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The paper deals with homogeneous isotropic linearly elastic and non-perfectly
conducting plates of constant thickness. A starting point consists in displace-
ment thickness distribution and equations of motion of the Kirchlioff theory
incorporating Lorentz force as combined with 3-D equations of electrodyna-
mics. Both the bending and the stretching are taken into account. Mutually
coupled 2-D governing equations are derived under the somewhat new E-
M (electromagnetic) assumptions. The final equations are simplified so as
to difier, but little, from the corresponding equations due to the modified
hypothesis of magnetoelasticity of thin bodies.

1. Introduction

The aim of the present paper is to derive basic differential equations of the
linear theory of thin magnetoelastic plates using a new E-M (electromagnetic)
hypothesis. The purely elastic terms are adopted in the same form as im the
classical (Kirchhoff) plate theory, attention being focused on the approximate two-
dimensional description of the magnetoelastic coupling.

The general concept of including of magnetoelastic effects may be traced back
to Alpher and Rubin (1954), however, in some previous works (cf Cagniard, 1952)
the magnetomechanical interactions were considered in the framework of geophy-
sics. By contrast to ferromagnetics as well as many other media endowed with
various electromagnetomechanical properties (cf Rymarz, 1986; Maugin, 198%) the
magnetoelastic body may be treated on retaining the dynamic assumptions of clas-
sical continuum (cf Rogula, 1982, p.20). According to the case of quasi-stationary
E-M field (cf Ingarden and Jamiolkowski, 1980, p.196) the Lorentz force equals to
a divergence of the symmetric Maxwell stress tensor, the latter being defimed by
the magnetic induction. As far as the perfectly conducting media are concerned
the Maxwell stress. tensor is expressible within the linear theory by a strong bias
magnetic induction and the small displacement. Thereby, in the case of the per-
fectly conducting plates it is feasible to formulate the magnetoelastic plate theory
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as an approximation of the theory of magnetoelasticity entirely with the use of the
purely mechanical hypotheses (cf Kaliski, 1962; Baghdasarian, 1983).

As regards the plates of finite conductivity the hypothesis of magnetoelasticity
of thin bodies was deduced by Ambartsumian et al. (1971) for the plates under
bending, and by Ambartsumian et al. (1973) for the plates under both bending
and stretching. Initially the above-mentioned hypothesis has contained of the su-
itable E-M assumptions as well as the classical Kirchhoff assumptions. Since the
E-M hypothesis may be formally joined to the more sophisticated mechanical as-
sumptions as well (cf Ambartsumian, 1979), the hypothesis of magnetoelasticity
of thin bodies is now referred exclusively to the corresponding E-M thickness di-
stributions (cf Ambartsumian et al., 1984). Unfortunately, this hypothesis seems
to be inadequate in an accurate representing of the frequency response of the plate
" under stretching (sheet) in the longitudinal magnetic field (cf Radovinskii, 1987).

In an effort to improve the former hypothesis in the paper by Rudnicki (1984) the
less restrictive E-M assumptions were employed.

Author [16] presented a quite different E-M hypothesis physical meaning of
which consists in the vanishing of the resulting narmal component of the current
density at the top and bottom surfaces of the plate, respectively. Developing this
last approach in the present paper we propose a somewhat more general E-M hypo-
thesis than it was assumed by Rudnicki [16]. In Section 2 the ”electromagnetically-
exact” equations governing the magnetoelasticity problem of the plate thin enough

- allowing the Kirchhoff assumptions are presented. The two-dimensional reduction
under the introduced hypothesis is carried out in Section 3. The approximate di-
stribution of the secondary E-M field in the thickness direction and the resulting
E-M terms in the reduced equations of motion are obtained. In Section 4 some
further simplifications due to the thinness of the plate are proposed as well as the
corresponding boundary and initial conditions of the plate theory are formulated.
In Section 5 the special form of the eqtations due to the simplest version of the
introduced hypothesis being employed by Rudnicki [16] is specified.

