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The rectangular measurement window effects loss of resolution and accuracy
of investigated spectrum. In digital signal processing (in particular by FFT
method) the problem is not simple and required detailed analysis. In this case
the signal and obtained spectrum are given as numerical series of values. It is
possible to prove that the discrete form of spectrum accomplishes function of
filtr eliminating disturbed informations and distortions don’t appear in the
spectrum.

1. Introduction

Measurement of every diagnostic signal takes place in a certain limited period
of time, it means that it has the beginning and the end. This signal exists inde-
pendently of the measurement and we can suppose its existence before and after
the measurement. This simple fact affects signal processing and final diagnosis
resulting in important consequences. A mathematical model of this measurement
can be represented by multiplication of the objective signal by zero before and
after the measurement and by one during the measurement, respectively. Such an
approach reminds observation of a way out of the window. We can see a small
part of the way, limited by vertical edges of the window nevertheless we know that
the way exists on the right and on the left beyond the field of view. Perhaps for
this reason, the signal limiting phenomenon by the beginning and the end of mea-
surement is named: a measurement window. It is well known that a measurement
window provokes some disturbances during signal processing particularly in the
case of spectral analysis.

The measurement window problem is known and widely presented in scientific
bibliography acknowleged as classic now (cf Papoulis, 1962; Bath, 1974; Oran,
1978; Otnes and Enochson, 1978; Liferman, 1980; Bendat and Piersol, 1980). The
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window effect is treated as one of the reasons for spectrum disturbances (cf Pa-
poulis, 1962; Bath, 1974; Kurowski, 1978; Liferman, 1980; Randall, 1987; Bendat
and Piersol, 1980) or spectrum efluent (cf Enochson, 1977; Otnes and Enochson,
1978).

In all these papers the spectrum disturbances problem is treated generaly. Wi-
thout the thorough exact analysis, one accepts that these disturbances are conside-
rable and recommends time weighting functions as way of the window correction.
In the case of investigation of a continuous signal spectrum the disturbances are
evident and easy to estimate. However, in the case of digital signal processing the
problem is more complex and requires a detailed analysis. Examination of the me-
asurement effect on a spectral analysis of processing signal is the aim of this paper.
It concerns in particular processing by FFT of a signal numerical representation
obtained from analog-to-digital conversion.

2. Mathematical model of the time limited measurement

w(t) P (t)

N\

-1/2 1/2 t

Fig. 1.

Let ¢(t) represent a signal generated by the investigated object. Let us assume
that ¢(t) satisfies the Dirichlet conditions and is determined in time domain
t € (—o00,+00). This signal is shown in Fig.1; position of a zero point on the
time axis results from an arbitrary choice and is not important. Let us suppose
now that this signal is received for further processing. The receiving time 7" > 0,
synonymous with the time of measurement, is determined by the measurement
conditions, a kind of processing to be realised etc. It is well known that the longer
measurement time assures receiving of more informations contained in the signal.
‘On the other hand this time should not be too long because both the invesigated
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object and the measurement system exhibits tendency to lose stability, and the
memory capacity of data preservation system is limited.

2.1. Measurement window function

Function w(t) representing a measurement window can be written as the pulse
function T T
1 for —"2- S_ t _<_ '2-

w(t) = (2.1)

0 for t<—%andt>%

This function represents a rectangular time window of real measurement and only
this type of the window will be considered in this paper.

Scientific sources publish variuos forms of the Fourier transform of the function
w(t). For this reason this transformation will be used below. Inserting w(t) into
the Fourier integral we have

o0

W(w) = / w(t) exp(—jwt) dt

-0

In result, the integral between the limits minus infinity and plus infinity can be
written as a definite integral in the following form

"*]\,NH

W(w) = exp(—jwt) dt
-3
After integration we have
s T i T
Wi(w) = exP(.Jwt) . coswt — jsinwt 3
—Jw -7 —jw -z

From this expression, for limits —7'/2 and 7'/2 and for frequency w = 27 f we
obtain the Fourier transform of the rectangular window as

sinw fT

_7l'f— (2.2)

w(f) =

The window function Fourier transform (2.2) is the same as the form presented by
Bath (1974).

