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The paper presents a manipulator level robot programming language ROOPL
implemented as a library of objects (recordsand methods) in an object oriented
programming version of Pascal. ROOPL is located in a classification of robot
programming languages. Moreover a brief introduction to object oriented
programming methodology is supplied. The robotic system that the language
was implemented on is described. A fragment of an exemplary ROOPL
program illustrating an execution of simple robotic task is given.

1. Introduction

Initially complex industrial robots were programmed by teach-in methods, but
since then robot programming has evolved toward robot specific textual program-
ming languages, Zielifiski (1992b). So many robot programming languages (RPL’s
in short) have been implemented, Zielifiski (1989) that classification of both the
languages and the methods of their implementation are necessary.

1.1. Classification of robot programming languages

Every programming language operates on specific abstract concepts. An in-
struction of a language is composed of one or more keywords and zero or more
arguments. These arguments express abstract concepts. Computer programming
languages (CPL’s in short) operate on variables of different types. The values of
these variables describe the state of certain abstract notions. The instructions,
and so the languages, can be classified according to the abstract notions they refer
to.

The main instructions of RPL’s are the instructions causing the motion of the
manipulator (i.e. motion instructions) and due to that are the reason for motion
of the objects in the environment and the robot itself. The abstract notions that
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these instructions refer to are: the manipulator joints, the end effector or the ob-
jects of the work space. Each of the enumerated notions creates a certain virtual
environment, Zieliriski (1985), (1990) and (1991a), in which the instructions of
the language operate. In other words, the elements (considered important) that
were selected from the real environment constitute the virtual environment.
Only some elements of the real environment are the basis for creating abstract
notions that compose the virtual environment. The virtual environment is a sim-
plified model of the real environment. On the degree of this simplification and on
the abstract notions that were chosen to make up the virtual environment depends
the complexity of the control system of a robot. The programmer through each
level of the control structure perceives the real environment as a simplified model
~ he perceives the virtual environment. In the case of RPL’s the above mentioned
abstract concepts are hierarchically related and so these languages can be classified
into levels (Zielifiski, 1985; Gini and Gini, 1982).

The languages of the lowest level are called joint level languages. The in-
structions of those languages cause the generation of sequences of signals control-
ling the drives of the manipulator. So in this case the manipulator joints form the
virtual environment. The design of a control system accepting these instructions
is quite routine, but to forecast how will the tool behave when all the drives are in
motion is not as simple. For the simplification of design the price of programming
complexity is paid.

The languages of the next level free the users from this disadvantage. The main
concept of the virtual environment of this level is the manipulator’s end effector,
so these languages are called the manipulator level languages. Although it is
easy to predict the trajectory of the robot tool when using languages of this level,
the programmer still has to be concerned with the description of all the motions
of the manipulator instead of simply stating what actions have to be performed
to accomplish the task. Examples of languages of this level are: VAL II (User’s
Guide, 1986) and WAVE (Paul, 1977).

The instructions of object level languages operate in virtual environments
composed of models of objects existing in the work space. The programmer states
only which objects should be transferred, so that the task will be accomplished.
The robot control system using its knowledge of the objects and the relations
between them will relocate the manipulator in such a way as to complete the job.
From this level onward the programmer does not have to busy himself with the
motions of the robot arm, but can concentrate on the operations that have to be
executed. RAPT (Ambler and Corner, 1984), AL (Mujtaba and Goldman, 1979),
TORBOL (Zielinski, 1991b) and SRL (Blume and Jakob, 1986) belong to this level
of languages.

On the fourth level instead of specifying all the operations, only a general
description of the goal should suffice. In this case the control system has to generate
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the plan of actions, and later carry it out. The task level languages are the
aim of current research. As the prime difference between third and fourth level
languages is that expressing tasks in the former we supply the plan of actions and
in the later the plan is generated automatically.

RPL can be implemented in three ways

e as a specialised language
e as an enhancement of an existing CPL

¢ as a robot specific library of procedures coded in a universal CPL.

