), (2.16) between adjoi-
ning layers

(024(2,0)), = (all(x’h))p =0 (0:2(2,0)), = (azr(xah))p =0 (2.13)
(“I(z’hj))j = (":(x’hj))j-g.l ("z(z’hj))j = (u:(z, hj))j+1 (2.14)
+4 +b541
/ (022 (2, b))z = / (2e(2, h3));4142 (2.15)
-:{5,' —+i.:lx
/ (023, hy));dz = / (02a( h));4 142 (2.16)
=b; =bj41

where h = Y% h;, while hj, b; denote the thickness and the half of jth layer
width, respectively. It is noted that displacement wu, does not appear in the
continuity conditions (2.14) and the equations of continuity of forces (instead of
stresses) (2.15), (2.16) are not exact in respect of requirements stated in the theory
of elasticity. However the simplifications introduced here have enabled the author
to solve correctly the problem considered in the present paper.
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Taking into account the relationships (2.6) and the Egs (2.11) < (2.16) one can
transform the eigenvalue problem to the form of algebraic, homogeneous, matrix

equation

AX=0 (2.17)
The square matrix A is of size 4p X 4p where p denotes the number of layers of
the beam. An wy, is obtained from the equation

detA =0 (2.18)

If any layer of the beam is viscoelastic then wy, consists of real and imaginary
parts, respectively

Wm = WmR + W F iZ2=-1 (2.19)
and the periodic logarithmic decrement is defined as follows

br = 2nmE ' (2.20)
WmR
After calculating 67 one can obtain both the loss factor 7 and the damping
capacity ¥ according to the formulas given by Karczmarzyk (1989)

= %T W = 1 — exp(—267) & 267 (2.21)

The Eq (2.17) can easily be obtained for a beam consisting of any number

of stripes using a computer. Computation of eigenfrequencies is however some-

what more difficult. The matrix elements depend on hyperbohc and trigonometric
functions of eigenfrequency i.e.

Ar = Ay (sin(wm, ver)s COS(Wn 5«8y SN (Wpyy o), COSh(Wrn, )) (2.22)

and because of this, Eq (2.18) is the transcendental one. Therefore it cannot be
transformed to the following form

det (B, ~ wmB}) =0 (2.23)

where B, B, are given matrices.

To obtain the solution to eigenproblem (2.18) the following procedure has been
proposed (cf Karczmarzyk, 1989, 1991; Karczmarzyk and Osifiski, 1990) - at first a
function F(wm) = detA is derived, then an eigenfrequency of undamped (elastic)
beam is estimated, finally a complex eigenfrequency of the damped (viscoelastic)
system is computed from the equation F(w,) = 0. All steps of this procedure
were followed by the author by means of IBM personal computer. The third step
only was taken by using standard subroutine for evaluating roots of an algebraic,
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nonlinear, complex equation according to the Muller method with deflation. The
eige:. .-equency of undamped system was useful as an approximative value of the
complex solution (eigenfrequency) i.e., as one of input parameters required by the
standard subroutine. It was verified that the Fortran code necessary for the calcu-
lations has to be prepared in double precision. The formulation of the eigenvalue
problem and the way of solution to it given in the present section are acknow-
ledged by the author as a new exact method of vibration analysis of the layered
viscoelastic beams. In section 4 an alternative simplified method is presented.

We notice finally that formulation of the problem considered here will be of
the same form when the plane strain within layered structure is assumed. In such
a case instead of the parameter ) the Lame constant A should be placed in Egs
(2.9), (2.12) (Karczmarzyk, Osifiski, 1992).

3. Formulation of the problem in the case of fibrous layers

It has been assumed in further considerations that fibres of each layer are
parallel to the longitudinal axis of the beam. Such arrangement of the fibres is
most desirable considering bending stiffness of beam. Let us assume additionally
that material properties of any layer are isotropic within each cross-section of
the layer. If the two assumptions are fulfiled we will have so-called hexagonally
anisotropic layer.