Because the form sin a/a is easier to be consider (properties of this function

are well known) it is useful to write the transform (2.2) in the form (2.3). In
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the formula (2.2) a mid-band frequency has assumed a zero value. Generally this
frequency can be of any value f;. Therefore we can adopt as an argument of the
function the difference representing frequency interval f — f;, where f is running
variable, and f; the discrete value of a mid-band frequency. We have finally

sin[n(f — f:)T]
m(f - fT (2:3)

Functions (2.1) and (2.2) are shown in Fig.2a and 2b.

W(f)=T
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Fig. 2.

Let us consider the function W(f). We may easily assert that this function

takes certain characteristic values for the argument =« f T = £ nw, where
n = 0,1,2,... For n = 0 the argument 7 f7 = 0 (it means that f = 0 or
f — f; = 0), limit of this function is equal one. This case corresponds with

the mid-band frequency or the W(f) in Fig 2b. For all values of the integer n
different from zero the frequency f = +n/T, and the transform W(f) is equal to
zero.
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We can also notice that for the measurement time growing, the function W(f)
in Fig.2b becomes more and more narrow and in the limit it takes the form of the
Delta function.

Assuming time T = 1, we can easily calculate that for f = 1.5T it appears
a side lobe local maximum of the absolute value equal to 0.21 of the peak value
for f = 0. Next side lobe local maximum appears for f = 2.5T and it is equal
to 0.12 of the peak value for f = 0. In the same way we can calculate other
side lobe maximums appearing for f = 3.57;4.5T;... We can remark that these
maximums appear between zero values of W{( f) and they correspond to fractional
values of n.

This considerations give an idea about a quality and quantity of errors which
can appear in result of an unintended superposition of the window spectrum on
the signal spectrum.

2.2. The measurement in the time limited

Let us assume that f(t) represents the measured signal. Basing on the previous
considerations we can write it in the form

f(@) = (t)w(t) (2.4)
where the function ¢(t) represents the signal existing independently of the mea-
surement.

The Fourier integral of f(t) is
F() = [ f(t)exp(~j2mst) at (2.5)
Substituting the expression (2.4) into (2.5) we obtain a transform of the signal

with the measurement window
(o o]

F(N) = [ pltyu(t)exp(-j2m ft) de (2:6)
The formula (2.6) is equivalent to Eq (2.5) with limits of integration: —-7/2,T/2.
The Fourier transform of two functions product is equal to a convolution of
their transforms
F(f) = ®(f)*W(f) (2.7)
The convolution multiplication can be presented in an analytical form. Considering
the expression (2.3) we obtain

o0

F(f) = ; / qs(f)M

T =T df (2.8)
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The expression (2.8) represents a function sin @/« ”extended” on frequency peaks
of the spectrum &(f). We can easily note that

F(f) # ¢(f)

3. Transform of the signal with measurement window

In reality, after measurement we can obtain only signal f(t) with a measure-
ment window and only the transform of this signal can be determined in a signal
processing. For investigator the objective source of informations about the object
is the signal ®(t) and its characteristics. But a measurement of the signal without
a measurement window is impossible. For this reason a good knowkledge of the
errors introduced by this rectangular measurement window is very usefull.

The signal generated by a real object can be treated as a superposition of many
harmonic components of their mutual couplings and of stochastic noises. Infor-
mations about these components permit setting up the diagnosis of investigated
object. It seems to be resonable to propose a simplified model of the signal in the
form of sum of deterministic components. For these considerations we can neglect
the noise, we can also assume that phase displacements of every component equel
zero. Such a simplified signal can be presented in the form

o(t) = iA,- sin 27 f;t (3.1)
=0

where: A; — amplitude of ¢th component, f; — frequency of <th component,
1= 1,2,...,m, sequence of components of the signal. The Fourier transform of the
signal (3.1) can be given as

o(f) = / (i A;sin 27rf,-t) exp(—j2x ft) dt (3.2)

—oo 1=0

The Fourier transform of the same signal with measurement window determined
by Eq (2.1) can be presented as

(o o]

F(f) = /(i A;sin 27rf,-t)u)(t) exp(—j2r ft) dt (3.3)

—oo =0

We can note that the window function is applied to each term of the sum.
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Remembering Eqs (2.7) and (2.8) we shall determine the transform (3.2) of the
signal (3.1) for frequencies f; > 0. We have

m

#(f)= Y (- £ (3.4)

=0

where I - delta Dirac function for frequency f > 0. Eq (3.4) presents the series
of peak pulses, each of modulus A;/2, ovelaping the negative direction of the
imaginary axis.