The MKSA unit system is used. The Latin indices 7, k¥ and ! have the range
(1,2,3) while the Greek indices a, 8 and 7 the range (1,2).

2. Formulation of the problem-

We consider an elastic non-perfectly conducting plate that at the undeformed
reference configuration occupies a region of space V = 2 x (—h/2,h/2) where
§2 is the middle surface of the plate and h is the plate thickness. Let z; refer
to the orthogonal Cartesian co-ordinates related to the reference configuration so
as the plane z3 = 0 coincides with the surface (2. We assume that the plate
is surrounded by a perfectly rigid (motion-less) and perfectly conducting medium
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placed in the outer domain |z3| < h/2. The domains |z3| > h/2 remain free from
any physical substance. We deal with homogeneous isotropic plates of diamagnetic
or paramagnetic properties. The magnetic permeability u is set equal to the
magnetic permeability of vacuum.

At the initial configuration the plate is still at rest, however, deformed (stati-
cally) and subjected to a given magnetostatic field. We confine ourselves to the
bias magnetic fields uniform in the thickness direction within the plate region, i.e.

Bi(z;) = Fi(za) (2.1)

where B; are the components of the bias magnetic induction. It follows from the
Mzuxwell equations that under the condition (2.1) the normal comporent of the
bias magnetic induction does not vary throughout the plate region, i.e.

« P3 = const (2.2)
while the tangent components satisfy 2-D equations
Pou=0 eapPpa=0 (2.3)

where £,p is the permutation symbol, and comma represents the partial differen-
tiation with respect to a position coordinate.

Surface tractions caused by the bias magnetic field, if any, are due to the jump
of the magnetic permeability at the bounding surface which surrounds the plate
region. Keeping in mind that the magnetostatic field does not cause any body
force, the mechanical effects of the bias magnetic field are negligible so far as the
initial configuration is concerned.

At the present configuration the induced secondary E-M field is coupled with
the time-dependent elastic deformation determined by the vector displacement
components w; = w;(z;,t) (¢ = time) as measured from the initial configuration.
- The magnetoelastic coupling is brought into play through the current dependent
body force and the velocity dependent electric current. The secondary E-M field
has a quasi-stationary character. We assume that the time-dependent mechanical
and E-M quantities are small enough allowing the linearization of the governing
equations. Moreover, we omit the influence of the initial static deformation and
stresses on the time-dependent state (cf Eringen, 1989).

According to the classical plate theory the displacement field may be approxi-
mated as follows

we(zi, 1) = uf,,(a:o,,t) - Z3u3(Zay t)sa (2.4)

ID3(I,', t) = 1‘3(%, t)

Thus, u; may be identified as the displacement components at the middle surface
of the plate..



266 M.RUDNICKI

Taking into account the Lorentz force we present the "displacement” equations
of motion for the plate in the following form

1 - 1 1. ’
—Vua)ﬁﬁ'*'_-*-_yuﬁyaﬁ__?‘ua_*-pa-*—[::o
2 2 <
(2.5)
h? 1./, h? . .
1—2-u3,aaﬁﬁ +Eg(ﬂ3 - ﬁu@yaa) = I3+ Fy

where superposed dot indicates the partial differentiation with respect to time, v
is Poisson ratio, cg is the speed of sound, i.e.

e = P(TI—BV—2) (2.6)

with E and p being the Young modulus and the mass density, respectively, F;
and F¥ are defined by formulas

1-v? 1-02
Fa = Eh pa F3 = Eh (p3+ma’a)
(2.7)
c 1-02 e e 1-v? c e
Fa - ER Po FB - W(p3+mcna)

where

\.wp

pi= | gides+ ST+ ST
_% ¢
(2.8)
h
7 h
Mg = / QQZSdIS + 5(5‘: - Sc:)

SIS

with ¢; and ST being the mechanical body force and the mechanical tractions at
the surfaces z3 = 1h/2, respectively, and finally

e

A
Zz
o5 = € / JxBidz, Mg = €akl | JrBizadzs (2.9)

l
R i

with j; = ji(z;,1) being the components of the current density.
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The three-dimensional equations of the secondary E-M field in the quasi-
stationary approximation within the plate region read

bii=10 Eiktbrk = pji
(2.10)

Eiktelk +b;i = 0 Ji = A& + i Brg)

where b; and e; mean the components of the secondary magnetic induction and
the electric field intensity, respectively, A stands for the electric conductivity.

