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The paper discusses optimal plastic design of yoke elements, like yokes, ends
of connecting rods, chain links, etc. A design process consists of two steps:
first, using the boundary perturbation method, we find a class of fully plastic
solutions, and then choose the optimal one from among them. Unicriterial
optimization may be employed if we look for maximal limit load-carrying
capacity of constant-volume elements. However, if characteristic dimensions
of the yoke are prescribed, then multicriterial optimization must be used.
A comparison with some solutions obtained earlier by other authors is also
given.

1. Introduction

As a yoke element we understand a hollow thick-walled load-carrying member
mating with a transversal cylindrical bolt or pin (end of a connecting rod, bolt
joint, chain link etc., Fig.1). The internal boundary is then assumed to be circular,
whereas shape of the external boundary is free, subject to possible optimization.
Circular shape of the external boundary, often used in practice, is not optimal
from the viewpoint of material utilization, since the distribution of circumferential
stresses in the "horizontal” cross-section (perpendicular to the axis of symmetry)
is far from being uniform and a part of the material is not properly utilized.

In the present paper we discuss optimal plastic design of such elements. Si-
milar problems were considered by Szczepifiski (1966) (elements with optimal rec-
tangular external contour), Szczepiniski (1968), Szczepifiski and Szlagowski (1990)
(contour described by optimal broken line). They used statically admissible stress
fields composed of piece-wise uniform stress distributions. Such an approach gi-
ves lower bound to the limit load-carrying capacity, or — for prescribed loading —
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Subject to
optimization

IRRRRRRRERS! IRRRRRRRERY!

Fig. 1. A yoke element with external boundary subject to optimization

upper bound to the volume to be minimized. Zowczak (1989a,b) and (1989) im-
proved this solution using geometrical approach, namely non-uniform stress fields
constructed by the method of characteristics. However, no optimization problem
was explicitly formulated and in his solutions some rigid zones remained.

Here we use an analytical approach based on the boundary perturbation me-
thod. Optimal design consists of two steps: first we look for a class of solutions
showing full plastification at the stage of plastic collapse, and then choose the
optimal one from among them.

Boundary perturbation method is now widely developed both in solid and in
fluid mechanics (though not always under this name). Older results are presented
in the monograph by Morse and Feshbach (1953), whereas a recent survey by
Guz and Nemysh (1987) brings 310 rcferences (mostly Ukrainian and Russian).
The monograph by the same authors (1989) presents in detail two variants of
this method. Recently, much attention to boundary perturbation method applied
to elastic problems has been paid by Parnes (1987) and (1989). Fewer papers
are devoted to boundary perturbation in the problems of plasticity; they were
initiated by Tlyushin (1940), Ivlev (1957), and Spencer (1962). Applications of
the boundary perturbation methods to optimal shape design are rather seldom;
we mention here the paper by Schnack and Tancu (1989) who used numerically
realized local perturbations.

A series of papers by Kordas and her collaborators, started in 1970 (cf Kordas
and Zyczkowski, 1970; Kordas and Skraba, 1977; Kordas, 1977 and 1979; Dollar
and Kordas, 1980; Kordas and Postrach, 1990), used boundary perturbation me-
thod to the analysis of fully plastic states at the stage of collapse of perfectly plastic
structural elements. This is the first step towards optimization (in most cases the
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necessary condition), since the material in rigid or elastic zones at the stage of
collapse is not properly utilized. In some cases this condition is not sufficient, and
then additional optimization is necessary.

An example of such additional optimization is given in the paper by Boche-
nek, Kordas, and Zyczkowski (1983), devoted to plastic optimization of doubly-
connected cross-section of a bar under torsion with small bending. In the above
problem just one boundary condition along each contour holds, thus it was always
possible to find a class of solutions satisfying that condition and then to perform
subsequent optimization.

In the present paper we apply a similar approach to plane problems where two
boundary conditions along each contour must be satisfied and hence the existence
of a broader class of fully plastic solutions is not obvious. It will be shown that
such solutions do exist and may be subject to subsequent optimization. Depen-
ding on the formulation of the problem we arrive at unicriterial or multicriterial
optimization. Both cases will be discussed in detail.

2. Assumptions, basic equations, boundary perturbation

We adopt the following assumptions:

e The material is perfectly plastic and incompressible, subject to either Huber-
Mises-Hencky or Tresca yield condition.

e For relatively wide yoke elements plane strain state may be assumed. In
cylindrical coordinates r, 6, z we assume ¢, = 0, then from the law of similarity
of deviators we obtain o, = o,,, the stress ¢, may be eliminated and the problem
is statically pseudo-determinate: after this elimination two equilibrium equations
and one yield condition determine three unknown stresses o, og, 7-9. In this case
both the above-mentioned yield conditions coincide, Zyczkowski (1981), provided
we employ the yield-point stress in shiear 7y instead of the yield-point stress in
tension g

(0, — 09)2 + 412 = 47¢ . (2.1)