Substituing Eqs (2.3) and (3.4) into (2.8) and integrating this exspression we
obtain the transform (3.5) of the signal ¢(t) with the rectangular time window

" AT sinw(f - f)T
F(f)=§ > W(f(f_quz (3.5)

Expression (3.5) represents the sum of terms sina/a of the maximum value,
each of them equal A;T/2, where i =0,1,2,...,m. Every ith maximum value
corresponds to ith harmonic component.

4. Distortion of spectrum evoked by the measurement window

The previous considerations have proved that the transform of the signal f(t)
is evidently different from the transform of the signal ¢(t). It seems to be ne-
cessary to analyse the errors evoked by the measurement time window. These
considerations will be carried out for two kinds of a signal processing: analog and
numerical. The analog way concerns a general case of determination of the spec-
trum by a direct measurement or by an analytical computation. The numerical
way concerns the computation of the spectrum by the FFT method from a digital
representation of the signal.

4.1. General case

For analysis of this case, the signal (4.1) has been simulated on a microcom-
puter
o(t) = A;isin 2w fit + Az sin 27 fot (4.1)

where

—_—=—_-—=1 f1=300HZ f2=700HZ
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Fig. 4.

The spectrum of this signal, conformable to the expression (3.4), is shown
in Fig.3. Then we have computed the spectrum of signal f(¢) according to Eq
(4.1) with the rectangular time window (2.1). The time of measurement equal
to 1/64 s has been assumed. The results of computation are presented in Fig.4;
the amplitude values are divided by the time of measurement value. Fundamental
informations about the signal ¢(t) presented in Fig.3 and in Fig.4 are similar. But
we can easy forsee that the problem with accuracy appears when the frequencies
fi and f; come near and courses of sin «/a ”extended” on this frequencies are
going to superpose. In Fig.5 and 6 are shown spectrums of signals ¢(¢) and f(¢),
respectively, for frequencies f; = 490 Hz and f, = 510 Hz. The spectrum of
@(t) is agrees with our expectations but the spectrum of f(t) differs from that
one very much. We can notice a qualitative distorsion (one component instead of
two) and a quantitative one (an amplitude almost two times greater). These two
types of distortion result from a superposition of two adjacent courses and effect
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the loss of accuracy and resolution of two components.
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Fig. 5.
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Fig. 6.

Analysing the values of function sinw(f — f1)T/7(f — f2), one can notice
that the resolution between two adjacent components with the error less than
20% is possible for the interval f; — fo = Af > Afmin. This value depends
on the measurement time 7 value and can be estimated as A fyin > 1.3/7.
For the example mentioned above the measurement time value has been assumed
T = 1/64 s and it gives the interval frequency value A fnin ~ 80 Hz. So short
a time has been taken for good illustration of the spectrum distortions. Under
normal conditions this measurement time 7 = 0.1 + 1.0 s and it results in the
spectrum components discrimination Af =1+ 1.5 Hz.
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4.2. The spectrum computed by the FFT method

For computation of the transform with the aid of FFT, the signal has to be
presented in the form of a numerical time series. The series is obtained by an
analog-to-digital conversion with a certain sampling frequency. Total time of the
conversion is equal to the signal measurement time.

Let us assume that the signal ¢(¢) is sampled during the time 7 with sampling
frequency f.. Characteristics of the obtained train are following:

— number of samples N =T/ f,,
~ the lowest frequency discriminated from the spectrum f; = 1/T [Hz],
~ Nyquist frequency fy = N/2T [Hz].

Computed by the FFT method the spectral lines will be arranged in sequ-
ence along the frequency axis, discretely for frequencies f, = n/T, where
n = 0,1,2,...,(N/2 - 1). The minimal interval between two succesive frequ-
encies determining the frequency line discrimination can be preseted as

n+l1 =n 1

Afwin === =F =7 (4:2)
The A fnin value determines the minimal interval separating two succesive frequ-
ency informations of the descrete spectrum and it is equal to the lowest frequency
discriminated from the spectrum. One can say that in the spectrum computed
by FFT the frequency information appears only at points corresponding to the
frequencies: 0/T,1/T,2/T,... In intervals separating these points this information
is equal to zero.

We may suppose that for some of these frequencies spectral peak lines will
appear. Let us assume that these lines appear for frequencies f; = n;/T
(where ¢ = 0,1,2,...,m), corresponding to m the values of f, (where
n =012,..,N/2-1).

