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The paper deals with the problems of stress distribution caused by gravita-
tion forces in a periodic stratified elastic layer resting on a rigid foundation.
The surface of substrate is assumed to be a plane with an infinitely long slen-
der overlay or a narrow excavation having rectangular cross-sections. The
problem is solved within the framework of the homogenized model with mi-
crolocal parameters.

1. Introduction

The present paper is concerned with the analysis of stresses in a periodic stra-
tified elastic layer resting on the rigid foundation. The surface of substrate is
assumed to be a plane with infinitely long slender overlay or narrow excavation
with rectangular cross-sections. The stresses in the stratified layer are caused by
gravitation forces.

The problem is solved within the framework of the homogenized model with
microlocal parameters given by Wozniak (1986) and (1987), Matysiak and Wo-
zniak (1987). The proposed model permits to evaluate mean and local values
of strains and stresses in every material components of the stratified body. The
equations of the homogenized model are formulated in terms of the unknown ma-
crodisplacement vector and certain extra unknowns being referred to as microlocal
parameters. The algorithm of the microlocal modelling can be presented in the
form
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boundary value homogenized model:
problem of »| calculation of

a layered body procedure macrodisplacements,
microlocal parameters

homogenization

\

layered body:
calculation of strains
and stresses

By using the theory of elasticity with microlocal parameters, certain problems
connected with stress concentrations caused by cracks, rigid stamps as well as wave
propagation in laminated composites have been solved (see for references Maty-
siak and WozZniak, 1988; Kaczynski and Matysiak, 1989; Kaczynski, 1993). This
model can be also applied to some problems of rock mechanics (to description of
sandstone-slate, sandstone-shale, shale, thin-layered limestone) and soil mechanics
(warved clays, Miocene clays and flotation wastes, see R.Kaczyniski and Matysiak,
1993).

The considered problems of a narrow excavation or a slender overlay in the
periodic stratified body is particularly important in mining engineering. Similar
investigations within the classical theory of elasticity have received considerable
attention, see for references Dymek (1967), Gill (1991).

2. Basic equations
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Fig. 1. The middle-cross section of repeated fundamental layer

We consider a periodic stratified body in which each repeated {fundamental
layer (unit) is composed of two different homogeneous isotropic elastic layers of
thickness L characterized by the Lame constants Ay, g1 and Ag, uo as well as the
mass densities py, po, respectively. The scheme of the middle cross-section of the
basic unit is given in Fig.1. Let (z,y,z) denote the Cartesian coordinate system
such that the axis y is normal to the layering. Let hj, hy be the thicknesses of
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the subsequent layers, so L = hy + h,. The perfect bonding between the layers is
assumed.

To determine the displacement and stress distributions in the periodic stra-
tified layer we take into consideration the homogenized model with microlocal
parameters presented by Wozniak (1987), Matysiak and Wozniak (1987), Kaczy it-
ski and Matysiak (1989). In the plane static case of strain, the displacement vector
(U,V,0) is postulated in the form

U(z,y) = u(z,y)+ Lyp(z,y) = u(z,y)

(2.1)
Viz,y) = v(z,y) + l(y)(z, y) = v(z,y)
where [: R — R is a given é-periodic sectionally linear function
y—%hl for 0<y<h
l(y) = (2.2)
—h;:;”’ -~ %hl for h<y<é
where i
1
= = 2.3

and roughly speaking, the values of [(y) are small and the underlined terms in
Eqgs (2.1) can be neglected for small L, but the values of the derivative I’(y) are
not small for very thin layers.

The functions u(-), »(-) and p(-), ¢(+) are unknown functions representing as
the macrodisplacements and microlocal parameters, respectively.