In the case of the Tresca yield condition this form holds without the assumption
of plane strain provided o, < o, < g4, but in the case under consideration this
inequality is practically always satisfied. So, the case of plane stress belongs here
as well.

e We consider a circular shape of the yoke element as the basic solution. Under
the assumption of uniform radial loading along the inner contour r = a and free
outer contour r = b we find the stress distribution in the fully plastic state

T T
or = 2191ln A og = 279 (1 +1In E) T0=0. (2.2)
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This solution is not optimal, since the resulting force transmitted by one half of
the element

b
P=h / oodr = 2roah lng (2.3)

where h denotes the transverse dimension of the element, may be raised. Indeed,
the stresses oy reach their upper bound oy = 279 just for r = b, whereas inside
the interval @ < r < b are smaller. They may increase as a result of an
appropriate shape design. In what follows we admit b = b(#), whereas we retain
a = constant (the inner contacting element is usually circular).

To improve the above solution we use the boundary perturbation method. All
the quantities under consideration, including the external contour b = b(#), will
be expanded into power series of a certain parameter « (to be specified later) of
the type

X= iX,-a" (2.4)
1=0
where T
X = [0:(r,0),00(r,0), 7o(7,8),b(8)] . (2.5)

The solution (2.2) and Eq (2.3) with () = bo =constant will be regarded as the
zeroth approximation. Equations of internal equilibrium are linear, hence for all
terms of the series they retain their otiginal form

do,, 101, o — 0y,

+ 13 L — 0
or r d6 r (2.6)
O0t1ro, 1 0oy, Tro,
— 42 =0
or r 00 + T
whereas the non-linear yield condition (2.1) in view of 7,9, = 0 is subject to
linearization
Or;, — 00, = fi (O'TO,O'go, s Ori 1500,y ,Trgi_l) (2.7)
with 7 =1,2,... For the first two corrections we have
1 4
fi=0 fo= =775 - (2.8)
To
Boundary conditions at the {ree boundary & = 5(#) with the normal 7 are
o, cos(nr) + 7.9 cos(nf) = 0
(2.9)

79 cos(fir) + og cos(nf) = 0
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and after expressing the cosines in terms of the function b = b(8) (Kordas and
Zyczkowski, 1970), we obtain

b(0)0, — b(8)7.p =
(®) (8)770 =0 (2.10)

b(0)rro — b'(0)og = 0.
Both these equations determine — in the case of full plastification — one function
b(#) as well as boundary values of stresses.

Expansion of Eq (2.10) into power series of « is more complicated, since
the boundary itself is subject to perturbation. The increment of the independent
variable Ar equals

[>0]
Ar = Ab=)"b;(0)a (2.11)
Jj=1
and hence, replacing multiplication of series by a multiple series, we obtain

0 oo 00 1+Lb(0)() (7”(7“ d) [Zb(@)aﬂ] _

2> D«

i=0 k=0 m=0 r=bo (2.12)
& & Wl0) 07 (1, 0)
g)kz;)mz_:o m! orm r=bo [Zb (B)QJ]

and similarly for the second Eq (2.10). In the case under consideration, these
expansions are essentially simplified, since 7.9, = b5 = 0.

At the inner contour » = a the boundary conditions wili not be specified.
In any case, they are satisfied in integral form, it means that the ”vertical” com-
ponent of the resultant force acting on the pin or bolt is equal to 2P, and the
“horizontal” component vanishes. This is due to the equations of internal equili-
brium (2.6), holding inside the body, and symmetry of solution assumed. A more
precise formulation of the boundary conditions would require a solution of a rather
complicated contact problem allowing for possible friction forces. This problem
will not be considered. However, the resulting loadings will be calculated for par-
ticular solutions obtained and discussed from the point of view of their technical
realization.

3. First-order perturbations

For j =.1 the Eqgs (2.6) with the yicld condition (2.7) and (2.8) resulting in
oy, = 0g, may be reduced to one homogeneous hyperbolic equation

,.2827-791 9* Tro, +3r aTT91

Or? 062 or

- 0. (3.1)



722 W _.EGNER, Z.KoRrDAS, M.ZYCZKOWSKI

After separation of variables we obtain the solution
1
Trg, = — [Al sin(\//\2 —1ln -T—) + By cos(\//\2 —1ln —T—)] sin A8 (3.2)
r 1)0 bo

where ) denotes the separation constant, in what follows regarded as a free
parameter. A possible term with cos A8 was neglected in view of the coordinate
system adopted (Fig.1), and symmetry required.

In order to present the formulae for subsequent perturbations in a more com-
pact form we introduce the following simplified notations

sin( V2 = 11n ) = sl, cos \//\2——lln~r— =cl,

( ™ ( i)

sin(\//\2 —1In bi) = sl, cos(\//\2 —1ln _a_) =cl,
0

(3.3)
) Ty Ty
sin (2\//\2 —1ln %) = sy, cos (2 A2—1In %) = ¢l
. a a
sin (2\/ A2 —1In —) = sly, cos(2\//\2 —1ln —) = clg,
b() bO
and rewrite Eq (3.2) briefly
Too, = %(Alslr + Blclr) sin \d . (3.4)

The relevant corrections for normal stresses are

1
o, = 0p, = E[(A, -V 131)51, + (\/v “ 1A, + Bl)cz,] cos A0 + Cy (3.5)
where C} is an integration constant, regarded as an additional free parameter.