Implementation of a specialised language is a very laborious task. First the
definition of the language (syntax, semantics) has to be elaborated. Usually it
turns out that such a language has to possess all the properties of a CPL plus
robot specific instructions and data types, what renders it very complex, both
to master and even more so to implement. VAL II (User’s Guide, 1986), WAVE
(Paul, 1977), RAPT (Ambler and Corner, 1984), AL (Mujtaba and Goldman,
1979), TORBOL (Zielifiski, 1991b), SRL (Blume and Jakob, 1986) and many
other RPL’s were implemented in this way.

As a RPL has to havenearly all the constructs attributed to a CPL it seems that
the second of the enumerated ways of implementation would be more appropriate.
Unfortunately very seldom the definition of a CPL can be enhanced — mainly
because the code of the compiler is available only in an executable (non-modifiable)
form (the source code is a trade secret), and so this way is usually closed to robotics
researchers.

The last method is the cheapest, both in terms of funds necessary for the de-
velopment of a RPL and the time spent on this development. Only robot specific
procedures have to be coded, while all the mechanisms of a CPL are still available
to a programmer. Moreover no modification to the compiler or interpreter of the
language is necessary. The only drawback is that robot specific instructions are a
bit more cryptic (procedures with adequate parameters have to be used instead of
explicit robot instructions with appropriate arguments). If library creation is cho-
sen as the means of implementing a RPL, a CPL that will be the foundation, and
the programming methodology, still remain to be selected. For instance PASRO
(Blume and Jakob, 1985) and ROOPL (Zielisiski, 1992c) are submerged in Pascal
(Programmer’s Guide, 1990), and C (Kernighan and Ritchie, 1980; Turbo C++,
Programmer’s Guide, 1990) is the basis for RCCL (Heyward and Paul, 1986) and
the language of the research oriented controller, Zielifiski (1992a).

1.2. Object-oriented and structured approach to programming

Object oriented programming (OOP) methodology evolved from structured
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programming. Structured programming is a method of describing a program-
ming task in a hicrarchy of modules, each describing in increasing detail the task,
until the final stage of coding is reached (programming by stepwise refinement).
Strict adherence to modules renders GOTO instructions unnecessary, in effect exhi-
biting a clear program structure. Nevertheless initially structured programming
treated data and algorithms operating on this data as two separate entities. Ob-
ject oriented programming paradigm integrates the two. An object is a collection
of data (variables of adequate type, which should be treated as fields of a record)
and procedures and functions, which are called methods, operating on these va-
riables. Three main properties characterise an object oriented programming
language

¢ Encapsulation - treating data and code operating on it as one entity — an
object;

e Inheritance - defining a hierarchy of objectsin which each descendant object
acquires all the properties of the ancestor objects (access to data and code of
the ancestors) and receives some new properties specific to the newly created
object;

e Polymorphism - using the same name for an action that is carried out on
different objects related by inheritance. The action is semantically similar,
but it is implemented in a manner appropriate to each of the individual
objects of the hierarchy.

Some of the CPL’s were created as OOP languages (e.g. Loglan, cf Bartol et
al., 1982), others which had been originally used only as structured programming
tools were enhanced by adding OOP mechanisms (e.g. Pascal, Programmer’s
Guide, 1980; C++, Programmer’s Guide, 1990).

OOP methodology assumes that certain abstract objects will be defined by the
programmer. These objects have their properties (data) and exhibit behaviours
(methods). The program is written in terms of objects behaving in such a way as to
change their properties, i.e. applying methods to change dcta. To make this more
clear an example follows. Let a screw be the object. One of its many characteristics
is its location in space (data). The screw can move in space (movement is its
beliaviour). The programmer commands the screw to change its position, and so
applies its position changing method to its data. As the resuit of applying this
method the screw will be transported to some other location.

At this point the misunderstanding which can arise from the traditional use
of the term ”object” in "object level robot programming languages” and in " object
oriented programming languages” (this time CPL’s) has to be clarified. In the case
of RPL’s the notion of an ”object” pertains to the real objects that are located
in the robot’s environment or to abstract models of these objects represented in
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a RPL. In the case of the CPL’s the term ”object” represents an abstract notion,
which encapsulates data and code, and possesses the properties of inkeritance and
polymorphism.