According to the results given by WozZniak (1987), Matysiak and Wozniak
(1987) the equations of the homogenized model with microlocal parametrs take
the form

(A + 1) (Uoy +0,9y ) + H(Vszz 05y ) + [1]Psx +([A] + 2[p]) g,y = —pby
A+ ) (Uyzz +0szy ) + [ Uyzr FUyyy ) + []Psy +[A]ge = —pbe

A+ )q + [N(ttg 40,y ) + 2oy = 0 (2.4)
fip + [](tyy +v05) =0

where (bg,b,,0) is the body force vector

(ML P) = (mA + (1= )Aa, mp + (1 = 1)z, mp1 + (1= 1)p2)
(AL D) = (1(M1 = A2), (g1 — p2) (2.5)
2oy 7% Ao n°pa

i) = (nA 1_n,nl+ n)

and the comma denotes partial differentiation.
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Eliminating microlocal parametrs p, g from Eqs (2.4); 2 (by using Eqgs (2.4)3 4)
the formulae for macrodisplacements u, v are obtained in the form (Kaczyiiski
and Matysiak, 1989)

A2u,.’17.’17 +(B + C)vyzy +Cu,yy = _ﬁbz

(2.6)
A1,y H(B + C)ttyzy +Cv e = —pb,
where
_ (A1 + 201) (A2 + 2p2)
Al = >0
(1T =m)(A1 4 2p1) + n( A2 + 2u2)
4n(1 = n)(p1 = p2)(M = A2 + p1 — pia)
Ao = +A; >0
: (1= + 2m) + 1002 + 2u2) ' @)
5= (1 = n)A2(M + 2m1) + (A2 + 2u0) >0

(1= )M + 2p1) + (A2 + 2p2)
M2
= >0
(1= m)p1 + npe

To formulate the stress boundary value-problems for Eqs (2.6) we have to take
into account the following relations (Kaczynski and Matysiak, 1989)

‘71%) = Bu,; +A1v,y

o) = Cluy+v.e)

(2.8)
O‘a(:'?:r) = Djv,y +Fju,;
o) = (o) 4 ol — N
=EE W + 1)
where
Ay
Dj=)\—"
TN+ 2 2.9)
A+ i B
By =dp; 2ttt gy

SOV TRV T

and the index j, 7 = 1,2, is related to the layers of the first kind (with material
constants Aq, p1, p1; then j = 1) or the second kind (with material constants Ao,
H2, p2; then 7 = 2), respectively.
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Fig. 2. The middle-cross section of the stratum resting on the foundation with an overlay

3. Problem of a slender overlay

Consider now the plane problem of a periodic stratified layer resting on the
rigid substratum. The surface of the foundation is a plane with a slender overlay,
see Fig.2. To determine the displacements and stresses in the periodic stratified
layer, the homogenized model with microlocal parameters described by Eqs (2.6)
and (2.7) is applied. Let the body forces be given by

by =0 by=9¢ (3.1)

where g = constant, is the acceleration of gravity. The problem under considera-
tion is described by the following boundary conditions

v - (3.2)
aé?(w,y:O)zo T€ER
and
v(z,y=—h) =g for z € (—a,a)
v(z,y=—h)=0 for z€R\< —a,a> (3.3)
aa(%)(a:,y =—-h)=0 for TER
where
h  — thickness of the layer, (h = nL, n is a sufficiently large natural
number)
vo — thickness of overlay, vg < h, see Fig.2.

Making use of the superposition principle the problem stated above is separated
into two parts. The first part satisfies Eqs (2.6) with the RHS given by Eq (3.1)
and boundary conditions (3.2). The solution of the problem takes the form
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u(z,y)=0

oa,9) = 2 (0 - )

o) =0 (3.4)
o{i)(z,y) = —pyy

oWz, y) = —D,pg 51/1 z€R ye< —h,0>

The second part satisfies Eqs (2.4) for b, = 0, b, = 0 and boundary conditions
(3.2) and (3.3). To obtain the solution of this problem,the method of integral
Fourier transforms (see, for instance Sneddon, 1951) is applied. Two different
cases given below can be marked out.

3.1. Casel. pu; # p»

For the case puy # ug one obtains
2
u(z,y) = \/;fs{f“lv(f)fﬁo(f,y);f — z}
2
v(z,y) = \/ifc{f‘lso(f)sbl(f,y);f — z}
o)) =\ 202 i = 2) (35)
o)(z,y) = \/_C}'{go(f%fyf—»z}

ol)(z,y) = \/7f{<p(f eV (E,y)€ — <)
where
Bo(£,y) = 1€ 4 B(€)e™ME 4 gy (F26 4 fe)eheY) 4
+8 (7280 4 B(€)ekatv)
1(E,y) = G (M€ — B(E)e™ 1Y) 4 Gy [By (2280 — p(e)e~hatv) —
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B (eH2tV — B(g)e’2tV)]
B(€,) = (B + A2G k1) (M8 4 B(£)e™ ) + (B + AxGaky) -
[Br (9287 + B(€)eRE) + By (e7Ra8 4 (g)ekatv)]
3(£,y) = kiR — B(E)kie™ Y 4 Brky (280 — f(E)eR2Y) +
+Baky (B(E)eb — &8 — (€, )

