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In this study the solution to the problem of vibrations of an Euler-Bernoulli
beam, which is loaded by an axial force varying along the length of the beam,
has been presented. The formula for vibration frequency and free vibration
modes, for the case of a beam loaded by the force constant at intervals and
for the load given in the form of the power series, has been determined. In the
case of forced vibrations the flux of energy, which is emitted by the vibrating
beam, has been established. The effect of axial load on vibration of the beam
for various ways of its ends attachment have been illustrated in the enclosed
pictures.

1. Introduction

The relationship between vibrations and the causes which generate stresses in
‘the vibrating system may have particular applications in engineering. As it may
allow one to identify the state of stress on the grounds .of system vibrations and
also may lead to the establishment of the vibrations of desired parts which have.
been initially prestressed. Thus, for example, in the case of vibration of musical
instrument parts there exist a possibility to give certain acoustic properties to
the sound board of the instrument. Also dynamometer, elemeats of which have
been working at various loads, as a result of relation between states of stress of-
its elements and vibrations may give some information about the existing state of
stress (thus, giving indication on the loading forces). A

In this work we have been dealing with vibrations of the beams, which charac-
terize well 2 broad class of linear vibrations. In this connection on the grounds of
the obtained characteristics one may conclude on the motion of such elements as
plates, shells, etc. Since some properties are resulting from the quality assessments
which are common. ' '
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In the case of the Euler-Bernoulli beam effect on vibration, besides the bo-
undary and initial conditions, have also flexural rigidity, mass per length unit,
elasticity of foundation, rotary inertia, shear deformation, axial pre-stress and
geometric parameters. If structural parameters are constant (time and spatial
variable independent), solution to the problem is quite easy, and. is prettly well
known in the literature (cf Giirgoze, 1991). But in the case, where these parame-
ters are spatial variable dependent, solution is obtained by using the approximate
methods and only for the chosen forms of functions, which describe variation of
the parameters, exact methods may be applied.

The problem of effect of parameters varying along the length of the beam on
vibrations of the beam is the object of many studies. -Afagh and Leipholz (1990)
has investigated the influence of the uniformly distributed tangential follower force
on vibrations of clamped-free rod. The influence of elasticity of foudation being
the Winkler type (which varies along the length of the beam) on beam vibrations
has been shown by Eisenberger and Clastornik (1987), Kukia (1991). Gladwell et
al. (1987) has discused the problem of determining the phisical properties (the
cross-sectional area of the beam A(z) and the second moment of the area about
the natural axis I(z)) of the beam from its vibrational behaviour, especially from
the natural frequency data. Gottlieb (1988) presents explicit examples of ope-
rators with discontinuous coefficient functions which displays eigenvalue spectra
identical to each other and to the corresponding operator with continuous coef-
ficients. The investigations in the case of fourth-order differential equation deal
with the stepped-density beams. The fandamental frequency of a cantilever bearn
subjected to a constant direction force at an intermediate point is approximately
calculated by Giirgoze (1991). The effect of stepwise change of the cross-section
of the beam on the first six natural frequencies has been studied for ten different
boundary conditions by Jang and Bert. (1989). The effect of constant axial force
on vibrations of doublespan beams for three different cases of their beam ends at-
tachements has been discussed by Laura et al. (1983). Skalmierski (1984), (1985)
and (1986) has been studied the problem of axial loads and damping effects on
vibrations of elastic systems. The relationship between the state of stress and
the amplitude characteristic and the possibility of stress state introduction to the
gystems (in order to achieve desired vibrations) has been shown. This question is
of considerable importance in elastic vibrating systems, e.g. in resonant boards of
musical instruments and also in diagnostic problems.

In the present work we investigate the effect of axial loads on vibrations of the
beam under the assumption that the axial force (tensile or compressive) is changing
along the length of the beam. Let us consider two cases of the axial force: the
force constant at intervals and the force given in the form of the power series. In
both cases, obtaining of the solution to the problem by using the exact method is
possible. The solutions to the problem of free vibrations of the beam, which have
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been obtained, concern various methods of the beam ends attachments. In the
case of forced vibrations the flux of energy, which has been emited by a vibrating
beam, has been determined.

