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The paper concerns optimization problems at the loss of dynamic stability.
The transverse vibrations of a few periodically loaded rods for different bo-
undary conditions are considered. The rods have variable cross—sections and
are made of viscoelastic material. Parameters determining the shape of the
rods are defined. The aim of the paper 18 to introduce an objective function
which is a measure of dynamic instability region. Hitherto for similar systerns
the amplitude of the exciting force oscillating term was the objective func-
tion. It appears that the optimality of system depends upon the objective
function. The problem of system optimization at a parametric resonance 18
a complicated one - a few objective functions must be taken into account.
The paper indicates some problems. The considerations are limited to a
one-degree—of-freedom problem which needs further analysis.

1. Introduction

Lately the paper occur [1,2,3] concerning problems of optimization at the loss
of dynamic stability. The papers [2,3] refer to internal resonance of parametric
character in a system of rods. The amplitudes of vibration of parametrically exci-
ted elements were the objective functions. On the other hand in [1] the amplitude
of the follower force oscillating term was the objective function.

A matter of this paper is to introduce, for problems connected with optimiza-
tion at the loss of dynamic stability, such an objective function which would be a
measure of instability region. The results of paper [1] indicate that the system is
most stable if the rod is shaped like a cone. Then the amplitude of the follower
force oscillating term is maximal but instability region is widest — the system is
unstable in a large frequency range. Hence the idea of introducing a new objective
function occurs.

We will consider a few kinds of rods with different boundary conditions. The
problem of ioss of stability for the prismatic rods is considered in detail in [4].
Methods of instability regions construction for such situations are known.
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For the problems of optimization of rods with variable cross—sections we will
look for such parameters of the rod shape for which some measures of dynamic
instability regions (e.g. an area connected with the region or the width of it at a
fixed place) will be minimal.

2. Differential equations of motion

The rods are made of Kelvin - Voigt viscoelastic material with the square
cross—sections. Equation of motion of non—prismatic rod under the action of a
longitudinal, periodically varying in time, force P(t) bas the form

2 2 2 2
—%[El(z)% + ,\I(z)a%] + pA(I)%t%D + P(t)th: =0 (2.1)
where w(z,1) is a transverse displacement of the cross—section z in the time t, I(z)
is cross—sectional moment of inertia, A(z) is cross—sectional area, E is Young’s
modulus, A coefficient of internal damping and p mass density.

For example we will consider three different cases (Fig.1). For the situation
presented in Fig.la the boundary conditions are

82
[131(:)5}-',‘i + M(z)%}(o,t) =0, w(0,1)=0

(2.2)
tw Fw
[EI(:)EF + ,\I(a:)m](l,t) =0, w(lt)=0.
However for the case like in Fig.1b the boundary conditions are following
w(0,t) = 'z—w(o,t) =0
* (2.3)
i Fw
Lt) = z - gy — 0.
w(l,t) =0, [1-31@;)6:52 + z\I(z)az2at](l,t) 0

We look for approximated solutions to above problems in the form of series of
eigenfunctions of non—damped, natural vibrations

§
w(z,t) = 3 ()l (z) (2.4)

=1

194

where the form of functions v;”’(z) depend on the considered case; f = 1,2

vfl)(z) = sin”rTz (2.5)
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v'm(z) = €08A{ (shé}z — sin ’\;I) -
. Aq':t A,‘.’t
— Bln A" (ChT — CO8 T) (26\
Ay = 3.9266.

Inserting (2.4) to (2.1), multiplying it by u,(,{)(z) and integrating from 0 to [ one

gets
!

> [/i.'mii + ABimgi + (EBim + P(‘)éim)QiJ =0 (2.7)
=1
where
!
Aim = p/A(z)v'U)(z)vS,{)(:c)d:t
0
l
Bim = /I(z)v}f)"v,(,{)”dz (2.8)
0
l
Cim = / o o).
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Fig. 1.