The boundary conditions for the first-order perturbations are found from Eq
(2.12) by equating the coefficients of « at both sides. Substituting Eq (2.2) we
obtain

2T0b[(0) = —b()O'-,-l

r=bo (3.6)

270b(8) = boTr,

r=

They determine unknown constants in Eqs (3.4) and (3.5), and, first of all, the
function 6(8) corresponding to full plastification of the body. Since this function
appears in both Eqs (3.6), a solution is possible if and only if )

do,,

-5 (3.7)

Troy = r=bg
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Possibility of fulfilment of Eq (3.7) by Eqs (3.4) and (3.5) is not obvious. However,
in the case under consideration it can be satisfied if A;v/A%2 — 1 = 0, hence either
Ay = 0or. A = 1. It is sufficient to put A; = 0. Indeed, if we substitute
A =1, then all the terms with A, in Eqs (3.4) and (3.5) disappear, so the second
alternative is reduced to the first one. Finally we obtain

b .
Trgy = Tlclr sin Ad

Or, =09, = %‘-(—\/ A2 — 1sl. + Cl,-) cos \G + C1 (38)

B b
bi(8) = —27_01/\ cos A9 — %Cl .

4. Second-order perturbations

For j = 2 Eqs (2.6) with the yield condition (2.7) may be reduced to one
non-homogeneous hyperbolic equation

0%1,4 0%1,4 L) AB?
2 To2 T r _ 1 .
P gt = (1 +2VAZ ~ sy, + c12,) sin2A0. (4.1)
The left-hand side of Eq (4.1) is identical to Eq (3.1), hence general solution of the
homogeneous part will be written in the form (3.4) with the constants denoted by
Az and B;. A particular solution of the non-homogencous equation (4.1) may be
assumed proportional to sin 2A8 and finally we obtain

2
Tog, = %(Azsl, + Bzcl,) sin A\ — STfAly-z [1 + VA2 = Lsly, + (2/\2 - 1)c12,] sin 2.
(4.2)

Normal stresses may be found from Eqs (2.6), (2.7) and (2.8)

O, = L[(/12 —VAZ - IBQ)SI,- + (B2 + VA2 - 1A2) clr] cos A8 +

AT

+ 81'5\1221'2 [_2,\2 + ('2/\2 — 1) \/ﬁslzr — (3/\2 — 1)612r] cos 2A0 +
g N VAT el 4 el 4 €
TOA®T (4.3)
o = S [(Aa = VTRl 4 (B VAo st

+ B—f [(2,\2 - 1) VA2 = 1sly, — (,\2 - l)clzr] cos 276 +

8T()/\2’I‘2
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2
8T£\12T2 [-X2 = V22 = Tslae — (222 = 1) clay] + C3
where the constant C is a new parameter.

The boundary conditions for the second-order perturbations, resulting from
Egs (2.10) and (2.12), are much more complicated. Formally, each expression on
the left-hand side and on the right-hand side of Eq (2.12) contains seven terms
with o?. However, on the left-hand side of the first boundary condition one term
vanishes (with o,,), another two terms are subject to reduction in view of Egs
(3.6), and just four terms remain; on the right-hand side in view of 7,9, = b}, =0
just one term does not vanish and making use of the zeroth approximation (2.2)
we obtain

do,,
or

In the second boundary condition three non-zero terms remain on each side, but
two terms are subject to reduction in view of Eqs (3.6) and we obtain

2719b2 + boo-,

rbo + boby

_Top2_
R R A |T=b0 (4.4)

aT‘I‘Bl
or

Both these boundary conditions contain the unknown function by = b2(6). It
turns out that they may be satisfied simultaneously if

Ay = ! VAz -1 (4.6)

2 T0

boby

1oy, T boT |, = 2700} + Biow, | (4.5)

and for arbitrary B,. In what follows, we put B; = 0. Indeed, leaving B- diffe-
rent from zero in (4.2) and (4.3), we repeat once more the first-order perturbation
within the second-order perturbation (the functions governed by By and Bj are
identical), and hence just the convergence of the series would get worse. Finally,
the second-order perturbation of the boundary is given by

_ B} | bC} boCy B}
16T02b0 STg 2T0 16Tgb0

bo(8) = cos 276 .