2. Free vibration of a beam loaded by a variable axial force

For small amplitude free vibrations of a beam loaded by an axial force, the

differential equation of motion in dimensionless coordinates is the following
[2.4(9] dY(( N _ sv(ey =
" _[ )= -2y () =0 (2.1)

Let us assume that on both ends of the beam the boundary conditions are fulfilled
which may be symbolically written as

Uoly ()], =0 ny (), _, =0 (22)

where Uy, U, are two-dimensional ”vectors”, components of which are linear, spa-
tial differential operators. Our aim is to determine the nondimensional frequencies
A of free vibrations of the beam and corresponding to them non-trivial solutions
Y (¢) of the differential problem Eqs(2.1) and (2.2).

2.1. Problem of free vibration of the beam with step-wise axial load

We have assumed that axial load of the beam is the'constant at intervals
function, i.e. function which may be described by the formula

P(C)= Yo RIH(C - 1) = H(C - 1)) (2:3)

=1 .
where H(-) denotes the Haeviside function and 0 = lp < l) < ... < I, = 1.
Taking into account Eq (2.6) and assuming

(=1
SRl Sy

(2.4)

and Y(&)=Y(¢) for lioy < (< l;, 0<§& <1, onecan replace Eq (2.4) by the
following system of m differential equations

V(e . PYE)

& g

- MYi(&) =0 (2.5)
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where x‘ = M(l; - 13-1)4 and P, = Fi(l; - l,'_l)2/2, t=1,2,..,m.
The functions Y;(&;) fulfill the following continuity conditions

Yi(1) _ d*Yin(0)

(2.6)

gt

¥
d€in

for k=0,1,2,3and i = 1,2,...,m— 1. Moreover, the functions Y;(§;) and
Ym(€m) are satisfying conditions, which follow from the boundary conditions (2.2)
and the relationship (2.4). The conditions may be expressed in the following form

M AGY r[Ym(Em)l], _, =0 (27)
The general solution to Eq (2.5) is the following
Yi(&) = Ci cos @i + Ciasin @;§; + Cis cosh i + Ciqsinh §i§;  (2.8)

where

o= VP43~ P

gi=\VPP+Xt+ P

Substituting the solution (2.8) into conditions (2.6) and (2.7), we obtain 4m of
the homogeneous equations with 4m arbitrary constants C;;. Non-trivial solution
to the problem exist only when the determinant of the coefficient matrix of the
system of equations is equal to zero '

det(A) = 0 (2.9)

Eq (2.9) has been already the formula for frequency of free vibrations, w. In
this equation A denotes the matrix with the size- 4m X 4m, which is defined as
follows : .

(B, 0 o ]
g o 0
0o ¢ Q :
A=| ... .. L (2.10)
Gz Chor O
0 P0G G
i :.0 0 Bn)|

Matrices C}, C},..., C% have the size 4 X 4 and are derived on the grounds of the
continuity conditions (2.6). These matrices are the following

€08 a; sin a; cosh §; sinh §;
cl - | —eisina; —aicose; fisinh §; i cosh §; 2.11
' —afcosa; —alsina; [?coshf; [?sinh G; (2.11)
alsina; -—afcosa; BPsinhf; PP coshf;
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for i=1,2,..,m—1 and
-1 0 -1 0
_ 0 —o; 0 -5
= o 0 - 0 (2-12)

0 o 0 —p?

for t1=2,...,m.

The matrices Bo and B,, have the size 2 X 4 and are obtained from the
boundary conditions (2.7). The boundary conditions for functions (&) and
Ym(ém) and also matrices Bo and B;, for the four various cases of beam ends
attachement, are given below )

— clamped beam
dY1(0) dYn,(1
no) =20 - V() = 22l =g
e (2.13)
Bo = 1010 B = | cosom sina,, cosha,, sinhan,
10101 ™~ | —sinay, cosa,, sinha, cosha,
— free beam
d’Yz(O)_d"Yx(O)_ @Yn(1) _ £Yn(1) _
a2 a3 a2, a3, -~
Bo = -1 0 10 B, = —cosay, —sina,, cosha,, sinha,,
0 -1 01 ~| sinay;, —cosa, sinha,, coshan,
— pinned beam
42Y; (0
%(0) = 52 <o V() = S22 = g
! ' ‘ ™ (2.15)
B, = 1 010 B. = COS Oy, sina,; cosha,, sinhay,
°= |l -1 01 0 ™~ | -—cosa,, -—sina,, cosha,, sinha,,
— sliding bea.m_.
avi(0) _ £Y(0) _ d¥n(1) _ Yn()) _,
dé, @ &n A 2.16)
By = 0 1 01 B. = -sgina,, cosa,, sinha,, cosha,
0 -1 01 ™~ | sina, -—cosa, sinha,, cosha, _
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‘The eigenfunctions ¢n(C ) for the problem (2.1) and (2.2) corresponding to the
frequencies A, are described as follows

BolQ) = SV €NEC~ ki) - =1 . (21D)

i=1

where Y;,(&;) functions are given by the formula (2.8), whereas C{'f) = C(" and
C,(;' ) are defined in such a way that the conditions (2.6) and (2.7) are satisfied.
Constant C(™) is selected so as to satisfy the condition: T [#a(€)]2d¢ = 1.