The similar set of equations we get for the third situation represented in Fig.1.
This system of equations has been obtained on the base of the Lagrange’s equations
of the second kind. We introduce some parameters describing the rod shape. For
the case like in Fig.1a we assume that the side of quadratic section a®(a, k1), z)
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changes as quadratic function of z (Fig.2) and has the form
2
a(l)(a,x(l),z) = a{4x(l)(%— - %) + 1} = apV(xM) 1) (2.9)

where

=2 ”ﬂ, a(0) = a(l) = a, a(%) =8, Me(-m,1]. (210
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For the cases like in Fig.1b and Fig.1c we assume that the side of cross—section
a®(a,k®), z) changes as a linear function of z

a®(a,x®,z) = a(1 - ,ct’);) = ap? (D, z) (2.11)
where
O f’—;—[’, o =a, al)=8, O e(-oo,l]. (2.12)
So we obtain )
AW = [ag®, 10 = o]t (213)

where for £ = 1 one should take {2.9), (2.10), whereas for k = 2 one should take
(2.11), (2.12). Inserting these formulae to (2.7) and (2.8) we get

i
- . A
(il 4 riB S0 + (B 4 POC)a] =0, 13 (219

s=1
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where

1
AP = dim = pla] [1pPPe oz
0

{
- 1 [ "
B4 = EBim = Ea]* / (o4 0" dz (2.15)
0

I
C.(,‘Q = /v,(!)"vs,{)dz
o

(k) denotes the shape of the rod, £k = 1,2; (f) denotes the applied mocde of
oscillation, f =1,2,3.

3. Dynamic stability

To simplity the further considerations only the first term of series is taken into
account. So the equation of motion is now

where

i
A = pfal? [[pWP [z
0

{
B&D = E%[GT‘ o/ [N NP dz (3.2)

I
o = / o oD gz
0

Now we define natural frequency w(*/), critical force P(*/) and exciting parameter
u®5f) for non-prismatic rod, cf.[4]. If we consider the natural vibration of rod
having a shape defined by (k), oscillation mode of which is (f), we have

=0. (3.3)
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Hence the second power of natural angular frequency of vibration is

i
L Ela]? [0 [l Pdz
RES) iz Ela] ({[9 ¥ I

kN2 — — .
[w( ) - A(k’/) - i (34)
pf[gp(")]z[v(.f)sz:
0
Taking in (3.1) P(t) = Py + P; cos ¥t we get
B(“ 0 o) rCl)
g (k.72 0 t _
A(k aenTet ™1 [1 + BEH 19T [ Ze ©° 191']9 =0 (3.5)
We introduce, in a similar way as in [4], the following quantity
P,CN P
(k,f)y2 _ 1 ,(k.)12 o — [,kS2(y _ o
20 = WO (14 ) = WP (- 2ap) 69

Next by analogy with the equation of motion of prismatic rod, periodically
loaded by longitudinal force, we obtain the formula for critical force for the rod of
the variable cross—section of shape (k), with the mode of oscillation (f)

I .
kg 3D B Elaf* [le1 )" Pda
P =~ = - : . (3.7
kr coh c
[ o5 dz
[1]

On the base of above formulae equation (3.5) takes the form

B( f)
A(k/)

——T¢+ [.f)("‘f)]2

yXoiti
<1+ : ) cos ¥t » g = 0. (3.8)
AN (1 4+ BEO k]2

Denoting
PCY
ACN (14 BE kN

==2u%)  or

(3.4
%, P
o TN}
2(Pkr - Po)

what is consistent with the parameter y defined for prismatic beam, the equation
(3.8) has the form

§+2e0NG 4 [QEDP(1 - 2u5I) cos 9t)g = 0 (3.10)
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where
r B

Dy

We consider the possibility of parametric vibration occurrence, i.e. the possibi-

lity of existence of nonstable solutions to equation (3.10). We look for the solution
with the vibration period 27 in the form

= 9¢{k1).

e . kvt k9t
q(t) = k§3 (A), sin —~ + B ces T) (3.11)

On the ground of {3.11) we will determine the boundaries of instability regions
in coordinate system p, 9/242.

