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In this work, we implemented the first-order approximation of the Ite-
ration Perturbation Method (IPM) for approximating the behavior of a
rigid rod rocking back and forth on a circular surface without slipping
as well as Cubic-Quintic Duffing Oscillators. Comparing the results with
the exact solution, has led us to significant consequences. The results re-
veal that the IPM is very effective, simple and convenient to systems of
nonlinear equations. It is predicted that IPM can be utilized as a widely
applicable approach in engineering.
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1. Introduction

With the rapid development of nonlinear science, it appears an ever-increasing
interest of scientists and engineers in the analytical asymptotic techniques for
nonlinear problems. Though it is easy for us now to find solutions to linear
systems by means of numerical simulations, it is still very difficult to solve
nonlinear problems analytically. Duffing oscillators comprise one of the cano-
nical examples of Hamilton systems. However, simple generalizations of such
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oscillators, such as cubic-quintic Duffinng oscillators, have not been studied
extensively (Hamdan and Shabaneh, 1997; Lin, 1999; Wu et al., 2006). Be-
lendez et al. (2011) presented a closed-form solution for the quintic Duffing
equation using a cubication method. The restoring force is expanded in Che-
byshev polynomials through their work and the governing nonlinear equation
is approximated by a cubic Duffing equation in which the coefficients for the
linear and cubic terms depend on the initial amplitude. The coupled New-
ton method with harmonic balancing was also utilized by Lai et al. (2009)
for approximating higher-order solutions for strongly nonlinear Dufing oscil-
lators with the cubic-quintic nonlinear restoring force. In addition, Ganji et
al. (2009a) applied a new approximate method, so-called Energy Balance Me-
thod, to analyze these types of nonlinear oscillators with different engineering
parameters of α, β and γ.

Principally, analytical methods to solve a nonlinear oscillator are limited
to the perturbation approach (Nayfeh, 1981). However, as with other analyti-
cal techniques, certain limitations restrict the wide application of perturbation
methods, the most important of which is the dependence of these methods on
the existence of a small parameter in the equation. Disappointingly, the majo-
rity of nonlinear problems have no small parameter at all. Even in cases where
a small parameter does exist, the determination of such a parameter does not
seem to follow any strict rule, and is rather problem-specific. Furthermore,
the approximate solutions solved by the perturbation methods are valid, in
most cases, only for small values of the parameters. It is obvious that all the-
se limitations come from the assumption of the small parameter. Therefore,
new analytical techniques should be developed to overcome these analytical
deficiencies (Barari et al., 2008; Sfahani et al., 2010).

Bayat et al. (2010) employed the Energy Balance Method to obtain ana-
lytical expressions for the non-linear fundamental frequency and deflection of
Euler-Bernoulli beams. Their approximations were valid for a wide range of
vibration amplitudes, unlike the solutions obtained by other analytical tech-
niques, such as perturbation methods. The periodic solution for nonlinear free
vibration of conservative, coupled mass-spring systems with linear and nonli-
near stiffnesses as well as two mass-spring systems and buckling of a column
were investigated within the works presented by Bayat et al. (2011) and Ganji
et al. (2011). In the first work, the energy balance methodology was utilized
for the approximations while, in the latter, after finding the maximal and mi-
nimal solution thresholds of the nonlinear problem, an approximate solution
to the nonlinear equation was easily achieved using He Chengtian’s interpola-
tion. The other techniques recently proposed to eliminate the small parameter
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are listed as: homotopy perturbation (Barari et al., 2008; Belendez et al., 2007;
He, 2005; Sfahani et al., 2010; Yıldırım and Özis, 2007; Miansari et al., 2010),
differential transformation (Ganji et al., 2010; Omidvar et al., 2010), max-min
(Ibsen et al., 2010; Ganji et al., 2011), parameterized perturbation (Barari et
al., 2011), frequency-amplitude formulation (Fereidon et al., 2011; Ganji et al.,
2009b), harmonic balance (Gottlieb, 2006; Lim et al., 2006), energy balance
(Bayat et al., 2010, 2011; Ganji et al., 2009d; Momeni et al., 2011; Sfahani
et al., 2011), variational iteration (Barari et al., 2008; Fouladi et al., 2010;
Hosseinzadeh et al., 2010) and variational approach (He, 2006; Ganji et al.,
2009c). In this letter, we present the periodic solution based on the iteration
perturbation method (IPM) (He, 2001) for nonlinear oscillators. The method
is applied to two cases, and the results are compared with those obtained by
the exact solutions. In Sections 4 and 5, the cubic-quintic Duffing oscillator
(Hamdan and Shabaneh, 1997) and motion of a rigid rod rocking back (Nayfeh
and Mook, 1979; Wu et al., 2003) are analyzed as well.

The mentioned problems can be written in the following forms

x′′ + f(x) = 0 f(x) = αx+ βx3 + γx5

x(0) = A x′(0) = 0
(1.1)

and

( 1

12
+
1

16
u2
)

u′′
2
+
1

16
uu′
2
+
g

4l
u cos u = 0

u(0) = β
du

dt
(0) = 0

(1.2)

where g > 0 and l > 0 are known positive constants.

