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A theoretical analysis of non-linear viscoelastic plates with transverse he-
tert;ﬁamty is presented. Brittle creep rupture processes are described by
steady-state creep theory coupled with the Kachanov-Rabotnov damage law.
The solutions are based on parametrization of the bending moments. Two
numerical examples illustrate the creep and the brittle creep rupture of an -
annular plate with different kinds of transverse heterogeneity.

1. Introduction

In designing of engineering structures which operate at sufficiently high tempe-
ratures, consideration must be given to the possibilities of failure due to creep or
creep rupture. The present paper deals with the analysis of circular-symmetrical
plates. The solutions presented are related to isotropic plates with symmetric
transverse heterogeneity as regards the middle surface (cf Kaczkowski, 1980). In
particular, the plates with three different layers — sandwich plates - are considered.

The non-Enear viscoelastic Norton model (cf Odqvist, 1966) describes the ma-
terial properties both in secondary and tertiary creep. Here in this model is extra-
polated on the net-stress tensor, being the modification of the Cauchy stress tensor
‘accounting for the damaging net area reduction (cf Leckle and Hayhurst, 1974;
Bialkiewicz, 1980).

A proposed method for the solution of plates allows us to carry out a pra.ctlcal
analysis for plates with small transverse heterogeneity and this enables the influ-
ence of the shearing forces on the strains to be omitted. The solutions are based.
on the parametrization of the bending moments introduced by Bialkiewicz (1984b)
and (1986). In the present paper that parametrization is generalized by the steady-
state creep theory coupled with the Kachanov damage growth law (cf Kachanov,
1980) for heterogenous plates. As a result of parametrization the solution of the
heterogeneous plate boundary problem is reduced to a set of differential-integral
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equations which have separated derivatives of unknown functions. This transfor-
mation allows us to apply a standard software procedure in the final solution.

The analysis of secondary creep of plates with consideration of shearing forces
had been performed by Shably et al. (1982) and the solutions of transient creep
with experimental verification by Pospelov and Naumov (1982) and by Odqvist
(1953). In general, all of their considerations were limited to analyses of homoge-
neous plates. In particular some problems of optimization (cf Faktorovitch, 1978;
Dulman, 1982; Lepik, 1982; Tchapligina, 1982) and the creep of plates on elastic
foundations (cf Hamza and Muggeridge, 1982) were discussed. Finally Ospanova
(1982) deals with some aspects of dynamic strains.

Following this introduction we formulate firstly the problem and then at a
later stage propose an algorithm of its solution. Two illustrating examples are
presented: creep and creep rupture of an annular plate with different kinds of
transverse heterogeneity. Some final remarks are also included.

2. Formulation of the problem

The governing set of equations will be formulated in dimensionless variables.
For this purpose the following magnitudes can be defined: independent variables
(cylindrical coordinates and time)

r z i
_ = — T = — 2.1
p=ie ¢ ™ 3 (2.1)
stresses and rate of strains
a- . L _
sij = —Lt§ L &G = it (2.2)
Oc
deflection and thickness
. w h
0= - = — 2.
» X == (2.3)
and parameters (material constants)
- _x ) -1
A= Aa:t(l, » Sc = %oc-to n (2.4)

where ko, %, and hg are constants which have been introduced in order to secure
the non-dimensionality of the relevant formulae.
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The forms of the damage and strain rate equations which will be used to
describe the law of three-dimensional behaviour of stress rupture are given below

&= (m)"m'lm (2.5)
Dy = K0(725)" (26)
where
8 = Jg"—‘-’; (2.7)
o0 = 8(¢) max(sr, )+ [1 - 6(C)]s. (2.8)

Here the non-linear constitutive equations (2.5) together with the damage evolu-
tion equation (2.6) (where the rate of damage D,w is a power function of the
Sdobiryev-Rabotnov reduced stress o,, cf Rabotnov, 1966) constitute the coupled
‘damage theory.

The governing set of equations (2.5) and (2.6) given above allows us to work
out the solutions for transversely heterogeneous plates. The heterogeneity state
is described by the material functions n((), ¥({), s.(¢), 6(¢) and A(¢) with
respect to the ( coordinate which is perpendicular to the middle-surface of the
plate ¢ = 0. The reduced stress o, (2.8) is a function of the principal stresses
{s1, 32} according to the assumption of a plane state of stress in the constitutive
formulation of thin plates.