Confining ourselves to the first, most important instability region (the primary
one) which occurs in the neighbourhood of the double value of the lowest natural
frequency, the solution has the form

g(t) = Asinﬂ+Bcos ﬁ (3.12)
2 2

Inserting (3.12) to equation (3.10) and comparing the coefficients of sin(¥#t/2)
and cos(9t/2) we get the system of algebraic equations in coefficients 4 and B.
The nonzero solution to these equations exists if the following determinant equals

to zerc
14 ukd) 92 _AKRS g
3 4| R®Np2 2 ED

where A(%) denotes the damping decrement of vibrations of rod with the shape
(k) and mode (), under constant longitudinal force Py

2zelkS) 2relkd)
RN
J lr'

Solving the determinant (3.13) we have

9 = 20(k1) \L _ %(é%‘ly + \/[,,(k./)]e - (AW))’ + l(A_(:i))‘. (3.15)

AlkS) =

(3.14)

x 4

Since the damping decrement is usually small compared with a unit we reduce
formula (3.15) neglecting the term with greatest power of A%f)/x. So we get

9 = 20(%) \F + \/ [ukD))2 — (A(:“n)’. (3.16)
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If the expression under the inner square root is positive the formula (3.16) gives
two real values of critical frequency. These values give two boundaries of a primary
instability region. The boundary condition [u(*/)]? = [A(%f)/x]? describes the
smallest value of exciting parameter, for which there is possible the existence of
non—damped, parametric vibration. The critical value of exciting parameter is
p* = ARO[z, where A(FS) is defined by (3.14). Comparing the formulae (3.15)
which describe the boundaries of instability regions for rod with damping with
the formulae describing instability regions without damping, cf.[4], we see that for
B > 2u® the regions are practically the same. The advantage of this fact is taken
in definition of a new objective function which is connected with the area of a part
of instability region.

4. Objective function

|
I
!
|
{

|
!

Fig. 3.

Let § denote the area of a part of instability region enclosed between u* and
2p®. For greater values of u the influence of damping on boundaries of instability
regions can be neglected (Fig.3). So we have

/———*_,T-:
( )du-— / l—v,{z —{f; du. {4.1)
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Because u? is near {(A/x), the expression

is a small quantity in the region of u changes:it is of order not higher then A/x.
Hence transforming (4.1) we get

2u® 2u® 2u® J*T
/Vl-}-.‘:du—-/Vl—sd;z%’[V;ﬂ—(—) du =
u® ut u®

tn
1]

™

‘ 1 1
= V34 ;ln——). 4.2
p(V3+ g " ﬁ) (4.2)
In virtue of the formula for the critical value of exciting parameter we obtain
the formula for the area S. The value of S depends on the parameters defining
the shape of rod, the boundary conditions and material constants. The above
considerations concern all the cases analysed in previous parts of this paper. One

should only replace yu* with u*(*). In virtue of (4.2) we get

T2[B(k.f)]2

AED(BED § BCD)" (4.3)

sk Sy = Lu'(k'j)]? -1.074 = 1.074

Inserting A(%f) B(:f} and CU) to this formula, in accordance with formulae
(3.2), we get the final form of the objective function.

5. Parametric optimization

In the second part of the paper we have adopted some patterns of changing
of the considered rods, cross—section cf.(2.9), (2.11), introducing. the shape para-
meters K. In optimization process we adopt the function § given by (4.3) as the
objective function. The following constraints are assumed: the length and the vo-
lume of rod are constant. The shape parameters are the optimization parameters.
The system is near to the main parametric resonance. The problem of optimiza-
tion will be formulated as follows: we look for the values of parameters a and «,
which describe the shape of the rod, which satisfy the constraints and in addition
minimize the function §

min S®AKN (a, k), BE (a,x),CU], (5.1)

where A6S) pkSr C(4) are defined by (3.2). The optimization problem may
be formulated in a different way introducing instead of the area another objective
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function connected with it. We define the width of dynamic instability region for
po=2p7
2060 = &k’f;@_