5. The condition of constant volume

In view of the future optimization we evaluate the constants C; from the
condition of constant volume for a given ratio a/bg. For an unperturbed circular
shape this volume (of one half of the element shown in Fig.1) equals

V= gh(bg —a?). (5.1)
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For a perturbed shape we have

V= % / { [i::o b.,-(a)a"]2 — a?}do (5.2)

and hence, to keep this volume independent of perturbations and equal to (5.1),
we obtain the conditions

%
/ b1(6)d6 = 0
0

7

/ [260b2(6) + b3(8)] 46 = 0 (5.3)

They result in the following values of Cj

Cy = % [-(A2 = 1)Ar + (A% 4 1) sin Ar] (5.4)

hence
B3V 2 -1 | Ar
Ay = ————sin —
7T'T0b0/\2 2
B] . /\ﬂ' /\ﬂ'
bi(0) = — — — —cos A
1(0) — (sm 7 5 €OS 0)
by(0) = __Bt [(4 - ,\27r2) — AT ()\2 + 1) sin Am — (5.5)
167272 boA

—4cos At + Mr?cos 2A9]

It is seen that the powers of the constant B, in all expressions are equal to
the powers of the small parameter «. So, we introduce a new, dimensionless small
parameter @ by the formula

Bla

27obe (5.6)

o =
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thus reducing the number of parameters by one. For example, the perturbed shape
of the yoke element is now described by

b(#) = bo{l + (% sin /\2_7r - %cos/\ﬂ)& + [(/\4;2 - 41?) _

(5.7)
1
4037

(/\2 + l) sin Aw — A%ﬂ COS AT + %cos 2/\0]&2 + } .

6. Transmitted force and reactive forces

The force transmitted by the cross-section § = 7 /2 (half of the total horizontal
cross-section) is given by the integral generalizing (2.3), namely

(%)
P=h / ,-;,Um (r, g)ai dr. (6.1)

a

where the upper limit of integration is given by the series (5.7) for 8 = 7 /2. Using
consistently the small parameter & and performing the operations on power series
we write the final formula in the following dimensionless form

A
P* = ——P— = iln b—0'+ (Pm + Py cos —W)& +
2T0boh bo a 2
(6.2)
+ (P-zo + P cos /\77r + Py, cos /\7r)&2 + ...
where
2¢ ., Aw 1
Plo = A2—7rb0 sin -2—'
1 1
P]] = —A\/T—_lsla — Xcla
Ppo = (=2 + VX2 = Tsly, — clae) g +
4)%a
(6.3)
2 2 . a
+[</\ — 1),\7r — <,\ + 1) sin ,\7r] 4—/\37”]0
2 AT 2 AT
— 2 N2 qein M L an M
Py = o A 1sin 5 sl + or sin 7 cly

[\/,\2 sl + (,\2 - 1)c12a] o

4)2q °

e
I
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The force (6.2) may be regarded as the limit load-carrying capacity of the element
under consideration. More precisely, full plastification gives just a lower bound
to the actual limit load-carrying capacity (an example of differences is given by
Zyczkowski (1981), pages 218 + 221), but such differences are usually very small.

b(&)

Fig. 2. Reactive forces at internal boundary r = a

The force P is equilibrated by the reactive force from the circular bolt with
the radius a. This reactive force consists of two components (Fig.2), namely
P, resulting from normal surface tractions p, and P, from tangential surface
tractions py

:
P, =akh /(—pn)c050 do P, = ah/pt sinf df . (6.4)
o 0

To find the distribution of tractions p,(6) and p,(8) we should solve the problem
of contact between the yoke and the bolt. This is a difficult problem and the
results would essentially depend on mechanical properties of the bolt material and
on the assumptions as regards friction between the surfaces in contact. We follow
here an inverse procedure, namely assume the distribution of tractions resulting
from the solution for the yoke obtained above

Pn = 0y P =Trp (6.5)

r=a T=a

and later discuss the perspectives of realization of such a distribution.
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Making use of the solutions (2.2), (3.8), (4.2), and (4.3) we present the distri-
bution of tractions at r = a in the form

Pn = S00 + (810 + s11 €08 A0) e + (520 + S21 €08 A0 + 823 cos 2M0)a? + ...
(6.6)

P = tirasin A0 + (221 sin A8 + 99 sin 220)a? + ...

where s;; and t;; may be found from the above-mentioned solutions for r = a.
Performing the integrations (6.4) we write final results in the dimensionless form

P a by AT
P‘ = = — —_ _
n Sroboh  bg In 4 + (5’10 + 8§71y cos 2 )a +
+ (-5'20 + S21 cos /\—; + S,2 cos /\7r)6¢2 + ... (6.7)
* P _ AT AT _y
Pt 270boh = Tha cos 7 + (T21 cos 7 + T53 cos ,\1r)a + ...
where
S10 = Pro
S20 = Py
S = - . sly + ! cl
W v n TPV ) ha
So1 = ;sin /\—Wsl + is'm /\—Wcl
TT Nrar-1 2 T Nr 2t
(6.8)
: b
— [—9)2 9\2 _ 2 _ _ 2 _ 0
S22 = [~202 + (202 = 1)V~ Tshy, — (302 = 1)elad] e Ta
A
=——2 ¢,
T T 1¢
Ty = 2 sin ﬁr—sla

- vz -1 2
b
Too = [1 + VAZ - 1sly, + (2/\ 1)012,1] 2(4/\2 — l)a .