The solutions to the circular-symmetric plates will be shown by a cylindrical
system of coordinates (p,?,(), where the directions: radial »p and circumferential
¥ are simultaneously principal directions. The constitutive equations (2.5) have
the following form

1 Se n(¢)-1 25, — 3¢

o =5(soa=e) son- 29
1 Se n({)-1 235 — s,

0= s(goi=e) | soi-e (210)

where
8e = /82 + 85 — 393, (2.11)

The evolution equation (2.6) has the same form but the principal stresses
51, 52 must be replaced by the radjal stress s, and the circumferential stress
sy, respectively in expresion (2.8). In further formulating of the boundary value
problem the:constitutive equations (2.9) and (2.10) will be used in the form reduced
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to the middle surface of the plate

1 1 \™O) _12m me  \m(O-1 2m
o00=3(1t ) X)) SGa. 5 &1
1 1 n({) x-1-n m, (-1 2mg —m,
Sov=5(1+ 5 (C)) O (mnos) | soase 9
where

P(p) = -, (2.14)

is the slope of the deflection.
Dimensionless bending moments are assumed in accordance with the following

definitions
x(p) x(p)

m, = / s,Cd( me = / s9Cd( (2.15)
-x(p) ~x(p)

By analogy to the stress intensity (2.11) the bending moment intensity is in-
troduced ¢

m, = \/mz + m? — mgm, (2.16)

For the purpose of complete formulation of the boundary problem of a plate
in tertiary creep the constitutive equations (2.12) and (2.13) should be completed
by the following equilibrium equations

x(p)
1 8
My, + ;(mp - mg)+ ¢, + / 'l't%w{pcdc =0 (2.17)
. ~x{p)
P+ 9 — d(P)p =0 (2.18)

where g, is the shearing force and § denotes the load normal to the middle-surface
of the plate. In the local formulation of the equilibrium equations true stress has
been assumed as

le
l-w

5;; = for i=j (2.19)

except for the shear stress 1, where the damage influence is negligible.

3. Steady rate creep of a sandwich plate

We will begin with analysing the steady state creep of a sandwich plate (the
damage parameter w = 0 and the evolution equation (2.6) is disregarded).
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- The middle surface is a plane of symmetry of the assumed heterogeneity. The
internal and external layers are characterized by the material constants

{¢e (-xe)xi®) = s:lO)=sa, n(¢)=m} (3.1)

{¢ € (xel0) ~xilp)) U (xil). xep) = 2:(€) = 2z, m(() = e} (32)

The qanstitnti#e equation (2.13) is automatically satisfied when the moments m,
and my are expressed in terms of the function ¢ ‘

g e
(2] - PGyt o
¥ C(p(\/swﬁfsm,) ) —w] o+ D
where
| 23:':“1 3)%‘"T (3.4)
= 22::1”1 ;)ﬁl (3.5)

The equilibrium equation (2.17) and the constitutive relation (2.12) after pa-
rametrization can be written as follows N

'l’.o[(.l +.Qg)sin (¥ - %) + 5(1 - -:—"-Qg)] =
) (3.6)

= nl-‘_cos(ﬁb_'%)[S(l-l- %Qy) +h(1+ ’%'Qf,) + %m$(1+qg)+n

f’f%p = 8:p5(¥) 3.7
where '
N x.+/3sin + 3cos
P(¥) = cos (9 - )s/'mn¢+3°oe¢

Q(¥, Brp) = _(&) e

’ R(¢787¢)- (xz,,‘+1)

12c08($~F) - cos($+5)
)= pzcos(¢+;)-eos(¢j') @)
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p(V3cos ) — 3sin 9)

m(v,0,9) = 0.0
24l (91, + 1)pXe,p — (2n. + 1)pxi,p — Xi
file) = [( ) (2ne + 1)pxi,o — ](20-' + 1)pXi,p — Xi

(2n; + 1)pxi,p — Xi

- PXi
X\ 22atl

9(p) = (x) o-1

For a given load §(p), the integral of the equilibrium equation (2.18) is the
transverse force. Thus the numerical solution of the steady state creep of a san-
dwich plate constitutes: equilibrium equations (3.6}, a physical relation (3.7) and
also a geometrical relation (2.14) with respect to the unknown functions +, 8,
and J.¢p given above.