The constitutive equation of fibrous, hexagonally anisotropic, viscoelastic ma-
terial can be written in the form

o; = Dje; (3.1)

where o; denotes a stress vector, £; is a strain vector and D; is a stiffness matrix
of jth layer. In the case when the plane stress is considered the matrices are as
follows

05 = {022,022, 02z};5

b; a; 0
Di=]la; ¢ O (3.2)
Lo 0 24
£ = (ezm5zz,€zt}5
where
‘ v E' E! E!
.= B L L= L2 —— ] i
aj E-J.wj : bJ w; Ej 9; wj (3 3)
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EI
wj = E,' - Vi (3.4)
while u’ denotes the complex Kirhchoff modulus of jth fibrous viscoelastic layer
in z — z plane, E! is the Young modulus for direction of fibers, E; is the
Young modulus wnthm y — z plane perpendiculr to direction of fibers (i.e., plane
of isotropy), v} denotes the Poisson ratio characterizing an abridgement w1thm
the plane of 1sotropy when direction of force fits in with direction of fibers of
viscoelastic hexagonally anisotropic material (¢f Ambartyumyan, 1987).
By using the formulas (3.1) + (3.4) and the expressions (2.1), (2.2) one can
transform the linear elasticity equations of motion

32
Oklk = _6-51 (3.5)

to the following form

d29.1

f
l‘, dz? + (bjal, — pjwh, ).‘h"‘(“:"‘#, -2 =0

(3.6)

af; dg;
] dz': (u}a - piwi ) fi + ab(e; + 15 ’d_ =0

where a,, = mw/L is defined as in the previous section. It can be noticed that
the equations of motion (3.6) are of the same type as the equations (2.9) thus
formulation of the boundary value problem in this case is of the same form as the
previous one described in section 2. Therefore further considerations concerning
the formulation of the aforementioned for a beam composed of anisotropic layers
have not been conducted here. We notice that formulation of the problem con-
sidered here will be of the same form when the plane strain is assumed within
layered structure. In such a case, however, the elements a;, b;, g; of the matrix
D, occuring in Eqgs (3.6), are defined by expressions different from Eq (3.3), (3.4)
(cf Karczmarzyk, 1989).

4. An alternative simplified method for analysis of free vibrations of
_ viscoelastic layered beams

The method developed in sections 2,3 is accurate since it is derived within
the linear theory of (visco)elasticity. The only simplification is introduced in the
stress continuity conditions (2.15), (2.16). (In fact instead of the stress continuity
it is considered the continuity of forces.) Thus the method reported in sections
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2;3 is accurate and quite versatile i.e., it enables us to investigate the layered
beams assuming both stiffness-comparable and incomparable adjoining layers and
complete material (viscoelastic) characteristics of all layers. However due to the
exactitude of the problem formulation one can not obtain a simple formula for
evaluatjon of an eigenfrequency and a logarithmic decrement for layered structures
considered here. In this section we present an alternative simplified method of
calculating both the eigenfrequency and the logarithmic decrement of T-beam
shown in Figure 1 and composed of stiffness-comparable viscoelastic layers.

Upon a basis of formulas given by Polensek and Kazic (1991) one can derive
the following relationship

o ha 1= &66hés
=TT a6, 1)
where B b E
= 1 = 1 =21
ft - h2 £b b2 £E E) (4'2)

and E,, E, are the values of static Young moduli of isotropic layers. The parame-
ter Z denotes coordinate of the cross-section neutral axis (point C) in reference to
the interface i.e, the surface of joint of the layeres. When the Zz is greater than zero
the point C lies within the layer 2 however in the opposite case the point C lies
within the layer 1. The relationship (4.1) is a direct extension of the one given by
Baumgarten and Pearce (1971) for a two-layer beam of rectangular cross-section.
Few other relationships given by the researchers have just been employed by the
author to obtain simple formulas for evaluating both the eigenfrequencies and the
logarithmic decrement for the two-layer T-beams.