We denote the scalar potentials describing the secondary quasi-stationary ma-
gnetic field throughout the vacuum domains |z3| > h/2 by $°,i.e,, $? = $?(z;,1)
where z3 > h/2 and &' = #)(z;,t) where z3 < —h/2. Each of these potentials
has to meet the corresponding Laplace equation

e

;=0 (=1)%z3 > -;Z (2.11)

under the boundary conditions

0 if zog N
¢2’3(z"’t)|:3—>-;‘- = { bg‘ if 2z, g 2
(2.12)
0 if z4¢R
¢l it = i .
@t { by if ca€R

Here and afterwards the quantities assigned with ”+” refer to the surfaces z; =
+h/2, respectively. Thus

)

bt =b

Y (2.13)
At the top and bottom surfaces of the plate we should satisfy the following
continuity conditions

b:’ = sz,a ' b- =&, (2.14)

a

In view of the preliminary assumptions the boundary conditions at the lateral
surface z, € 012, |z3| < h/2 read

y¢=0 t, =0 uz =0 U3 =0 and z3 =0 (2.15)
bh=0 =0 j3=0 and lzs] < % :
where the subscripts 7n and t, respectively, refer to the normal and tangent
directions to the curve 82 which bounds the surface 2.
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3. Reduction under a new hypothesis

First, we proceed to establish the through-the-thickness distributions of the
secondary magnetic field and the current density, which in turn enable us to deter-
mine the E-M part of the reduced equations of motion. The starting point of our
consideration consists of the following thickness assumptions (cf Ambartsumian,

1987, p.31)
ba(zi, t) = Eb;(za,t) + "';'ba(za,t) + ‘P(z3)la(za’ t) (3‘1)

where
br = b} — b b = b} + b, : 3.2)

and ¢ is required to be the even function of z3 undergoing the conditions
et =¢ =0 (3.3)

Let us note that Eq (3.1) when evaluated for z3 = +h/2 is identically satisfied.
" Introducing Eq (3.1) into Eq (2.10); and next carrying out the integration

I\)lr—l\

- 3
I[..]= %( / (..)dzs + % (...)dzs - / )dz3) (3.4)
0 0

”l"'\.o

we obtain

ba(z0,8) = £(zast) = Lipl(E8)9 a0, 8~ Za*(zart) + £t (z,1)  (35)

- where

PH(za) = 1-4(2)’ (3.6)

and
g = hlg,g a® = hb’,, a" = hb] o (3.7)

Substituting Eqs (3.1) and (3.5) into the first two equa.tlons of the set (2.10),,
ie., for i =1,2, we find

Ja(zist) = %Eaa [f(za,t),p —%bb(%at) - ¢(z3),3lp(zast) -
. (3.8)

w‘( 3)

—L[qp](za)g(z,,t),p __a'(zm t))ﬁ +— r(zmt)aﬁ]
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Similarly, inserting Eq (3.1) into the third one of Eq (2.10)3, i.e., for i = 3,
with the aid of Eqs (3.2) and (2.14) yields

oy P(23) 8(%as )
J3(3n t) = _";_ i (3.9)
" where

By taking the partial derivatives of Eqs (3.7); and (3.10) with respect to z,,
and combining the results, we have

) ,
laspp —3(9,01 —Eapsyp) =0 (3.11)

Making use of the appropriate thickness distributions, i.e., Eqs (3.8), (3.9), and
(2.1), (2.9) gives

P, g 7,
7 =egal [ Laz [B(5 + 355) e =8]
-3 .
P5= % h(f + ‘1‘—2) e =B ] (3.12)
mé = Ps ( / L{plzsdzsg,. — / pdzal, + )
= : -3

Introduction of Eqs (3.12) to Eqs (2.7)s and (2.7)4, with the use of Eq (3.7),,
results in '

% .