Substituing numerical values for frequencies f, and f; into Eq (3.5) we obtain
the transform for the signal determined in the form of the of samples

T <~ , sinw(n — n;)
F(n) = —— i— 4.
(=g LA (43)
Since m and n; are always integers the difference n — n; will be also always
an integer, it means n — n; = k, where k£ = 0,+1,+2,... Numerical form of the

expression (4.3) can be written as

sin Ttk

Win) = wk

(4.4)
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The value k = 0 represents n = n; and we have the spectral peak line of ith
harmonic component. The index =n; corresponds with mid-band frequency and
then W(n) = 1. For the other integer values of k # 0, the transform W(n) =0
because: sinwmk = 0 and 7k # 0. Taking into account this reasoning in the
expression (4.3) we can write

1 for n = n;
F(n) = { 0 for m#m (4.5)

The same result can be obtained directly after considerations of the section
2.1. Frequency informations of the discrete spectrum are given on frequency axis
only in points determined by Delta distribution function. One knows (Zemanian,
1969) that it is the Delta distribution carrier and that it is defined as the set of all
points where this distribution is not equal zero. For the distribution defining the
FFT spectrum, the carrier is the set, composed of points: 0/T,+1/T,+2/T,...
If, for the point n; appears a spectral peak line corresponding to the frequency
fi, the nearest points where the information is not equal zero (conformable to
the definition of the spectrum computation method) will be n; & 1,n; + 2,...
These points correspond to the frequencies f; + 1/T, f; £ 2/T,..., distant always
of the entire rate of the value Af,i, = 1/T. For these points the function
sina/a given by expression (2.3) takes values equal to zero. In consequence in
the transform F(f) given by formulas (2.8) and (3.5) the term representing the
rectangular window transform will be equal to zero at these points.

5. Conclusions

For an analog processing of the signal, the distortion resulting from the exi-
stance of the measurement window limits the resolution between the spectral lines.
In the case of signal processing by FFT, both the signal and the obtained spectrum
are given as a numerical series of values. The distortion values correspond to the
frequencies at which the spectral amplitude informations are equal to zero. The
discrete form of the spectrum accomplishes function of filter eliminating distorbed
informations and they don’t appear in the spectrum.
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Wplyw okna pomiarowego na widmo czestotliwoset uzyskane metoda FFT

Streszczenie

Kazdy rzeczywisty pomiar sygnalu odbywa si¢ przez pewien czas (ma zatem poczatek
i koniec) i tylko w tym czasie (w tzw. oknie pomiarowym) sygnal istnieje dla badacza.
W konsekwencji dalsza obrébka musi dotyczy¢ iloczynu sygnalu istniejacego niezaleznie
od pomiaru oraz okna pomiarowego reprezentujacego czas pomiaru. Przy wyznaczania np
widma, transformaql podlega ten iloczyn co wprowadza powazne zakldcenia rezultatow.

W artykule omdwiono znieksztalcenia widm wynikajace z istnienia naturalnego,
prostokatnego okna pomiarowego. Uwzgledniono analogowy 1 numeryczny sposdb obrobki
sygnalu. Dla obrdbki analogowej (np analityczna transformacjia sygnalu), stwierdzono
wyrazna utrate rozréznialnosci i doktadnosci prazkéw w widmie.

W przypadku obrébki cyfrowej, widma czestotliwosciowe oblicza sig na podstawie ciagu
wartosci uzyskanych z prébkowania sygnalu przez czas T z wybrana czgstotliwoscia prob-
kowania. Powszechnie stosowana do obliczania widma metoda FFT daje ciag dyskretnych
prazkéw widmowych, rozlozonych na osi czestotliwosci w odstepach 1/7. Tylko w tych
punktach istnieje informacja czestotliwosciowa, zas miedzy nimi jest ona réwna zero.

W artykule udowodniono, ze znieksztalcenia widma wywolane istnieniem prostokat-
nego okna pomiarowego pojawiaja sie wlasnie pomiedzy tymi punktami tzn. tam gdzie
informacja czestotliwosciowa jest réwa zero. Zas w punktach gdzie pojawiaja si¢ prazki
widmo nie jest obciazone bledem. W konsekwencji znieksztalcenia wywolane istnieniem
okna nie sa widoczne w widmie uzyskanym metoda FI'T.
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