It may be checked that P,-J-' = S§;;j + T;; for any 1,7, and hence the equilibrium is

verified.
It should be noted that shearing stresses acting along the cross-section 8 = 7 /2

may also result in a transverse component of the loading, namely
3) i3)
T T _;
Q=h / r,o(r,g) dr = h / grr();(r,é—)a dr . (6.9)

a a
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After integration one obtains

_ 1 AT _2 AT AT AT AT
Q = _QT—_I sl + a {——sm 5 (sm7—-2—c057)+
) AT 14+ & 1
AT (— — - o — . .
+ sin 7r[ sin’ 5 (cl ) DE  DE@v-3) (6.10)

(422 = 3)(claa - %) ~ VAT =1(1+ 205l ) |} -

This component is of order one, and in comparison to P of order zero is small;
moreover, for A = 2n (and this case will be discussed in detail) it vanishes, @ = 0,
as it really takes place in most engineering applications. Hence the component @
will not be taken into account in subsequent optimization.

7. Unicriterial continuous optimization

Now we may formulate the optimization problems. The simplest statement
looks as follows: from among the fully plastic solutions obtained above, we look for
optimal A and &, resulting in maximal limit carrying capacity P, Eq (6.2), under
the constraint of constant volume V', Eq (5.2). Additional inequality constraints
are imposed on the convergence of the power series used, Eq (2.4), and on the
sign of the traction p, at the contact surface, r = a, 0 < § < m/2: it must be
negative, since positive tractions (tensions) would not be trarsmitted. Another
constraint is connected with transition from the yoke to the adjacent member, it
means with the behaviour of the function 6(8) at § = 7 /2. Here we admit convex
corner points, b’(m/2) > 0, but exclude concave corner points resulting in stress
concentration. Then M remains a continuous variable, but the above constraints
must be checked for each solution obtained.

It turns out that the requirement imposed on convergence of the series is sati-
sfied, with engineering accuracy, for |a| < 0.25; further, the design objective P
is within the interval —0.25 < & < 0.25 a monotonic function of & (with some
unimportant exceptions), and hence it is sufficient to consider just boundaries of
this interval, @ = 0.25 and a = -0.25. The constraint o,(a,d) < 0 is then
also satisfied. The approximation errors — with second-order perturbations taken
into account — may be estimated as being of order @ = 0.016, it means 1.6
per cent. In view of the conditions (5.3) the volume is constant for any perturbed
shape if a/by is kept constant.

The dependence P* = f()) for various values of prescribed a/bgy is shown
in Fig.3 for @ = +40.25, and in Fig.4 for @ = —0.25. It may be seen that local
maxima for @ = 0.25 appear for A close to 1,4 and 8; for @ = —0.25 for A close

to 2 and 6 (subsequent local maxima are lower).
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0.40 —
035 ]
0.30 -
0.25 -
0.20 —
i +e v e+ a/by= 045
- a/bg = 0.50
i x x x x % a/bg= 055
0
0.13 i tr+++ a/bg= 060
e a/bu = 0.65
. 2000° a/by=070
0'10 Tlllllll]lllll1ll‘l]llllIlllllllllllllllﬂ
1 2 3 4 5 6 7 8 9

Fig. 3. Dependence of the force transmitted on the parameter A for & = 0.25

The results are summarized in Fig.5, where all these maxima are compared
to each other in terms of a/bg, and the diagram Pj; = f(a/bo) is also shown;
Py denotes here the limit carrying capacity for the unperturbed circular solution
(2.3). If afby < 0.57, then the optimal solution is obtained for A = 4, if
0.57 < afby < 0.63 —for A= 6,and if a/by > 0.63 —for A= 1. Local maxima
for A =~ 2 and A = 8 are never the best. The geometric constraint b'(7/2) > 0
is always satisfied for A = 1, and in the remaining cases it requires Ay > 2,
Aopt 2> 4,... etc. It is seen from Fig.3 and 4 that, as a rule, such conditions are
satisfied; if not, then A,p; should be replaced by the relevant even integer.
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] P
0.40 — a = -0.25
-
0.35
0.30 —
0.25 —
.
i
0.20
: +tts 2/bg = 0.45
_ a/bg = 0.50
1 e a/bo =055
0.15 +———— 2/by = 0.60
i ——— /by = 065
-~ r————o a/bo = 0.70
0'10 Illl‘rllllllll[IIII[IIII['IIll'llI[lIII]
i~ 2 3 4 5 6 7 8 g
Fig. 4. Dependence of the force transmitted on the parameter A for & = —0.25

Exemplary optimal shape and corresponding diagrams of circumferential stres-
ses op (basic solution, subsequent perturbations and final sum up to the second
perturbation) are shown in Fig.6 for a/by = 0.5. We have then A,y = 4.03
for @ = 40.25 and P* = 0.415 compared to P; = 0.347 for an unperturbed
shape with the same volume. The profit on limit carrying capacity amounts here
19 per cent. In the case a/by = 0.6 we have A, = 5.98 for & = —0.25; to
avoid the concave corner point we take A = 6, then b/(7/2) = 0, P* = 0.358
versus P} = 0.306 and the profit amounts 17 per cent. The relevant shape for
slightly different a/bg, namely a/bo = 0.584, will be shown later in Fig.11. In
the case a/bg = 0.7 we have A, = 1.20for & = +0.25 with P* = 0.320 and
relatively high profit 28 per cent, but this solution will be criticized below and the
relevant shape is not shown.
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0.20 —
|