This paper describes the application of OOP methodology to the creation of
a manipulator level RPL (object library to be strict). For this purpose a version
of Pascal language possessing OOP enhancements (Turbo Pascal, Programmer’s
Guide, 1980) was used.

2. ROOPL

2.1. Implementation

HOST COMPUTER

ROOPL program & itbrary

e— JLss

R$-232

YAL 1 SYSTEM

Command interpreter

Il

COOPERATING | | PUNA ROBOT| [ sensors |
DEYICES

Fig. 1. Structure of the system executing ROOPL programs

ROOPL (Robot Object Oriented Pascal Library) is a library of objects and
methods, coded in an OOP version of Pascal (Programmer’s Guide, 1980), that can
be used in programs generating, modifying and executing robot arm trajectories.

The structure of the system executing ROOPL programs is shown in Fig.1. A
ROOPL program is executed on an IBM PC class host computer. It generates
robot motion commands that are being interpreted by a VAL Il (User’s Guide,
1986) program running on a robot control system computer. Both computers are
connected by a RS-232 serial interface. The VAL II control system causes the
motion of a PUMA-560 robot arm. The sensors can be either directly connected
to the host computer or to the control computer. In the later case, data obtained
from sensors is transmitted through the RS-232 interface to the host computer for
processing. The RS-232 is also used for transmitting to the host computer the
information about the current state of the arm (e.g. about motion terminaiion or
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the arm pose). ROOPL programs can also control cooperating devices connected
either to the host computer directly or indirectly through the control computer.

( pft?gorii;l } Yarlos with sach
{in Pascal) robot task
‘Compilatlon
Pre-compiled
HOST library
COMPUTER ¥ procedures
r Linking —|
Executable \
ROOPL
program
I
VAL I rCommand Interpreter | ggg;gﬁm
SYSTEN l
ROBOT { Arm motions

Fig. 2. Method of processing a ROOPL program

The method of processing and executing ROOPL programs is presented in
Fig.2. The source program is written using any text editor. Next the source
program is compiled by a Pascal compiler. The resulting object code files and the
ROOPL library module are linked, and so the executable code is obtained. This
code is run on the host computer. Simultaneously a program called command
interpreter, which was written in VAL II, is run on the control computer. After
an automatic synchronisation phase through the RS-232 interface, the robot task
initially coded in ROOPL is executed. The command interpreter constantly waits
for motion commands and status sensor requests from the host computer. In
response to these commands it initiates the execution of motions and sends back
the requested data and information about motion termination.

2.2. General information about the ROOPL library

To use ROOPL, a Pascal program invoking library objects and their methods
has to be written. At its beginning it should contain the folowing clause:

uses roopl;
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Homogeneous transform matrix type representing a dextrorotatory set of ortho-
gonal unit axis (coordinate frame) ~ matrix, and a pointer type - MatrixPtr to
such a frame, are defined as supplementary data types. As a homogeneous trans-
form matrix can also represent transformations (translation and rotation) no other
robot specific data type need to be introduced.

Two types of objects are defined by the library: frame and segment. The first
represents a homogeneous transform representation of a coordinate frame. The
later is a descendant type of the former and describes the approach path segment
to the ancestor frame. Their definitions are given in Fig.3 and Fig.4.

frame =
location:
constructor

destructor
procedure

procedure
procedure

procedure
function

procedure
end; frame

object

MatrixPtr;

Create(px,py,pz,fi,theta,psi:

real); {Create

the frame using Cartesian-Euler description}

Destroy; virtual;
Copy(F: frame);

Invert;
LeftMultiply(F: frame);

RightMultiply(F: frame);
Equal(F: frame):

boolean;
WritelLocation;

Fig. 3.