2.2. Problem of free vibration of the beam with the axial load varying con-
“tinuously

In the case of continuous load varying along the length of the beam we assumed
that this load may be expressed in form of the power series

© Pr .

P(¢) = Z_; =< (2.18)

To solve the problem, each of the four independent partial solutions Y;7(¢),
k=1,2,3,4 of Eq (2.1) can be written in the form of a power series

© Y.

W= E¢ k=1,2,3,4 (2.19)

=1 L

Let us assume that the functions Y;*({) satisfy the following conditions

&Y (0 .
+€‘O = $rip1 +=0,1,2,3 k=1,2,3,4 (2.20)
where 6,,,, denotes the Kronecker delta. It means, that

Y = bkipr 1=0,1,2,3 k= 1,'2, 3,4 (2.21)

Considering Eqs (2.18) and (2.19) in Eqﬁation (2.1), we get, after some trans-
formations, the following formula for the unknown coefficients Y. of expansion

(2.19)
i1 i1+1 . .
Yiga t+ Z ( j ) Y Pip—j — MY =0 (2.22)
=1 '

for 1=0,1,2,..;k=1,...,4.
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The general solution for Eq (2.1) may thus be written in the form
4
Y(¢) =Y CY(Q) (2.23)
k=1

Then, using the boundary conditions (e.g. in the form of Egs (2.13); +(2.16),) one
can get the homogeneous system of four equations with respect to the unknown
Ci. For existence of non-trivial solution to the problem it is necessary that the
determinant of the coefficient matrix for that system of equations must be equal
to zero

det(K) =0 (2.24)
In matrix K some sub-matrices may be distinguished
Lo
K= [ L ] (2.25)

which are defined in dependence on the boundary conditions. Matrices Ly and
L; have the size 2 x 4. For writting the elements of matrix L; the foliowing
denotation has been used

()
i Yz .
=S kelaae seoans o)

Below, matrices Lg and L; have been given for the four cases of the beam ends
attachements
— clamped beam

‘.=J

_]Joo10 BRI AR 2 7
LO [0 0 0 1} Ll— I:]_/ll ]721 ]—/31 ]-/41 (2270)
— free beam
1000 v v v V2
=lo10o0 L=l% % » ¥ (2.275)
— pinned beam
[100 0] e o owe R
— sliding beam
Jo100 VAND AN 7 0 2 I _
""T[o 00 1} L‘"[Yf I YSJ (2.27d)
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Using Lo and L, matrices, the formula for the frequencies of vibration (Eq (2-24))
may be written for ten various ‘conditions of beam ends attachment.

The eigenfunctions () for the differential problem Eqs (2.1) and (2.2),
which correspond to the frequencies A, have the form R

) ,_
(€)= Y M) (2.28)

=1

where C(") C(™ and all other constants are obtained from the conditions (2.2).
Consta.nt C™ should be choosen in such a way that condition: [} [va(¢)]?d =1
has to be satisfied.

3. Spectral density of the forced vibration

Let us consider vibrations of a beam forced by a transverse force varying in
time and with the intensity of 2((,t). Assuming additionally the existence of the
dissipation of energy effect characterized by forces which are proportional to the .
velocity of particular points of the system. The differential equa.txon of the beam
motion is thus as follows

rIw
ot

%[O+ «)"’W +r2‘1"4 = #((,0) (33)

where W = ¥, r = 245% Agsume that the boundary conditions are fulfilled in

the form of Eq (2.2) and the zero initial conditions.