FS = €pa p/%z3s—T3[h(f+ ) -5
o
)

=T, rh(f+ 2) b + (3.13)

h

3
+T3 / I’[‘p]z3dz3gma / (”;dzw + a‘ma)

where
Ti= ——P (3.14)
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In view of Eqs (3.13) the fully reduced equations of motion (2.5) involve the
following two-dimensional unknowns: u, f, g, s, b7, a” and a*. Now, we proceed
to derive the appropriate E-M reduced equations involving at most the above-
mentioned unknowns. For this purpose we shall directly use Ohm’s law (2.10)4 as
well as the Maxwell equations (2.10); which have not been employed so far.

The inverted relations (2.10)4 for ¢ = 1,2 read

€a = 1/\2 + €0p(Bpths — Barg) (3.15)

Using Eqs (2.1), (2.4) and (3.8) we replace Eq (3.15) by

ea(ziyt) = eaB{LA [f(zavt)vﬁ _%bz(zavt) - (P(z3),3 lﬁ(zavt)’_
¢'(z3)

L[‘P](z3)g(za’t)’3 2_ha‘(za7t)7ﬁ+ r(zavt)’ﬁ] + (316)
+  Pp(za)is(zart) — Paltip(zart) - -"«‘3'13(%,‘),0]}

Substituting Egs (3.16) and (3.5) into the third equation of set (2.10)3, i.e., for
t+ = 3, with the aid of Eqs (3.7);, (2.2) and (2.3); we find

.1 _
hg{f,aa ~pAf - E‘Pﬂg - L[‘p](gvaa —I"\g) +
+#A[P0i"3,a _P3(".l’a,a —'33&3,00 )]} - (3.17)
h F ) -8 r h2 1 r ' - '
—533(0. yaa —HAG") ~ @” + ?(,o (@ yaa —pA@") = 0

Integration of Eq (3.17) with the weight zero and one, with respect te z3 between
the limits —h/2 and h/2, yields

h?
h'2 lf,aa _I‘Af + I‘A(P U3ya — Patiasa )] a + '—(a aa I‘Adr) =0
(3.18)

»[>

h3

2
/ Lip)z3dz3(g,0a —pAd) — ] % dz3g uAPs 5 +52( e —AE) = 0

_f

nl:r

Similarly, with the aid of Egs (2.1), (2.4) and (3.9), the inverted relation (2.10),
for ¢+ =3, ie.

j . :
€3 = T‘" + Byibg ~ By | (3.19)
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becomes
es(eint) = BB by fio(eo, ) - aais(ra ] -
a (3.20)

—  Py(za)[11(Za,t) - Z3ia(Zas )1 ])

Differentiating Eq (2.10)3 for i = 1 with respect to z;, and for i = 2 with
respect to z, then subtracting both results we arrive at the equation

€3)aa —€ajra3 _eaﬁi’ﬁaa =0 (3'21)

Substitution of Eqs (3.20), (3.16) and (3.1) into Eq (3.21) by accounting for Eq
(3.10) leads to

Y

©,33 8 + P(8ya0 —pAS) + Eapprh[z3(Patia,0 )y —(Patta)y ] = 0 (3.22)

Integrating Eq (3.22) with respect to z3 between the limits —h/2 and h/2 we
obtain

3

= ¥s3 )3 + pdz3(8s0a —.“A‘é) -
A

jor

(%3 - s

|
wi;

(3.23)
~€appAh?(Paiia) ppy = 0

Eqgs (3.18) and (3.23) constitute the desired set of the E-M reduced differential
partial equations with unknowns: w;, f, g, 8, b7, a” and a”.