$PUEy) = DiGrky (M + B(E)e™) + DGy (45 + B(§)e™4Y) +

+D;GaBoks (B(§)e"Y + e™28) + E;Bo(€, y) (3.6)
,6 __l(B_*_Allel kl—Gl)
= 2\B + AGqk, ko — Gy

1/B+ AGiky k-G,
iy (ZEAGE _a =0y

2\B + AlGQkQ ko — G2
 [CP+ A A - (B+ O+ VA
ki = \/ 24,C ER
 [C?+ A A —(B+C)2 - VA
k2= \/ 24,C € R

Ck? — A, .

,B(f) — [(kl _ Gl)e——2k1£y + (k2 _ G2)(Igle—€(k1+k2)h _ ﬂ2e—£(k1—k2)h] .
k1 = Gu+ (b = Go) (Breeta =ik _ gye=élhuthalt]
A = tc2 + A1 Ay — (B +C)? —44,4,C* > 0
and
2 o0
FAf(&y)hE—z) = \/;/f(é,y) cos({x) dE
Q
(3.7)

Fasee— 2y =2 [ e msintee) de
Q

The unknown function ¢(-) will be determined satisfying boundary conditions
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(3.3)1,2. From Eqs (3.5)2 and (3.3);, it follows that

@(€) = \/gvogpl(%aj)_h) (3-8)

The second part of solution is given in form of the Fourier integrals by Eqs (3.5)
and (3.11). The final solution describing displacements and stresses in the layered
stratum can be written by summing up the results given in Eqs (3.4), (3.5) and
function ¢(-) defined in Eq (3.11). Thus, for y = —h after some calculations one
obtains

~ a
Uéi)(z,y =—h) = —pgh+ QDozYom +
(3.9)
l o0
+ 200 /[X({,y = —h) — Xo| sin(at) cos(£z) d¢
0
where
P, (¢,
X6 = 7y
’ (3.10)
X = (B + A2Grk1)(k2 — G2) = (B + A2Gaks)(ki — G1)
0 leQ — kQG]
From Eqs (3.10) and (3.6) it follows that
. ] 0 for -h<y <0
Am X(&y) = { X, for  y=-—h (3.11)
so the integral in the RHS of Eq (3.9) is convergent. It yields
2v9Xoa
2 _ . 010

3.2. Case 2. pyy) = py2

In the case p; = po the solution of Eqs (2.6) together with b, = 0, by = 0
and boundary conditions (3.2), (3.3)3 can be written in the form

wo.y) = 2 FAEBEBo(E i€ — 2)

oe,) = 2 FAEHOB (€ 1€ — 2)
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o y) = @fcmo@(e,y);s - 1} (3.13)
o) (@,9) = \@Cﬂ{@(f)ﬁz(s,y);f ~ 7}

o)z, = \[2FA2O (€ v)€ — o)
where
Bo(€,y) = [1+ Dey(1- ()] et +
+[B(&) + D (1= B(&))y] e
1(6,y) = [G1 + D(1- B(O)] (Go + Crty)]e® +
+[~G1B(€) + D(1- B()) (G2 - Gaty)]et
B2(&,y) = (2B + C)(1 - B(&)) (e™® - )
B5(6,9) = ~[1+ D(1-BO))e(-1+y)]e e + (3.1)
+[8(&) + D(1 - B(©)e(1 + )]t - 81(€,y)
89(€,9) = —D;[Gr + D(1- B(©)) (G2 + Grty — Crg)|e~tv +

+D;[~G1B(€) + D(1 - 5(6)) (G2 — Gry — Ga€) [e¥ + E;o(£, )

- 2B+C A B . B+2C
b=-=3¢ “1=grc C2=F1C
36 —1—@1+5(1—@2)+5(1+(§1)£h+13[1—@2—(1+G'2)£h]e‘25"

B[l -G+ (1+ (3*1)514 + [—1 -G+ D(1-Gy)-D(1 + @l)gh]e—zeh

The unknown function @(-) will be determined satisfying the boundary con-
ditions (3.3);,2. From (3.13) and (3.3); 2 it {ollows that