. Solution to the problem is searched for in the form of sum of products from
the eigenfunctions ¥;({) and functions Ti(?), dependent exclumvely upon tlme

w(, 1) =-i‘¢k(-cm(t) - (32)
k=1

Function T(t) will be determined from the equation, which we get by introducing
the expansion Eq (3.2) into Eq (3.1), multiplying the obtained equation by the
function ¥(¢), I = 1,2,... and by integration in the interval (0,1). Using the
orthogonality of the eigenfunctions, the equation has the following form

' &
_ﬁ +2) b + 5T = ax(t) (3.3)
. nz=l :



THE EFFECT OF AXIAL LOADS... - 421

where
’ 1

b =§; a(CYalCIH()d (3:4)

(=1 [ om0 69
4]

and by = A}/r. Furthermore, assume that the condition: hnx 2 0 for n # £k, is
satisfied (cf Skalmierski, 1985). _

Applying the Fourier tranformation to Eq (3.3) and making use of the convo-
lution theorem, the solution to Eq (3.1) may be expressed as follows

W((,t) = > / Gi(t - T)ar(r)dra(C) (3.6)
) 9N

where Gp(-) is the impulse delta function.
' Correlation function of the output signal is defined in the following way (cf
Skalmierski, 1985) .

w(tl,tg) = Z j f Gk(tl - Tl)Gk(tz Tz)Kah(Tl,Tg)dTIdfg (3.7)

k=1_05 <0
where K, (11, 7;) is the correlation function of component of the signal ax(7).
Assuming, that the input signal is a stationary one in a brqad sense, e.g,
Kay(11,73) = Kqp(11 - 72) (3.8)
we can determme the spectral density as the Founer tra.nsform of the correlation
function
Sul@) = 3 IGHw)PS0w) (.9)
k=1 _

where
. lv

(w? — b)? + 4w?hyy

Function S,, (w) is the speciral density of the input signal and is described by the
formula

[Gr(iw)l? = (3.10)

' +co
Sa (W) = / et K, (1)dt i=v=1 (3.11)

=00
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'Vibrating body is a source of the sound waves. Energy flux I radiated by the
vibrating beam is defined by the formula (cf Skalmierski, 1986)

+o0
1 2 .
= — . . |
21rcP°_j Sw(wlw?dw (3.12)

where ¢ denotes the velocity of wave propagation and pg is the density of the
medium. )

Let us assume, that the function (input signal) ex:stmg on the right hand side
of Eq (3.1) has the form

A6, = 3 orpu(Q)sin(t + ¢) (3.13)
k=1
The correlation function of the input signal is thus defined by the relationship
= '
K = 3% j B dartn e [ sinot + ) sinlu(t-+7) + )it =
it ° (3.14)
= 3 E a cosvr

Considering the relation (3.11), we can find the spectral densmes of the compo-
nents of the input signal

Sa, (W) = gaz[a(w — )+ 6(w +v)] (3.15)

© On the other hand on the grounds of Eqs (3.9), (3.10), (3.12) and (3.14) we get

I(v) = —cpou E(Vz bk)2+4uzhkk | (3.16)

4. Results of the numerical computation

Numerical computations concern the investigation of axial force distribution
influence on beam vibration. The influence of the axial force on the frequency
change of free vibration of the beam has been shown, and their influence on the
change of flux energy, which has been radiated by the vibrating beam forced by
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Fig. 2. First natural frequency of the beam loaded by ‘the axial force:
P(¢) = px*[1 — 2H(( ~ n)]; (a) clamped-clamped beam, S ) clamped-pinned beam,
{c) pinned-pinned beam, (d) sliding-sliding beam

the sine signal. Calculations have been performed assuming the following data:
L= 40m, EI = 4.084-10° Nm?, pA = 30.394 Ns?/m?.

Fig.1 + 3 concern the 1nﬂuence of the force, changing in stepwise manner
" along the length of the beam, on free vibration frequencies. In Fig.la-+d there
are the curves, which depict this influence in the four cases of beam loaded by
the axial force of constant value (which is characterized by dimensionless quantity
ux?) in the interval (0,7). Considerable changes in first frequency of vibration
(An = L p AWZ](ET) are the dimensionless vibration frequency) have been
observed not only while compression (u < 0) but with tension as well (u > 0).
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Fig. 3. First four natural frequencies of pinned-pinned beam loaded by the tensile force:
Py =pr?H({ ~ 1) - H{( +n—1)]

v

Figure 2 is for the beam, whick is subjected to tension with the constant
force pr? in the (0,7) intrval and in (7,1) is compressed by the constant force
—un?. Calculations have been performed for three various ways of beam ends
attachments. It is seen here the effect, on free vibration frequency, both the force

~magnitude and the way of beam ends attachments.