{Release memory}

{Copy F.location into
self.location}

{Invert self.location}
{left multiply self.
location by F.location}
{right multiply self.
location by F.location}
{Compare self.location}
{and F.location}

{Write out gelf.location}

The methods defined in the frame object (Copy, Invert, LeftMultiply,
RightMultiply, Equal) perform the obvious homogeneous matrix operations.
The first argument of the operations is the location field of the object and the
second (where present) is defined by method’s actual parameter.
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segment = object (frame)

motion: MotionType; {type of motion to

be executed along the segment}

Sensor.LSB: byte; {VAL input number that
is to be treated as a LSB}
Sensor_reading: integer; {value obtained from the sensor}
Error: byte; {error code (e.g. errors
may occur during transmission}

constructor Create(px,py,pz,fi, {Create segment using}

theta,psi: real; {the listed arguments}

SegMotion: MotionType;
SensLSB: byte);

destructor Destroy; virtual; {Release memory}

procedure AttractPumaTool {Move robot; A6T -}
(A6T: frame); {Flange-Tool transform}

function SensorData: byte; {Read sensor data byte}

function ErrorOccurred: Boolean; {Get error}

procedure WriteError; {Write out error}

function SegmentType: {Get segment typae}
MotionType;

procedure Homogeneous_to_Euler {Transform homogeneous}
(var px,py,pz,fi, {to Cartesian-Euler}
theta,psi: real); {representation}

procedure Copy(S: segment); {Copy S into self}

procedure SetLocation(px,py,pz, {Set location field}
fi,theta,psi: real); {to Cartesian-Euler}

{representation}

procedure InitRobot (A6T: frame); {Initialize the robot}

procedure QuitRobot(A6T: frame); {Deactivate the robot}

function GetSensorData: byte; {Get sensor reading}

function SensorNumber: byte; {Get sensor number}

procedure SetSegmentType(m: {Set segment type}

: MotionType) ;

procedure SetSensorNumber(sn: {Set sensor LSB number}

byte);
end; segment
Fig. 4.
There is only one, but general, method of moving the robot.  The

AttractPumaTool method applied to a segment object causes the robot to move
towards (be attracted by) the coordinate frame being one of the fields of the object.
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The type of motion depends on the contents of the motion field. Eight different
kinds of motions can be performed - defined by enumerated type MotionType.

e PTP_JointInterpolated NoSensors causes joint interpolated motion wi-
thout using sensors; confirmation is sent when the motion terminates

e CP_JointInterpolated NoSensors causes joint interpolated motion without
using sensors; confirmation is sent when the motion is initiated

e PTP_JointInterpolated WithSensors causes joint interpolated motion
with sensor feedback; confirmation is sent when the motion terminates

e CP_JointInterpolated HithSensors causes joint interpolated motion with
sensor feedback; confirmation is sent when the motion is initiated

e PTP Cartesian NoSensors causes Cartesian interpolated motion without
using sensors; confirmation is sent when the motion terminates

e CP_Cartesian NoSensors causes Cartesian interpolated motion without
using sensors; confirmation is sent when the motion is initiated

e PTP Cartesian WithSensors causes Cartesian interpolated motion with sen-
sor feedback; confirmation is sent when the motion terminates

e CP_Cartesian WithiSensors causes Cartesian interpolated motion with sen-
sor feedback; confirmation is sent when the motion is initiated

In the case of PTP (point to point) motion its termination is signaled, while
in the case of CP (continuous path) motion its initiation is signaled by the VAL
command interpreter. Either straight line in the joint angle coordinates or in
Cartesian-Euler space can be used while approaching the goal frame. If sensors
are used during the motion, the confirmation byte carries the information about
the obtained sensor reading. Otherwise an asterisk is sent as confirmation to-
ken. Sensor reading is obtained from the 8 consecutive VAL inputs, starting at
Sensor LSB (inclusive).

Any method that can finish its execution without performing its task causes
the Error fleld of a segment to change its value to non zero. This field should be
checked whenever executing an action that can result in an error (e.g. transmission
error).