0.15 lv—rlv—ﬁrlrlrryrlrlllrerr))ﬁ—rry—rJ)ﬁ)llll;—v_f7111111|a/b0
0.45 0.50 0.55 0.60 0.65 0.70

Fig. 5. Dependence of local optima on the ratio a/bg

Now we have to discuss the distribution of reactive forces, resulting from the
solutions obtained. The diagrams P} = f(a/bo) and P} = f(a/by) obtained
from (6.7) for A giving local maxima of P* are shown in Fig.7. It is seen that for
A close to even integers most of the force P* is transmitted by normal reaction
Py, the share of P} is small and usually such a reaction may be realized as a
result of friction forces. In the case A = 1 the situation is quite different: both
components of the reactive force, P¥ and Py, are almost equal to each other, such
magnitude of P} very seldom can be realized in engineering applications, and this
solution should rather be left out of consideration. So, A = 6 hould be regarded
as optimal up to «/by = 0.66, and for @/by > 0.66 the optimal solutions with
A = 8 are recommended.
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Fig. 6. Optimal shape for a/bs = 0.5 (unicriterial optimization) and relevant
circumferential stresses

Fig.8 shows such a shape for a/by = 0.7, & = +0.25, A,y = 8.02,
P* = 0.290 versus Py = 0.250, hence the profit equals here 16 per cent. The
share of tangential reaction is rather small here (P} = 0.049), and may be

considered as realistic.

If the friction at the surface of contact is absent, we might formulate another
optimization problem: look for optimal A and &, resulting in maximal normal
reactive force Py, Eq (6.7), under the constraint of constant volume and the
remaining constraints as before. We give lere the solution for such a formulation,
though it will be concluded with some critical remarks.
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Fig. 7. Dependence of normal and tangential reactive forces on the ratio a/bg for local
optima

The dependence Py = f(A) for various values of prescribed a/bg is shown
in Fig.9 for @ = -0.25; the maxima for & = +40.25 are lower and are
not quoted. Upper bounds of P} are obtained for A = 1 (this singular case
may be determined by the formulae derived, if an additional limiting procedure is
employed). However, for @ = —0.25 the interval 1 < A < 2 must be excluded,
since then ¥(w/2) < 0 and a concave corner point at the contour would appear.
So, Aopt = 2 for any a/bg in this formulation.

An exemplary optimal shape for a/by = 0.6 is shown in Fig.10 with the rele-
vant circumferential stress distribution. The design objective equals Py = 0.352
compared to P} = 0.306 for an unperturbed shape. However, this solution sho-
uld be criticized from the engineering point of view: the tangential component of
the reactive force, P;, is here negative with a substantial value (P} = —0.113),
it means in the sense opposite to usual friction forces, and probably cannot be
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Fig. 8. Optimal shape for a/by = 0.7 (unicriterial optimization) and relevant
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realized. Practically, if friction forces are absent, for the value a/by = 0.6 the
solution for A = 4 gives the optimal shape, namely it maximizes P* with almost
vanishing P.

8. Unicriterial integer optimization

In many engineering applications of yoke elements the constraint connected
with transition to the adjacent member is formulated in a stronger form then that
discussed in Sec.7. Namely, even convex corner points are excluded, the tangent
at § = 7/2is assumed to be vertical, it means /(x/2) = 0. In view of Eq (5.7)
we have then A = 2n, where n is an arbitrary integer. We arrive here at an
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Fig. 9. Dependence of the normal reactive force on the parameter A for & = —0.25

integer optimization. Total force P* will be regarded as design objective under
the constraint of constant volume.

The diagrams P* = f(a/bo) are shown in Fig.11 for A = 2,4, 6 and 8;
larger values of A do not contribute to global maximum. For A = 2 and 6 we
took @ = —0.25, and for A = 4 and 8 we took a = +0.25. It is seen that
A = 4is optimal for a/bp < 0.56, A = 6 is optimal for 0.56 < a/by < 0.66,
and A = 8for a/by > 0.66. Optimal shapes are similar to those shown in Fig.6
and 8 (with slightly lower profits in the present case).
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Fig. 10. Optimal shape transmitting maximal normal reactive force for a/bs = 0.6

9. Multicriterial optimization

In many engineering applications the optimization problem formulated and
solved above is not adequate. Denote the external radius of the yoke for 6 = 7/2
(along the "horizontal” section) briefly by B

B= b(g) = gbi(g)a" (9.1)

then the width of the yoke in this section equals ¢ = B — a. This is an
important quantity, since it should be equal to the width of the adjacent element;
so, in many cases both B and « are regarded as prescribed. Such a formulation
was discussed by Szczepiniski and Zowczak in the above-mentioned papers, but
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Fig. 11. Dependence of the force transmitted on the ratio a/bo for integer optimization

without explicit formulation of the optimization problem. This problem must now
be stated as multicriterial or multiobjective optimization: we look for the optimal
shape of the external contour b(f) with two design objectives: maximization of
the force transmitted and minimization of the volume of the element, under the
constraints listed above (without constant volume) and an additional constraint
of prescribed B.