Using Eqs (3.5), (3.6), (3-7)2, (3.7)3 and (2.14) the continuity conditions (2.12)
as z, € §2 read

h

(2 1)), @ﬁ+@m)=f—Mﬂw
L (3.24)
¢1,3(x.-,t)|m_ y - 7(BE+0L3) = - Liglg

4. Further simplifications. Boundary and initial conditions

In course of developing the plate equations in Section 3 no assumptions but
(3.1) are admitted. Now we submit some further simplifications due to the thinness
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of the plate. First, under the assertion that the last three terms are negligible in
comparison to the remainder, Eq (3.8) reduces to

a#01) = o[ f(zar = F05(amt) = Plas)alolzat)] - (41)

Eq (3.16) has to be simplified in the same way. As a consequence Eqs (3.12), (3.13)
and (3.18) are to be replaced respectively by )

A
Ps [ o P3
e - _r L g h _ td
Pa = Efa P /h hszS i ( fmr ba)
-4 (4.2)
%
C r e P
25 = —(hf,o, ~87) mg, = =2 [ pdzgla)
gt
A
2
= ¥ ! r
coaTs [ Lass— T(hfu~8})
~3 (4.3)
h
[
Fs = Ta(hfya ‘-b;) - Ts(/ Edza.‘q)
3
. 2
h2 [f700 —“Af + “A(Paﬂ@aa _PSi‘aya )] —-a - IIA'h—Gr =0
12 (4.4

h3 h?
Li{¢)z3dzsg + P3—1i3,00 + ) =0

z+A
1/ ol 12

/5

3
2

-‘-"l‘G

{
L5 1 d '\.uh-

Moreover, in Eq (4.4); we disregard the last term in bracket in comparison to
the first term. Thus, Eq (4.4); changes to

h3
L[‘P]z3d:‘;39 + P3 u:haa) =0 (45)

S~

dz3g + uz\(

|
"l’\.»lr
&S
i
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By virtue of Eq (4.1) the term involving g,,, does not appear in Eq (4.4).
‘Removing from Eq (3.23) the term involving 3,4, we find

A

7
roy ~ P9 [oaos) = 1( 4 pdz3é + eaph®(Ppiia) s ) =0 (4.6)

As regards the plate equations of the theory derived in the present work there
are two groups of the two-dimensional unknowns, i.e., basic unknowns: u;, f, g, s
and l,, and extra unknowns: b}, b7, b7, b2, a” and a@’. The former ones may be
found from the equations: (2.5), (4.4),, (4.5), (4.6) and (3.11), respectively. The
quantities a” and a® are expressed in terms of rates of b7, and. b2 by means of Eqs
(3.7)2 and (3.7)3, however, b7, and b2 are defined in terms of b by means of Eqs
(3.2). The quantities b in turn may be deduced from the continuity conditions
(2.14) afterwards Eqs (2.11) have been solved under the conditions (2.12) and the
conditions at infinity. As was mentioned previously, the quantities b cannot be
found with the aid of Eqs (3.1).

Summarizing, equations of motion (2.5) with Ff being defined by Egs (4.3),
and E-M equations (4.4),, (4.5) and (4.6) constitute a tenth-order set of six diffe-
rential equations on unknowns: wu;, f, g and s. Thus, at the curve 942 we have to
formulate five boundary conditions. The boundary conditions of mechanical origin
are assumed in the form of the first four equations of the set (2.15). Integration
of Eq (2.15)¢ with respect to z3 between the limits —h/2 and h/2 supplies the
missing fifth condition. If the curve 842 coincides with the line z3 =0 and
zTo = const (with a being fixed), after using Eq (4.1), the reduced form of Eq
(2.15)¢ reads '

(90,3

The initial conditions consist of '
0 . 1
ui(Zast)|,__ =bi (2a) w(2a,t)| _ =t (2a)
0
s(2ast)|,_, =9 (2a) (4.8)
s o 0
fart)| _ =F(2a)  9(zant)]_ =9 (za)

where z, € f2.