§O) = 25l (3.15)

Similarly as in Case 1 the final solution describing displacements and stresses in
the stratified layer can be written by summing up the results given in (3.4), (3.13),
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(3.14) and function @(-) determined in Eq (3.15). For y = ~h the normal stress
(2)

Oyy is expressed in the form

2 _ _ ~ o a
Uz(zy)(z’ y=-h) = —pgh+ QUO.XO—W(aQ ) +
(3.16)

+ 21)0%/[)/{\(5,3/ = —h) - Xo] sin(af) cos(€z) d¢

0
where
R = ;f“gg"’/;
Hey (3.17)
¢ . _(2B+O)(+ Gh)
’ D(Gy + Gs)
From Eq (3.16) it follows that
2 _ . o a
oiy)(x,y = —/L) = Zvo.}\om + O(]) (318)

3.3. Remark

The case of homogencous layer resting on the rigid foundation with an overlay
is given on assumption that

A=A = A = g2 = p pL=p2=p (3.19)
Then, from Eqs (2.5), (2.6), (2.9), and (3.6) we obtain
A1:A2=A+2ﬂ B=2A CI}L (320)

D; =2\ E;=X+2u

Eqgs (2.6) and (2.8) together with Eq (3.20) lead to the case of homogeneous body
described by the equations of the classical theory of elasticity.

Substituting Eqs (3.19), (3.20) into Eqs (3.13), (3.14) and (3.4) we obtain the
solution of the problem for homogencous layer resting on the rigid foundation with
an overlay.
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3.4. Numecrical example

As an example, we consider the laininated stratum such that
AL =y A2 = 2 (3.21)

so that vy = vy = 0.25, where v, v are the Poisson ratios of the subsequent
layers. Then, from Eqs (2.7) it follows that

A, =3C A, = 8“; ¢
(3.22)
B=C C=n- ME
i
On introducing the notations
K2
=22 - 3.23
“ H ( )
and
2 _ 1,8 (1-mn+(2n* - 20+ De+ (1 - n)na’
C 3 3(-n+na)n+(1-n)a}-(1-n)(l-a)n (3:24)
and using Egs (3.22), (3.6) and (3.10); we obtain
ky = \/l(w ~ 1)+ l\/Q(w ~1)2 - 12w
tTV2 6
1 1
ky = \/—(w -1) - —\/Q(w —-1)2- 12w
2 6
(3.25)
1 chz —w
Gi=3 k;
_ AL+ wGik) (k2 — Ga) = (1 4+ wGaky)(ky — Gy)
Xo=C
k\Go — koG

The effects of the periodic laminated structure of the stratum on the nondi-
mensional coefficient of normal stress concentration (see Eq (3.12)) X¢ for two
cases of 6 = vg/a, where

a

X5 =20 Xo———=
0 v 7(2B + C)

(3.26)

is presented in Fig.3. Fig.4 shows the nondimensional stresses
o3, = o\ (z,y = —h)/(2B+C) (sec Eq (3.9)) for 6 = 0.05,6 = 0.03and 6 = 0.01.
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0.1 7=025 & =002

77=05 o&=001

7=025 &=001

0 25 5 ol
Fig. 3. The nondimensional coefficient of normal stress concentration versus
o~ = /po
10—
Uyy[x)
0 x/a
2
-1.0

Fig. 4. The nondimenional normal stresses versus z/a
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4. Problem of a narrow excavation
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Fig. 5. The middle-cross section of the stratum resting on the foundation with excavation

Consider now the periodically laminated ponderable layer resting on the rigid
substratum, where the surface of foundation is assumed to be a plane with a narrow
deep excavation with the rectangular cross-section, see Fig.5. The problem under
consideration is described by the boundary conditions (3.2) for y = 0 and

crg‘;)(:r,'y =—-h)=0 for |z| < a
v(z,y=-h) =0 for |z| > a (4.1)
cr%)(:r,y =-h)=0 for z€R

Making use of the superposition principle the problem stated above is separated
into two parts. The solution of the first one is given by Eqs (3.4). the second part
satisfies Eqs (2.4) with b, = b, = 0, the boundary conditions (3.2) and

o$(z,y = —h) = —pgh for |z|<a
v(z,y=—-h) =0 for |z| > a (4.2)
aa(;f,)(:c,y =-h)=0 for z€ER

Below we consider two different cases.