On the ground of the equation describing dynamic instability regions we have

s =1 i (5 b= (B = Ve s

It enables us to define the interval of exciting frequency for which the system
is unstable

(5.2)

- - TB(k,/)
AV(2u") = Z(2p°)202 = NEW' (5.4)
The quantities described by formulae (5.3), (5.4) can be optimized also. We
look for the shape parameters which minimize the quantities (5.3), (5.4). The
constraints and conditions of optimization are the same. Calculations and analysis
will be presented.

Ezrample 1. k =1, f = 1, Fig.1a, Fig.2a.
Cross—section of the rod changes according to formula (2.9). The quantities 4,
B, C have the form

AU = plalPifa(x)
fa(x) = 0.3910x% — 0.8693x + 0.500

Elal? . .
BLY) — __E'g_}fB(,gj (5:5)
IB(k) = 2.701k* — 11.64x% + 19.01x? — 14.12x + 4.058

-2

(- _ 2
Vo= TR

The volume V =la?f(x), where f(k)=1-4%+ %553 . Therefere in virtue of
{4.3)
2
[/B(x)] y (5.6)

SN = 1.0742, T Jnin
f3('<)fA(")[zij_f57(x: - Pozaj

The critical force for the rod of variable cross—section depends on shape para-
meters and it has the following form

PO (k) = i%’ (5.7)
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The criticai value of exciting parameter is now
/B =

,U‘(l’l) = 2 7 =
f’vfz4 ‘;ﬁi(zz‘}‘? — FPyz3)

where
a\2y3 EV? ¥3
HN=E—ey ATy A= o7
{10 & 2
4 (5.9)
.y _ AV
Zq4 = PV, 25 = T2, Zg = 3464;2;
Using the formule (3.9) we have
Pl =2u" (P — Po)- (5.10)

Finally we calculate the range of frequency in which the dynamic instability

occurs

/B
Aﬂ? w = Zp——, 3'11‘}
( M ) ﬁffA (9. 11

It depends on the shape parameter.

Ezample 2. k = 2, f = 2, Fig.1b, Fig.2b.
Crass-—section of the rod changes according to formula (2.11). The quaniities
A, B, C are the following

AR = plal’l £
f= = 0.1747x? - 0.5680x + 0.500

Ela}? .
BA2) - “ET] fs (5.12)

fp = 1.253c* — 7.153x> + 15.94x% — 17.06K + 9.89

_5.7518
{

C(2) = = -—73.

The volume V = la?f, where f=1-x+ '3—2

Optimized functions 523 A#(?) and parameters Plgm, pr(23) pr®) paue
now the forms -
&

§32) = 1.0745 ,
fsfz[znéq' - 3h

f
A3 (24%) = 25=B-
(2p%) zﬁffx
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P = 2u°( By — Fo) {5.13)
(2,2 23 5
Py '= P 1
3 f
f
P-(:z,z) =25

JB
72 215 -
4 - \
f \ﬁ4 #(F - Pozs)
Remaining quantities are the same as in example 1.

Ezample §

Now we consider the cantilever beam of variable cross—section at loaded by
periodic force P(t) which is parallel to non—deformed rod axis (Fig.1c). The system
of equations of motion is obtained from the Lagrange’s equations in the form
similar to (2.14). Assuming that the shape of rod is the same as in example 2 and
confining to the first term of series we get

pVM . u VK | WEVIK u?
g+ 5 q ( 3 7 = —Po)q -
<> 1205 < 2 > 128 < @2 > 21
2
—%P,qcosr?t =0 (5.14)
where .
p=1- N-T'\

1
M= /<p’(1 ~ cos %—)’d{ = 0.9268 — 0.3720x + 0.1575x%  (5.15)
J .

K= / o4 cos? f;d{ = 0.500 — 0.5947x + 0.3920x7% —
0
—0.1385x> + 0.0205«*
T
(=7
Adopting denotations, similar to (3.1), we have
4423) pVM _ 'OVf