Typical approach to multicriterial optimization consists in introduction of a
preference function or substitute function thus reducing the problem to unicriterial
optimization, though such a reduction is by no means unique (Osyczka, 1989).
Consider, for example, minimization of all m design objectives. Usually there
exists a set of solutions z minimizing in turn individual design objectives f;,
j = 1,2,...,m; denote these minimized objectives by f;. Then we form a vector
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of relative losses of other solutions with respect to fj, namely

#(z) = 2L } i (9.2)

(these quantities are non-negative) and look for minimum of a certain preference
function of losses F[z;(z)]. From among various proposals of such functions the
following linear expression seems to be sufficiently simple and general

Flzj(2)] = ) w;z;(2) (9.3)
i=1

where w; are the weighting coefficients, expressing importance of individual ob-
jectives, as considered by the designer; it is convenient to assume Y 7L, w; = 1.

In the case of yoke clements under consideration with two design ob jectives,
namely P to be maximized and V to be minimized, the above approach cannot
be employed directly, since the optima of individual objectives P and V do not
exist. One could imagine an optimum of P in the form

P = 215he = 2190(B — a) (9.4)

assuming oy = 279 = const., but theoretically even this value may be exceeded:
looking at the yield condition (2.1) we find the possibility oy > 275 if o, is
positive within the interval « < r < B, 8 = =/2 (through o, is assumed
to be non-positive for r = aand o, = 0 for r = B). For the volume V
certainly no minimum larger than zero exists if there is no constraint imposed on
the force transmitted. Hence we use Eqs (9.2) and (9.3) in a suitably modified
form, particularly appropriate to the perturbation method. Namely, we replace
quantities (9.2) by the quantities

2(z) = t——fﬂ(”‘}__ fio (9.5)
70

where f;o is the value of the objective function f; in unperturbed state; sign
74" in Eq (9.5) is used for objectives to be minimized, sign ”~” for those to
be maximized, then the whole problem is reduced to minimization. In contradi-
stinction to quantities (9.2) the quantities (9.5) may be negative, moreover, they
are negative as a rule. Indeed, they represent negative losses with respect to the
unperturbed solution, and minimization of negative losses means maximization of
positive profits. Then, in certain nonlinear preference functions F it is necessary
to replace Z;(z) by |Z;(z)| with additionally introduced sign Z;(z) to keep final
signs correct; in the linear expression (9.3) such a change is not necessary.
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So, in the case under consideration with A as the only design variable we
introduce two relative losses

_ Py~ P(X)
= =5

_V) -V

2N -

Zo(A) (9.6)
where Py and Vj are given by Eqs (2.3) and (5.1) with b or bg replaced by
B, and P and V are physical (dimensional) quantities. Dimensionless quantities
may also be introduced for convenience, but the definitions must be changed with
respect to those used before, since now bg is no longer constant and should be

replaced by B

o _ P bo,
P _'ZTOBh_BP
(9.7)
- AV ay b3
v —m-(l‘bg)ﬁ

Now, we make use of the solutions obtained above, but with a/bg adjusted in
particular cases as to obtained prescribed a/B. Then we construct a preference
function (9.3) for various values of weighting coefficients w; and evaluate the
optimum in each case. First we choose a/B = 0.6 since such a ratio was discussed

in detail by Szczepiiiski and Zowczak. Indeed, they assumed c¢/a = 2/3, and
hence a/B = 0.6. The results are presented in Table 1 for integer optimization,
corresponding to vertical tangent at 6§ = w/2, and for three configurations of
weighting coefficients: I7 is calculated for w; = w; = 0.5 (typical assumption),
F,for v = 09, w; = 0.1 and F3for w; = 0.1, w, = 0.9 (extreme
assumptions). The best solutions are shown in frames. In the first variant (equal
weighting coefficients) the solution for A = 6 is the best: minimal value of

weighted losses is —0.063, it means profit +0.063. In the second variant (with
preference ascribed to the force transmitted) Zowczak’s solution is the best. In
the third variant (with preference ascribed to the volume) the solution for A = 8
is the best from among the solutions considered; however, the relevant weighted
loss is +0.052, it is positive, and hence simply the unperturbed (circular) solution
is better. Other solutions given in Table 1 are not Pareto-optimal: one can always
find another solution with lower values of both objective functions to be minimized.
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Table 1. Multicriterial optimization for a/B = 0.6 and various weighting
coefficients, and comparison with Szczepinski’s and Zowczak’s solutions
(No[AJa/be | P | A | oo | 2o | A | B | F |