4.1. Case 1. pu # p2

For the case py # o the solution of the second part is given by Egs (3.5)
together with Eq (3.6), where function ¢(-) has to satisfy the following dual
integral equations

F{pl0a(€,y = ~h)i€ = o} = —/Zpgh  for 0<z<a
fc{§_1¢(§)¢1(§,y =—-h);{— z}=0 for z>a
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Denoting by
P(€) = € p(E)P(E,y = —h) (4.4)
and using Eqs (4.3), (3.10), (3.11) we obtain

FAU(OXo+ HOLE— 2} = —\/2pgh  for 0<z<a (40
Fe{$(€);€— 2} =0 for z>a

where
H(§) = X(§y=—h)— Xo (4.6)
Let the solution of dual integral cquations (4.5) have the form (Sneddon, 1966)

a
W) = [ tstt)olet) at (4.7)
0
where s(¢) is an unknown function and Jy(-) denotes the Bessel function of
the first kind. With (§) given in Eq (4.7), equation (4.5), is satisfied and Eq
(4.5); reduces to the following integral Fredholm equation of the second kind for
determination of the unknown function s(t)

U+]uKWJpwﬂw:—g@h for 0<t<a (4.8)
where the kernel K(u,t)is given by
K(u,t) = 7511(5)']0(573)«]0(5“) 3 (4.9)
4 .
Using (4.4) and (4.7) we obtain

w(€) =

gy__ /m Vo) d (4.10)
0

Substituting for the function (-) given by Lqs (4.10) and (4.8) into Eq (3.5),
the displacements and stresses in the laminated stratum are given in terms of the
Fourier integrals and the function s(:). The normal stress component can be
written in the form

a

2
(2) = - = ~Fgh— /2 S
Oy (8, y=—h) = —pgh— WXO'”/ s(7) — 7.2)3 +

° (4.11)

/S(T)S(T,.’L’)dT for z>a
0

2
+ z
T
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where

S(r,z)= /[X(f,y = —h) — XNg}Jo(€T)sin(€z) dE (4.12)
0

The normal stress component has the singularity at the points (Za, —h) as follows

_zs(a)

m + 0(1) for Jz|>a (4.13)

ag)(z,y =-h)= X

4.2. Case 2. puy = s

Similarly as in Case 1 the solution of the problem has to be composed of the
displacements and stresses given by Eqs (3.4), (3.13) and (3.14), where function
@(€) is determined by

a

¢ 5 /tg(t).lo(gt) dt (4.14)

A= Sey=n

and 3(t) is the solution of the integral equation

S(t)+/uA, (u,t)3(u) du—————th 0<t<a (4.15)

with the kernel -
R(u,1) = /€//(£)Jo(€t)Jo(€u) € (4.16)
The normal stress component aLy)( = —I) is given by (4.11) replacing X by

widehatXo and s(a) by 35(a).

4.3. Numerical example

Consider the case given by Eq (3.21). The solution of the integral Fredholm
equation (4.8) at point t = a is presented in Fig.6. Fig.7 shows nondimensional
stresses oy, (see Eq (4.11)) for Bo = 0.1, By = 0.3, By = 0.5 where

pya
Dy = 4.17
°=9B+C (4.17)
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‘ s (a)

1.0
F 77=025

0 25 50 el

Fig. 6. The coeflicient s(a)/a versus a~1 = puy/p,

1 2 3 4 5 x/a

20}
»*
Y oyt

Fig. 7. The nondimensional normal stresses versus z/a
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Pewne zagadnienia rozkladu naprezenn w periodycznie uwarstwionym
sprezystym pokladzie

Streszczenie

W pracy rozpatrzono zagadnienie rozkladu naprezen wywolanych silami masowymi w
periodycznie uwarstwionym pokladzie spoczywajacym na sztywnym podlozu. Powierzch-
nia podioza jest przyjeta jako plaszczyzna z nieskoriczenie dluga, cienka nadkladka lub
waskim wycieciem o prostokatnych przekrojach. Zagadnienie zostalo rozwiazane w ra-
mach modelu homogenizowanego z parametrami mikrolokalnymi.
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