Other methods defined in segment manipulate the data fields of this object (e.g.
read them). It is easier for the programmer to describe frames as three Cartesian
coordinates of the origin and three Euler angles of orientation, so adequate methods
for transforming the internal format into this representation and vice versa are
supplied (Homogeneous_to_Euler, SetLocation).
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As can be seen from the above definitions nearly all the actions are performed
by executing appropriate methods on the two supplied object types (frame and
segment). Only gripper closing and opening is done by procedures.

procedure Grasp(var Err: byte);
procedure Release(var Err: byte);

The robot program consists of sequences of methods executing actions on ob-
Jjects. Besides these the programmer is free to use any Pascal statements.

2.3. Example

A fragment of a program executing a path that is generated on-line will be
presented as an illustration of program coded in ROOPL, Fig.5. In the case of
sensor guided motions each new location depends on the value obtained through
a set of binary sensors connected to the VAL system. Eight kinds of motion
can be used by selecting one from each of the three following pairs: (PTP, CP),
(joint interpolated, Cartesian interpolated), (with sensors, without sensors). The
object Seg is the definition of the current path segment. It is modified for each
next motion step. As a result of this program the operator can lead the robot by
exerting forces on the sensor to a goal location that has non-decreasing coordinates
in relation to the current location (this assumption was made to keep the example
short). The sensor can be mounted near the tool tip or be placed in any other
area.

3. Conclusions

The paper presents an object oriented programming approach to the definition
of a manipulator level robot programming language. The language was defined
as a library of objects (records, methods), specific to robot programming, and sub-
merged in a universal computer programming language: OOP Pascal. The library
takes into account both robot motions and sensor data processing. The language
was implemented on a two computer system controlling PUMA-560 robot. The
performance of the system was satisfactory in the case of predefined motions that
do not have to be frequently modified by actions dictated by sensors. In the case
of trajectories that are frequently modified or generated according to data obtai-
ned through sensors, due to low transmission rate of the RS-232 serial interface,
a jerky motion can result. This drawback can be easily solved by employing a
parallel interface and increasing the transmission rate.
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{Execute 15 motion steps}
for i:=1 to 15 do
begin

{Create the next location taking into account the sensor data}
case Seg.SensorData of
{Sensor supplies a number: 0 - 7}

0: begin {do nothing} end;
1: begin x := x + xstep; end;
2: Dbegin ¥ i3 y + ystep; end;
3: begin x := x + xstep; y := y + ystep; end;
4: begin z := z + zgtep; end;
5: begin x := x + xstep; z := z + zstep; end;
6: begin y := y +ystep; 2z := z + zstep; end;
7: begin x := x + xstep; y :3y+ystep; 2z := z+ zstep; end;

end {case Seg.SensorData}
Seg.SetLocation(x,y,z,PI/2,PI/2,0);

{Execute the current step}
Seg.AttractPumaTool( A6T );

{Check if an error occurred}
if Seg.ErrorOccurred
then
begin
Seg.WriteError;
Seg.Destroy;
halt;
end;

end; {for}

Fig. 5.
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ROOPL — jezyk programowania robotédw zanurzony w obiektowej wersji
Pascala

Streszczenie

W artykule przedstawiono jezyk programowania robotdw zorientowany na przemie-
szczanie manipulatora, zaimplementowany jako biblioteka obiekidw (rekordsw i procedur)
w obiektowej wers)i jezyka Pascal. Jezyk ten umnejscownono w klasyfikacji jezykow pro-
gramowania robotéw. Ponadto zamieszczono krétki opis pojeé zwiazanych z programowa-
niem strukturalnym i obiecktowym. Opisano réwniez system skladajacy sie z komputera
klasy IBM PC, robota PUMA oraz jego sterownika - na ktérym zaimplementowano wyzej
wzmlankowany jezyk ROOPL. W ce%u ilustracji sposobu programowania w jezyku RO-
OPL, zamieszczono fragment programu realizujacego proste zadanie wykonywane przez
robota wyposazonego w czujniki.

Manuscript received March 5, 1993, accepled for print March 22, 1993