T<er> TR =M
WIEK  EV? T2
(23) _ 4 - 3 -
B 1215}’2 1572 B’ fﬁ 48K (5.16)

. )
ol - B X3
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Now one has assumed
w(z,t) = q(1)v®Nz), v =1 - cos 'L?, u= %. (5.17)
Then the equation of motion has the following form
A G 4 B@3rg 4 (B 4 COV Py)g + CO) Pigcos 9t = 0. {5.18)
Acting similarly as in examples 1 and 2 we get
i
B
P iz (n% - %sp0)
A 7 J

o2 _ 7l

§(23) 2

“ kr ?3 72

P = 24" (Per — Po) (5.19)
f=

L0 B

72\/14'1%(12% - Poia)

AV () = zg B
11

where

f: = 0.2268 — 0.3720x + 0.1575x2

f5 = 0.1028 - 0.1223x + 0.0850x" — 0.0285+> + 0.0042x*  (5.20)

K2

Folo &2
f K+ 3

8. Conclusions

Numerical calculations were carried out for example 2. The following values of
parameters: £ = 22-10"' Nm~2, p=77-108 kgm™3, 7 =1-10° Nsm~? or
n=1-108Nsm? /=8m,V =1m? Py =1-10" N has been adopted.

The results are presented in the figures. In Fig.4 one presents S(x) and Ad(2u")
versus shape parameter K. Both these quantities are maximal for x = 1, i.e. for
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the rod shaped like a cone. The loss of stability takes place for the geatest interval
of frequency - this situation is the most unfavourable. Modifying the shape of rod
one can change the width of this interval. The diagrams suggest that the minimum
of §(x) and AY¥(2u*) occurs near k = 0, i.e. for almost prismatic rod.

Fig.5 shows the critical value of exciting parameter 4* as a function of the shape
parameter k. Parameter p* attains its maximal value for x = 1; the rod is then
shaped like a cone. It is the most favourable situation considering the dvnamic
stability. In this situation the value of force which ~auses the unstable motion is
maximal. From the above considerations arises that the optimal system on the
ground of S(x) or A¥(21") is not optimal on the ground of u*. Optimization of
the system at parametric resonance is a complicated problem. The optimization
should be carried out taking into account a few aspects of the problem.

1 express my thanks to Prof. dr eng. Antoni Gajewski for suggesting a subject matter
of the paper.
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Streszczenie

Praca jest poswiecona zagadnieniom optymahzujl przy utracie statecznosci dvna-
micznej. Hozwazono drgania poprzeczne kllku pretow rozchych sie sposabem zamo-
cowania, obciazonych silami okresowo zmienmymi w czasie. Prety wykonane z mate-
riaiu lepkocprezystego posiadaja zmienne przekroje, przy czym przyjeto okreslony sposob
zmiany tych przekrojow. Wprowdzono wspélezynniki, ktore okreslaja ksztalt preta. Istota
pracy jest wprowadzenie funkeji celu, ktdra jest miara obszaru niestatecznosci dynamicz-
nej. Dotychczas optymalizewano podobne ukiady ze wzgledu na amplitude vscylujacego
skladnika sily wymuszajacej. Okazuje sig, ze ukiad optymalny ze wzgledu na te ostatnig
funkcje celu nie jest optymalny ze wzgledu na funkcje celu wprowadzone w pracy. Opty-
malizacja ukladu w warunkach rezonansu parametrycznego jest zagadnieniem zlozonym,
nalezy braé pod uwage wiece} niz jecdna funkcje celu. Praca sygnalizuje istnienie pew-
nych problemoéw. Rozwazania przeprowadzono ograniczajac sie tylko do jednego stopnia
swobody. Zagadnienie wymaga dalsze), bardzie} wanikliwe) analizy.

Praca wplynela do Redakcyi dnia 5 lipca 1989 roks