First of all we notice that the formula (25) derived by Baumgarten and Pearce
(1971) can be replaced by the following one

Vbe )ma
by = g, CheJmae : (43)

max
where (Vic)mazr is the maximum value of the potential energy of the viscoelastic
layer and Ty,4, denotes the maximum value of the kinetic energy of the two-layer

beam. The symbol 7, is called material loss factor and it is defined as follows
= = E‘ll + iElz = El i2 = -1 (44)

while E; in this case is the complex Young modulus of viscoelastic material.
By replacing the FEyy, Eyq, Ey with vy, v13, 11, respectively, one obtains the
complex Poisson ratio v for the viscoelastic material. Parameters E;, 14 are
dependent on frequency. In the case of non-slender layered beams one has to take
into account both the characteristics to calculate accurately damping parameters
(cf Karczmarzyk, Osifiski, 1992). When the layered beam is slender it is accurate
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enough to include in a computational algorithm the complex Young modulus, thus
the loss factor 7.

The formula (4.3) is valid for the two-layer beam when the Kirchhoff hypothesis
of flat cross-sections is valid for the beam. It is well known that the hypothesis is
satisfied for the first mode of vibration of slender beams (cf Huang, 1961). Thus for
such beams we can extend the formula (4.3) in order to include different widths and
viscoelasticity of adjoining layers. So one can calculate the logarithmic decrement
according to the formula

bp = 11t I V2 (4.5)
T1q
where
ol ]
Vi = Ejlbj—sﬂlz? - 2 i=12 (4.6)
Wi
Ti2 = (bihapr + bzhzm)—2ﬂ (4.7

and a, is defined (for a simply supported beam) in section 2, Ej;; denotes the
real part of the complex Young modulus of jth viscoelastic layer. By applying the
Rayleigh method one obtains finally

_ e V1t 1,V2
or = TV (4.8)

The expression (4.8) can be further simplified under additional assumptions i.e.

for  Vi=Vs the bép=ximtim ;”’ (4.9)
for Mm =g =17 the S =171, (4.10)

We notice that under assumptions mentioned above the viscoelastic damping of
two-layer T-beam vibrations does not depend on geometrical and material para-
meters of the cross-section appearing in the formulas (4.1), (4.2). By comparing
the right-hand side of Eq (4.10) and the left-hand side relationship (2.21) one can
say: when both layers are characterized by the same material loss factor (i.e.,
Mg = g, = 1) the loss factor of the two-layer T-beam is equal to the material
loss factor. The conclusion also referes to the beam of rectangular cross-section.

5. Numerical results and discussion

In order to verify and compare the methods developed for calculating of both
the eigenfrequencies and the logarithmic decrement the author has made calcu-
lations for three types of beams. Material and geometrical (cross-sectional) pa-
rameters of the beams have been given in Table 1 while computational results
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have been shown in Tables 2-6. We note that the beam 1 is homogeneous i.e., the
material parameters of both layers are the same. However to verify an influence
of the viscoelasticity of the thin layer (flange) on the logarithmic decrement the
calculations have been made assuming for the thick layer (web) at first 75, =0
and then 7, = 0.1. The beams 2,3 consist of two stiffness-comparable layers of
different materials. Values of the logarithmic decrement in Table 3 and those in
Table 5 with subscripts ”12” have been given to prove the right-hand side rela-
tionship (4.10) and to show that &7 is independent of the length of beam when
the left-hand side Eq (4.10) is assumed. Parameter ¢, is defined as follows

_(61,)2 — (b15)2

e (o 100 (5.1)

Table 1. Material and geometrical (cross-sectional) parameters of the beams
investigated in the paper. Symbols b,, h; have been shown in Fig.1, while symbols
E;1, vj, p; denote the Young modulus, the Poisson ratio and the mass density,
respectively — for j=1,2.