After deducing the unknowns ¢ and s the quantities I, may be determined
by means of two second-order differential equations (3.11). The corresponding
boundary conditions are to be derived from Egs (2.15)s and (2.15)7. The condition
(2.15)7 is met at any point of the lateral surface, provided that

s=0 L (4.9)



274 M.RUDNICKI

Taking Eq (3.10) into account we change Eq (4.9) to the form
€aplag =0 (4.10)

The condition (2.15)5 may be fulfilled in the average sense. If the lateral surface
coincides with the plane z, = const (o being fixed), then integration of Eq
(2.15)5 (by = ba) with respect to z3 between the limits —h/2 and h/2 leads to

A
2
B + % / edz3le = 0 (4.11)

i

Let us note that at the boundary z, = const Eq (4.2)3, after-the use of Eq

(4.11), becomes

h P
me, = 57%; : (4.12)

5. Final equations in the case ¢ = !

Some equations derived in the present work, for example (3.18);, (3.7) and
(3.10), do not depend on the approximating function ¢(z3). However, many
equations of the introduced theory strictly depend on this function. Here we shall
be not dealing with the question of the right choice of ¢(z3). Nevertheless, it
seems important to examine the special case when ((z3)-is the same as ?(z3)
in Eq (3.6) (cf Rudnicki, [16]). For the sake of brevity we investigate below the
final governing equations only. .

Taking Eqs (3.6) and (3.4) into account we find

A
2
2 z 4 rz3\2
1y, _ 2 no I3[ _2(%3
/‘Pd’3‘3h L'l =2 [1-3(3)]
-4
3
h2 .
/ Lig'Jesdzs = = (5.1)
-%
— 8 1t _ 1
¥ z3—~48 ¥s3 z3—-% h L[‘p] - ig

with the aid of which Eqs (4.3), (4.5), (4.6), (3.24) and (4.11), respectively, simplify
to
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2
F; = EﬁaTﬁ§3 ~ T3(hf,a —b%)

(5.2)
2
5= Ta(hfm —b;) - T3’§9
2 h?, h3 .
3 (9 + #f\ﬁg) + F’\P3'1_2u3aaa =0
(5.3)
2 h? . R, . ‘ .
3 (.s + p/\ﬁs) + EaﬁﬂAﬁ(Pﬁua)m =0
. ™~ h - g
Fotant] Ty h(p2485) = -
’ (5.4)
h - g
Pa(ent)| |, -7(02+802) =S +3
B+ ol =0 (5.5)

3
Using Eqgs (5.1) one may easily transform the remaining equations (3.1), (3.5),
(4.1),(3.9), (3.16) (when simplified in accord and with Eq (4.1) too), and Eq (3.20)
to the special form regarding the case ¢ = ! (see also Rudnicki [16]).

8. Conclusions

In the theories based on the hypothesis of magnetoelasticity of thin bodies
as well as its modification proposed by Rudnicki (1984) the quantities b3 and
e, are those which undergo some restrictions imposed on their distributions in
the thickness direction within the plate region. As a result no further step could
be made unless the appropriate displacement assumptions were employed. The
current density components were expressed by some E-M unknowns as well as
midsurface displacement compornents. By contrast to those theories the hypo-
thesis (3.1) enables us to establish the approximate thickness distribution of the
secondary magnetic field regardless of any displacement assumptions. Thereby,
we have expressed the current density components entirely by appropriate E-M
quantities (cf Eqs (3.9) and (4.1)). Despite above-mentioned differences the final
equations regarding the case ¢ = ¢! are nearly the same as the corresponding
equations due to the hypothesis formulated by Rudnicki (1984).



276

10.

11.

12.

13.

14.

15.

16.

17.