The separated derivatives (with respect to the set of equations of the unknown
functions) allow us to apply in the numerical solution the standard procedures for
ordinary differential equations. The known form of the parametrizing function ¢
means that the values of the bending moments in Eq (3.3) can be calculated.
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Fig. 1.

The boundary conditions will be formulated for an annular plate simply sup-
ported (see Fig.1) along the external edge

9-(p2) = 0 . (3.9)

The plate is loaded uniformly with a radial moment mg along the internal
edge

my(p1) = mo (3.10)
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For the given load and kinematic boundary condition (3.9) the integral of Eq
(2.18) (w1th boundary condition §,(p1) = 0) is the function of the transverse force

“(p —pd) (3.11)

Since the outer rim p; is assumed to be load-free ( m,(p2) = 0 ), the boundary
condition for the parametrizing function (3.3) can be written as follows

Y(p2) = gw (3.12)

By introducing Eq (3.10) into Eq (3.3) we reach the following relation between
3-¢(p) and $(p1)

( 40-¢(p1) ) = (xL"‘ﬂ (o) —x (p)) +

[ p1[v3 cosh(p1) — 3sin ¥(py)] (3.13)

+C( 46-0(p) )"l-xz_"'f_‘(pl)] cos (Y(p1) — —) =
p1[v3cos (p1) — 3sinp(py))/

Conditions (3.12) and (3.13) formulate a two-point boundary-value problem
for Eqs (3.6) and (3.7). This consists in a choice of such magnitudes 1(p;) for
the function (p) that the boundary condition (3.13) is satisfied after integrating
Eqs (3.6) and (3.7). The method of linear interpolation discussed by Bialkiewicz
(1984b) and (1986) has been applied to the numerical calculations.

The numerical analysis has been performed for a plate with dimensions p; = 5,
p2 = 20. The external load was assumed to be uniform and equal to § = 1.1x10~4.
The material constants n; = 3.7, 85 = 1 and n. = 6, s.. = 0.57 which are
taken for our calculations correspond to the creep behaviour'of an aluminium alloy
(ni, 8 — middle layer) and carbon steel (n.,s.. — topcoats) at a temperature of
about 300° C (Odqvist, 1966). The thickness of the layers is taken as the power
function (for xeo/xio = 2)

=) xe(p) = xeo( ) (3.14)

The distributions of the radial and circumferential moments, m, and my,
are presented in Fig.2 and 3. Separated lines represent the distribution along the
radius for a given thickness (where s = 0, 0.5,0.75) and the load of the inner
rim is m,(p;), see Fig.2. Corresponding with the above solutions the rates of
deflections are shown in Fig.4.

‘Our investigatians of the influence of the thickness ratio (for s = 1) on the
values of bending moments m, and my and rate of deflection d, are presented
in Fig.5 + 7. The calculations have been carried out for the geometrical dimensions
1, p2 and load @ assumed in the previous examples.

xi(P) = Xio (i
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4. Tertiary creep

The steady state creep of heterogeneous plates solved in the preceding section
is now associated with a brittle rupture. The development of the rupture process
will be analysed in time up to the moment of the first cracks. The correctness
of such solutions is justified by the results of the papers by Bialkiewicz (1984a),
Piechnik and Chrzanowski (1970) where it could be seen that the proportion of
the total rupture time 7 to the time of the first crack 79 was approximately equal
to unity, 7%/70 = 1. This means that after the first crack appears the rupture
process displays an avalanche effect. To simplify the numerical analysis the present
solution will be carried out for a sandwich plate with constant thickness. We also
assume that only the topcoats (external layers) are the load supporting ones while
the internal layer plays a distance role only.

The physical equations (2.13) or (2.10) are now automatically satisfied when
the moments m, and my or the stresses s, and sy are expressed in terms of the
parametrizing function ¢

m, | _ 7 L cos (9 —
[ my ] = DX.'{( w)(1+ d¢ [ cos('d)+ ] (4.1)
5 os(¥ - %)
[ o ] D(1- [ zosw 5 ] (4.2)
where
pon (Y (e
“\3 p(V/3cos 1 — 3sin )

The equilibrium equation (2.17) after parametrization Eqs (4.1) and (4.2) has
the following form

¥, [sin (¢ ~ %)—— nleP] = niecbs('gb— %)(S— %) +%sin:¢v+ s

1 Xe0

G ()E i

+4 =) (1= w)( me d¢
Xio

Further equations of the parametrizing boundary problem (2.14) and (3.7) are

taken in an unchanged form.