2b; | 2b2 [ Ay | ko Ey | En n | v P1 P2
[mm] ' Pa] ' [kg/m”

beam 1 | 315 | 35 | 35 | 105 | 0.3107! | 0.3107F | 0.05 [ 0.05 | 600 | 600

beam 2 | 105 | 35 [ 35 [ 105 | 20710° | 1.61010 | 0.25 [ 0.30 | 7860 | 1750

beam 3 | 105 | 35 | 10 | 140 | 207-10% | 1.610™ | 0.25 [ 0.30 | 7860 | 1750

Table 2. Eigenfrequencies and logarithmic decrements for the 1st mode of vi-
bration of beam 1. Subscript A denotes values calculated according to the method
developed in section 2, while subscript B denotes values obtained according to the
method developed in section 4. Values with subscript 1 are obtained for 9, = 0.1,
75, = 0 while those with subscripts 12 are calculated for 5, = 5, =0.1.

L [mm] 1000 | 1500 | 2000 | 2500 | 3000 | 3650
wa [rad/s] | 2349.3 | 1066.1 | 604.4 | 388.2 | 270.2 | 182.9
wp [rad/s| | 2442.6 | 1085.6 | 610.7 | 390.8 | 271.4 | 183.3
Gr i 0.0757 | 0.0769 | 0.0774. | 0.0777 | 0.0778 | 0.0779
(b15)1 0.0785 | 0.0785 | 0.0785 | 0.0785 | 0.0785 | 0.0785
(8r,)12 | 0.31288 | 0.31288 | 0.31288 | 0.31288 | 0.31288 | 0.31288
(67,12 | 0.31414 | 0.31414 | 0.31414 | 0.31414 | 0.31414 | 0.31414




Table 3. Eigenfrequencies and logarithmic decrements for the 1st mode of
vibration of beam 2. Subscript A denotes values calculated according to the me-
thod developed in section 2, while subscript B denotes values obtained according
to the method developed in section 4. Values with subscript 12 are calculated for
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Np = Mg, = 0.1,
L [mm] 1000 1500 2000 2500 3000 3650 |
w4 [rad/s] | 1000.83 | 456.25 | 259.10 | 166.53 | 115.93 | 78.46 |
wp [rad/s] | 1049.22 | 466.31 | 262.30 | 167.87 | 116.58 | 78.76
| (614 )12 0.31338 | 0.31338 | 0.31338 | 0.31338 | 0.31338 | 0.31338
U {éTp N2 0.31416 | 0.31416 | 0.31416 | 0.31416 | 0.31416 | 0.31416

Table 4. Eigenfrequencies and logarithmic decrements for the 1st mode of
vibration of beam 3. Subscript A denotes values calculated according to the me-
thod developed in section 2, while subscript B denotes values obtained according
to the method developed in section 4. Decrement values with subscript 2 are
calculated for g, = 0.1, 5, = 0.

L [mm] 1000 1500 2000 2500 3000 3650
wy [rad/s] | 1492.1 693.0 396.3 255.7 178.3 120.8
wp [rad/s) | 1621.0 | 720.5 405.3 259.4 180.1 121.7
(61,)2 0.26212 | 0.25730 | 0.25534 | 0.25438 | 0.25384 | 0.25344
(615)2 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345
€2 3.42 1.52 0.75 0.37 0.15 0.00

Table 5. Eigenfrequencies and logarithmic decrements for the 3rd mode of vi-
bration of beam 3. Subscript A denotes values calculated according to the method
developed in section 2, while subscript B denotes values obtained according to the
method developed in section 4. Values with subscript 2 are obtained for 7., =0,
Ng, = 0.1 while those with subscripts 12 are calculated for ng = 1., = 0.1.