In Table 1 results of the first, dimensionless vibration frequency obtained by the
Rayleigh method {cf Skalmierski, 1985) and these obtained by using the method
proposed in this work, are listed. Comparison of the results concerns the pinned-
pinned beam loaded by the axial force

P(¢) = px? for ( € (0,9) and P(() = —ux? for (€ (n,1)
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Fig. 4. First natural frequency of the beam loaded by the tensile force: P(() = 3ax3(*
(solid line) or compressing force: P(¢) = —3ax2(* (dashed line) versus parameter o
(0 € a <1); (a) clamped-pmned beam, ‘(rb;)e-pinned-clamped beam, (¢) clamped-clamped

~ beam, (d) clamped beam

Table 1

n p =05 - p=10"
‘Present | Rayleigh | Present | Rayleigh
method | method | method | method
0.1 | 2.8514 2.8669 2.3754 2.4780
0.3 [ 3.0818 | 3.1027 | 2.9671 | 3.0622
0.5 | 3.1320 | 3.1416 | 3.1022 | 3.1416 .
0.7] 3.1615 | 3.1791 | 3.1488 [ 3.2153
0.9 | 3.3492 | 3.3587 | 3.5078 | 3.5404
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Fig. 5. First four natural frequencies of the pinned-pinned beam loaded bs' the axial
force: P({) = x3ax3(*

The curves in Fig.3 present changes of the first four vibration frequencies for
pinned-pinned beam loaded by tensile force (ux?) in interval (5,1 — 5) with
respect to 7 (0 <7 < 1) and the force magnitude (parameter u).

Changes of the first natural frequency of the beam loaded by the axial force
P(¢) = +£3an2(* versus parameter a (0 £ a < 1) have been shown in Fig.4.
Solid line denotes dimensionless frequency values for the tensile force and dashed
line for the compressive force. Tensile force changes itself along the length of the
beam in the linear way (k = 1), with second (k = 2) or third (k¥ = 3) power of
the variable ( in such a way that in all the cases — points (0,0) and (1,3x%a)
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Fig. 6. Energy flux emitted by the vibrating clamped-pinned beam
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belong to the force diagram.

Curves in Fig.5 illustrate first four natural frequency changes of the pinned-
pinned beam. The beam is loaded by an axial force like in the case discussed with
Fig.4.

In Fig.6 the energy flux emitted by the clampd-pinned beam has been pre-
_sented graphically. The calculations have been performed on the grounds of for-
mula (3.16) for the forced vibrations determinated by sinusoidal signal given by
(3.14). For computation it have been assumed: K =6, a; = 1for k = 1,...,6,
cpo = 221 kg s~! m~2. Curves in Fig.6a,b,c have been obtained for the case of
tensile force: P(() = 2#2(, and Fig.6de,f have been drawn assuming the com-
pressive force: P({) = —2x2(. For computational purposes various damping
characteristics: a(() = 1 — ( (Fig.6a and Fig.6d), a({) = ¢ (Fig.6b and Fig.6e),
a(¢) = 0.5 (Fig.6c and Fig.6f). Irregular distribution attenuating characteristics
along the length of the beam has an effect on energy flux both in the case of temsion
(Fig.6a,b) and compression (Fig.6d,e}.

5. Conclusions

In this work effect of axial force varying along the length of the beam on the
" vibration of the beam has been studied. Solution of the problem of free vibration
of the beam has been obtained in the closed form for the case of the force being
stepwise constant and force given in the form of the power series. It has been
proved that the change in the axial force distribution causes the change of free
vibration frequency. That effect is substantial irrespective of boundary conditions
both in case of the force being stepwise constant and in case &f the force varying in
the continuous form (in form of poynomial). It has been stated that distribution
of the axial force has an effect on energy flux emitted by the vibrating beam. It
has been also proved that the change of the irregular distribution of vibration
dumping characteristics along the length of the beam cause the change of energy
" flux emitted both with existence of tensile and compressive forces as well.
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Wplyw obciazeni osiowych na drgania poprzeczne belki Bernoulli’ego-Eulera

Streszczenie

W pracy przedstawiono rozwiazanie problemu drgan belki Bernoulli’ego-Eulera obcia-
zone) zmienng wzdluz dlugosci sila osiowa. Wyznaczono réwnanie na czestosci drgan
i postacie drgan wlasnych dla przypadku obciazenia sila osiows przedzialami staly oraz
obciazenia danego w postaci szeregu potggowego. W przypadku drgan wymuszonych okre-
slono strumien energii wyemitowanej przez drgajaca belke. Wplyw obciazenia osiowego na
drgania belki dla réznych sposobéw zamocowania jej koricéw przedstawiono na wykresach.
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