1 2 | 0.532 | 0.327 | 0.912 | -0.067 | 0.425 | 0.179 -0.018 | 0.376

2 | 4 05710371 0.744 | -0.210 | 0.163 | -0.024 | -0.173 | 0.126
3 | 6 |0.584|0.372 | 0.696 | -0.214 | 0.088 |-0.063| -0.184 | 0.058
4 | 8105900293 0.674 ] 0.044 [ 0.053| 0.049 | 0.045 [[0.052]
5 | Sz 0.4 | 1.123 | -0.305 | 0.748 | 0.221 -0.200 | 0.643
6 | Z 0.4 |0.973|-0.305 | 0.520 | 0.108 |-0.223| 0.438
14— r/b
] 1 - shape obtained by Szczepinski (1958)
L 2 - shape obtained by Zowczak (1389)
1 3 - shape obtained In the present paper
0.2
- \
i |
0'0-";'I""I""l""l""""'I""Ir/b
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Fig. 12. Optimal shape for ¢/B = 0.6, multicriterial optimization with
w; = wy = 0.5, A = 6, and comparison with Szczepinski’s and Zowczak’s solutions

The solution for A = 6 is shown in Fig.12 together with Szczepinski’s and
Zowczak’s solutions. Lower value of the volume for A = 6 is seen. The shape
obtained from (5.7) is a bit wavy, but this is typical for a trigonometric series re-
placed by its partial sum in the form of a trigonometric polynomial. It is supposed
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that subsequent terms of the series would make the shape more regular.

Table 2 brings the results for /B = 0.7, and a solution obtained for this ratio
by Szczepinski and Szlagowski (1990) is also quoted. In all variants the solution
for A = 8 is optimal here. Table 3 discusses the case a/B = 0.5, and here
A = 4 is always optimal.

Table 2. Multicriterial optimization for /B = 0.7 and various weighting
coefficients, and comparison with Szczepinski-Szlagowski solution
| No | A | a/bo | P"—| | % | z1 | Z9 | F1 | F2 | F3 |

1 | 2 |0.621 | 0.251 | 0.781 | -0.004 | 0.531 | 0.527 0.050 0.478

2 | 4 |0.667|0.264 | 0.611 | -0.056 | 0.198 | 0.142 | -0.031 | 0.173

3 | 6 |0.681|0.293 | 0.567 | -0.172 | 0.112 | -0.060 | -0.144 | 0.084

4 | 8 [0.689|0.304 | 0.542 | -0.216 | 0.063 | [-0.153] | [-0.188] | [0.035]

5 | Sz 0.3 |0.773 | -0.200 | 0.516 | 0.158 | -0.128 | 0.444

Table 3. Multicriterial optimization for «/B = 0.5 and various weighting
coefficients
Mo A [ [P [ V= & | = | K | B | B ]

1 | 2|0.443 | 0.401 | 1.024 | -0.157 | 0.365 | 0.104 -0.105 | 0.313

2 | 4[0.476 | 0.446 | 0.853 | -0.287 | 0.137 | [-0.075] | [-0.245] | [0.035]

3 | 6]|0.487 | 0.319 | 0.804 | -0.080 | 0.072 | 0.076 0.079 0.073

4 | 80492 | 0.318 | 0.783 | -0.082 | 0.044 | 0.063 0.078 0.048

10. Conclusions

o The boundary perturbation method applied to yoke elements makes it po-
ssible to describe analytically a class of {ully plastic solutions as a first step
towards shape optimization

o Unicriterial optimization is then employed to maximize the limit load-
carrying capacity under the constraint of constant volume

o If the characteristic dimensions of the yoke element are given, then both the
volume and the force transmitted are subject to variations and a multicrite-
rial optimization is necessary

e Finally, the results of tlie present paper are compared to those obtained ear-
lier by Szczepifiski and Zowczak. Depending on the weighting coefficients in
the preference function used in multicriterial optimization, either the present
solution or that given by Zowczak are regarded as optimal.
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W sprawie optymalnego ksztaltowania plastycznego elementédw jarzmowych

Streszczenie

Praca poswiecona jest optymalnemu ksztaltowaniu elementéw jarzmowych (jarzma,
Iby korbowoddw, ogniwa laricuchéw itp.) pod zalozeniem idealnej plastycznosci materialu.
Ksztaltowanie przebiega w dwdch etapach: w plerwszym, korzystajac z metody zaklGcenia
konturu, okresla sie klase rozwiazan wykazujacych calkowite uplastycznienie w stadium
zniszczenia, natomiast w drugim dokonuje sie optymalizacji w tej klasie. Zastosowano
Jednol\ryterla]na, optymalizacj¢ w przypadku doboru najwickszej nosnosci granicznej dla
elementow o stalej objetosci. Jezeli jednak dane sa charal\terystyczne wymlaryJarzma to
wdwczas mezquna jest optymahzaqa wielokryterialna. Dokonano réwniez poréwnania z
rozwigzaniami uzyskanymi wczesniej przez innych autoréw.
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