The formulation of a governing set of equations is based upon the true stresses
(2.19). The progress of the rupture process is determined by the scalar function
w. This function is the integral of the differential evolution equation (2.6) with
the following initial condition

w(p,(,0)=10 (4:4)
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The function of reduced stress (2.8) for the circular-symmetrical plane problem
has the following form

0, = § max(s,,s9) + (1 - 6)s, (4.5)

The time of rupture 7o in the material particle is identified by the condition for
" the damage parameter w(p,(, 7o) = 1.

Tustrative solutions are performed for the simple supported annular plate pre-
sented in the preceding chapter. According to the present parametrization (4.1)
the boundary condition (3.13) of the two-point problem can be written as

4) -y ( 40,¢(p1) ) =

mg = 2.9.2('3-‘ p1[V/3 cos ¥(p1) — 3sin Y(p1)] (4'6)

/ [1 = w(ps, ¢, 7)I¢* a0 d( cos (1) - %)

Xio

Further boundary conditions (3.9) and (3.12) together with the function of
shearing force have the same form. ’

A numerical analysis of the brittle-creep rupture process requires the discre-
tization of the solution along the time axis. The solution of the set of equations
(2.14), (3.7) and (4.3) for each of the moments of time 7; will be preceded by
the solution of the equation (2.6) with the initial condition w(p,(,7;—;): The
known form of the function w(p,({, ;) will make it possible to calculate the in-
tegral expressions in Eqs (4.3) and (4.6). Following this we can apply standard
integral procedures to the solution of the ordinary differential equations with the
unknown functions: 1, 8;w and 8, ¢. )

Numerical examples have been computed for the following data: p; = 6.6,
p2 = 266, Xeo = 1, n. = 1.9, 8. =1, A=1,v = 2,6 = 0. The assumed
physical constants correspond to the creep and rupture behaviour of copper at a
temperature of 230° C (cf Odqvist, 1966).

The results of the numerical solutions presented in Fig.8, 9 and 10 correspond
to the load mo = -2.0-1073, q = 0.29- 104 and the proportion of the thickness
of layers xeo/xio = 3.75. Fig.8 shows the distribution of the damage parameter
in a cross-section of the plate at a moment when the first crack appears w(p =
6.6, = 1, 1) = 1. The distributions of radial and circumferential stresses, s,, sy,
in a cross-section of the plate at the initial moment 7 = 0 (w = 0) are shown by
Fig.9 and 10.

Synthetic curves which show the influence of load: mg (for § = 0. 29 - 104
and xeo/xio ='3.75) and § (for mg = —0.2-1073 and x.0/xi0 = 3.75) and
the proportions of thickness of the layers x.o/xio (for mo = —~0.2-10-2 and
g = 0.29 - 10~4) up to the time of the first crack 7o are illustrated in Fig.11,
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12 and 13. Additionally Fig.14 shows the changes in the radial bending moment
distribution -during the progress of the rupture process for the chosen instants.

5. Final remarks

The examples presented show the efficiency of the proposed algorithm of cal-
culation. The numerical investigations were focused on creep and creep rupture of
sandwich plates with an arbitrarily variable layer thickness. The solutions had to
be limited to moderate transverse heterogeneity in accordance with the assumption
of thin plate theory. :

The distribution of the damage parameter (see Fig.8) modeling current state
~ of rupture process can also be understood as a variable in time plate heterogene-
ity. The response of the assumed mathematical model on that heterogeneity are
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the true stresses or the true bending moments, Fig.14. For the solved examples
(Chapter 4, Fig.11 and 12), the time to the first cracks is approximately 20 to
30 per cent shorter in comparison with the results of the nominal stress analysis

(w=0).
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Pelzanie z analiza zniszczenia niejednorodnych poprzecznie plyt kotowych

Streszczenie

W pracy przedstawiono teoretyczna analizg plyt nieliniowo-lepkosprezystych poprzecz-
nie niejednorodnych. Model procesu kruchego zniszczenia zostal przyjety na podstawie teo-
rii pelzania ustalonego z wykorzystaniem prawa Kaczanowa-Rabotnowa. W rozwiazaniach
zastosowano parametryzacje momentow plytowych. Dwa przyklady numeryczne ilustrujg
pelzanie i kruche zniszczenie plyty pierscieniowej przy réznych rodzajach niejednorodnosci
poprzeczne;j.
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