L [mm] 1000 | 1500 | 2000 | 2500 | 3000 | 3650
wa [rad/s] | 9155.7 | 4974.2 | 3083.2 | 2081.1 | 1492.1 | 1033.6
wp [rad/s| | 14589.3 | 6484.1 | 3647.3 | 2334.3 | 1621.0 | 1095.0
(57, )2 0.28813 | 0.27746 | 0.27014 | 0.26530 | 0.26212 | 0.25943
(51 )2 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345
(87,012 | 0.31338 | 0.31338 | 0.31338 | 0.31338 | 0.31338 | 0.31338
T(6r5)12 | 0.31416 | 0.31416 | 0.31416 | 0.31416 | 0.31416 | 0.31416
&2 1368 | 9.47 | 659 | 4.68 | 3.42 | 2.36
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Table 6. Eigenfrequencies and logarithmic decrements for the 5th mode of
vibration of beam 3. Subscript A denotes values calculated according to the me-
thod developed in section 2, while subscript B denotes values obtained according
to the method developed in section 4. Values with subscript 2 are calculated for

g = 0, 05 = 0.1.
L [mm] | 1000 1500 2000 2500 | 3000 3650

wy [rad/s] | 17656.8 | 10590.9 | 7026.9 | 4974.2 | 3688.3 | 2633.2
wp [rad/s] | 40525.9 | 18011.5 | 10131.5-| 6484.1 | 4502.9 | 3042.0

(61,)2 0.29584 | 0.29052 | 0.28349 | 0.27746 | 0.27268 | 0.26804
(615)2 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345 | 0.25345
€2 16.73 14.63 11.85 9.47 | 7.59 5.76

We notice that the higher is mode of vibration the higher value of the parameter
€2 occurs. This parameter is strongly dependent on the length of beam. Gene-
rally when the web of the two-layer beam is viscoelastic the values of logarithmic
decrement calculated according to the method developed in section 2 are higher
than those obtained according to the method given in section 4. It is because of
the shear deformations omitting in the method described in section 4 while the
deformations have been included in the method shown in sections 2 and 3. The dif-
ference between the methods is much more perceptible when the eigenfrequencies
are compared. For each mode of the beams vibration the eigenfrequencies wp are
different and higher than the eigenfrequencies wy4. The difference is dependent on
the mode of vibration and the slenderness of beams. Of course the values wpg are
not exact for the 1st mode of vibration and false for the higher vibration modes.
The latter conclusion, based upon the results given in Tables 2 + 6, fits in well
-with that given by Huang (1961).

The method given in section 4 can be useful inspite of its general inaccuracy
since it is far less complicated than that given in section 2 and the formulas (4.1) +
(4.10) are simple and quite accurate when the 1st mode of vibration is investigated.

8. Final eonclusion

Two methods for calculating of both the eigenfrequencies and the logarith-
mic decrement for two-layer T-beam composed of isotropic or fibrous stiffness-
comparable layers have been developed in the paper. The method given in section
2 has been obtained within the linear theory of (visco)elasticity, however that one
from section 4 is derived by applying the Kirchhoff hypothesis of flat cross-sections
and the Rayleigh method. By comparing results obtained according to these me-
thods one can conclude: 1) damping of the 1st mode of vibration of the two-layer
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T-beam resulting from the viscoelasticity of layers is accurately predicted by both
the methods, 2) both the logarithmic decrement and (especially) the eigenfrequ-
encies of higher modes of vibrations are predicted accurately only by the method
derived within the linear theory of (visco)elasticity, 3) validity of the right-hand
side expression (4.10), for any mode of vibration, has been confirmed by applying
both the methods. .

10.

11.

12.

13.

14.
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Drgania swobodne belek warstwowych o przekroju meprostokqtnym
zlozonym z warstw lepkosprezystych

Streszczenie:

Praca dotyczy dwéch metod obliczania czestosci wlasnych i logarytmicznego dekre-
mentu tlumienia dla dwuwarstwowej belki T-owe) zlozonej z lepkosprezystych warstw o
poréwnywalnej sztywnosci. Jedna z tych metod zostala opracowana w ramach liniowej te-
orii (lepko)spreiystosci przy zalozeniu warunkdw ciaglosci sil (zamiast naprezen) migdzy
przylegajqcyml warstwami. Druga metoda jest oparta na zalozeniu Kirchhoffa i metodzie
Rayleigh’a. Przedstawiono poréwnanie obu metod i ustalono proste i uzyteczne zaleznoéci
do obliczania dekrementu tlumienia.
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