M.RuUDNICKI

References

. ALPHER R.A., RuBIN R.J,, 1954, Magnetic dispersion and allenuation of sound

in conducting fluids and solids, J.Acoust.Soc.Amer., 26, 3

AMBARTSUMIAN S.A., 1979, On the problem of vibrations of electroconductive plate
in iransverse magnelic field, (in Russian), Izv. AN SSSR, MTT, 3

. AMBARTSUMIAN S.A., 1987, Theory of anisolropic plates, (in Russian), Nauka, -

Moscow

. AMBARTSUMIAN S.A., BAGHDASARIAN G.E., BELUBEKIAN M.V., 1971, On three-

dimensional problem of magnetoelastic vibrations of a plate, (in Russian), PMM, 25,

. AMBARTSUMIAN S.A., BAGHDASARIAN G.E., BELUBEKIAN M.V., 1973, On ma-

gneloelasticity of thin shells and plates, (in Russian), PMM, 37,1

. AMBARTSUMIAN S.A., BELUBEKIAN M.V, MINASSIAN M. M., 1984, On the pro-

blem of vibrations of non-linear elastic electroconductive plates sn transverse and
longitadinal magnetic fields, Int.J.Non-linear Mech., 19, 2

. BAGHDASARIAN G.E., 1983, Equations of magnetoelastic vibratioas of thin perfec-

tly conducting plates, (in Russian), PM, 19, 12

. CAGNIARD L., 1952, Sur la nature des ondes seismiques capables de traverser le

Noyau terrestre, (in French), Compt.Rend., 234, 17

. ERINGEN A.C., 1989, Theory of electromagnetic elastic plates, Int.J.Engn.Sci., 27,
4 -

INGARDEN R.S., JAMIOLKOWSKI A ., 1980, Elektrodynamika klasyczna, (in Polish),
PWN, Warsaw

KALISKI S., 1962, Magnetoelastic vibration of perfectly conducting plates and bars
assuming the principle of plane sections, Proc.Vibr.Probl., 3, 4.

MAUGIN G.A., 1988, Continuum mechanics of electromagnetic solids, North-
Holland Series in Applied Mathematics and Mechanics, 33, Elsevier, Amsterdam

RADOVINSKIT A.L., 1987, On a spectrum structure of the problems of magnetoela-
sticity of thin plates, (in Russian), Izv.AN SSSR, MTT, 1

RoGULA D., 1982, Pola sprzeiome i niekiasyczne osrodki ciggle, (in Polish),
Mech.Teor.i Stos., 20, 1/2

RUDNICKI M., 1984, A modified hypothests of magnetoelasticity of plates, Bull.
Polon.Acad.Sci1., Techn.Sd., 32, 3/4

RUDNICKI M., On the electromagnetic field within magnetoelastic plate, accepted
for print in the Int.J.Engn.Sci.

Rymarz C., 1986, Fale w oSrodkach sprezystych i niesprezystych, (in Polish), Me-
chanika techniczna, vol 3, Drgania i fale (ed. S.Kaliski), PWN, Warsaw



MAGNETOELASTIC PLATE THEORY - 277

Teoria plyt magnetosprezystych

Streszczenie

Praca dotyczy jednorodnych izotropowych liniowo sprezystych i nie idealnie przewo-
dzacych plyt o stalej grubosci. Uwzgledniono poczatkowe pole magnetostatyczne niejed-
norodne w kierunkach stycznych. Punktem wyjécia sa zwiazki okreslajace zmiennos¢ prze-
mieszczen na grubosci plyty oraz réwnania ruchu teori plyt Kirchhofla uwzgledniajace sile
Lorentza, uzupelnione o trojwymiarowe rownania elektrodynamiki. Wzajemnie sprzezone
réwnania dwuwymiarowe wyprowadzono na mocy czesciowo nowych zalozen elektroma-
gnetycznych. Koncowy uklad réwnar uproszczono do postaci niewiele odbiegajacej od
rownan opartych na zmodyfikowane) hipotezie magnetosprezystosei cial cienkici.
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