2. Basic idea of the iteration perturbation method

In this paper, we consider the following differential equation

u′′ + f(u, u′, u′′, t) = 0 (2.1)

We introduce the variable y = du/dt, and then Eq. (2.1) can be replaced by
an equivalent system

u′(t) = y(t) y′(t) = −f(u, y, y′, t) (2.2)
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Assume that its initial approximate guess can be expressed as

u(t) = A cos(ωt) (2.3)

where ω is the angular frequency of oscillation. Then we have

u′(t) = −Aω sin(ωt) = y(t) u′′(t) = −Aω2 cos(ωt) = y′(t) (2.4)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.2)2, we obtain

y′(t) = −f(u, y, y′, t) = −
∞
∑

n=0

α2n+1 cos[(2n + 1)ωt] (2.5)

Substituting Eq. (2.5) into Eq. (2.2)2, yields

y′(t) = −[α1 cos(ωt) + α3 cos(3ωt) + . . .] (2.6)

Integrating Eq. (2.6), gives

y(t) = −α1
ω
sin(ωt)− α3

3ω
sin(3ωt)− . . . (2.7)

Comparing Eqs. (2.4)1 and (2.7), we obtain

(2.8) −Aω = −α1
ω

ω =

√

α1
A

T = 2π

√

A

α1
(2.8)

3. Illustration of the problems

In this Section, IPM which was presented in Section 2 is applied to two smooth
oscillators with odd nonlinearities in the displacement, and the results are
compared with the exact solution.

Case 1. In this example, we consider the following nonlinear oscillator (Lim
and Wu, 2003; Ramos, 2009)

u′′ +
u3

1 + u2
= 0 u(0) = A u′(0) = 0 (3.1)

From Eq. (3.1), we have

u′′ = −u′′u2 − u3 u(0) = A u′(0) = 0 (3.2)
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Equation (3.2) is equivalent to the two-dimensional system

u′ = y y′ = −y′u2 − u3 (3.3)

Substituting u = A cos(ωt) into the right-hand side of Eqs. (3.3), gives

u′ = −Aω sin(ωt) = y y′ = A3 cos3(ωt)(ω2 − 1) (3.4)

It is possible to perform the following Fourier series expansion

A3 cos3(ωt)(ω2 − 1) = α1 cos(ωt) + α3 cos(3ωt) + . . .

α1 =
4

π

π/2
∫

0

A3 cos4(θ)(ω2 − 1) dθ = 3A
3(ω2 − 1)
4

α3 =
4

π

π/2
∫

0

A3 cos3 θ cos(3θ)(ω2 − 1) dθ = A
3(ω2 − 1)
4

(3.5)

Substituting Eqs. (3.5) into Eq. (3.4)2, yields

y′ =
A3(ω2 − 1)
4

[3 cos(ωt) + cos(3ωt)] (3.6)

By integrating Eq. (3.6), we obtain

y =
A3(ω2 − 1)
4

∫

[3 cos(ωt) + cos(3ωt)] dt

=
A3(ω2 − 1)
ω

[3

4
sin(ωt) +

1

12
sin(3ωt)

]

(3.7)

Comparing Eqs. (3.4)1 and (3.7), gives

ω =
3A√
9A2 + 12

T =
2π
√
9A2 + 12

3A
(3.8)

The exact frequency ωex of Eqs. (3.15) is (Lim and Wu, 2003)

ωex = π

[

2

π/2
∫

0

A2 cos2 θ
√

A2 cos2 θ + ln
(

1− A2 cos2 θ
1+A2

)

dθ

]−1

(3.9)

In case 1, we assume A = 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, and 100.
The obtained exact results are expressed in Eq. (3.8). The results for the
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Table 1. Comparison between IPM and exact solution for Example 1

A ω ωex |(ωex − ω)/ωex|
0.01 0.00866 0.00847 2.242
0.05 0.04326 0.04232 2.22
0.1 0.08627 0.08439 2.22
0.5 0.39736 0.38737 2.58
1.0 0.65465 0.63678 2.81
5.0 0.97435 0.96698 0.763
10.0 0.99340 0.99092 0.250
50.0 0.99973 0.99961 0.012
100.0 0.99993 0.99990 0.003

approximate frequency ω with the exact frequency ωex are also compared and
tabulated in Table 1. From the illustrated results, the maximum error 2.22%
can be obtained. Hence, it is concluded that there is an excellent agreement
with the exact solutions for the nonlinear systems.

Case 2. This example corresponds to

u′′ +
u

1 + εu2
= 0 u(0) = A u′(0) = 0 (3.10)

From Eq. (3.10), we have

u′′ = −u′′εu2 − u u(0) = A u′(0) = 0 (3.11)

Equation (3.11) is equivalent to the two-dimensional system

u′ = y y′ = −y′εu2 − u (3.12)

Substituting u = A cos(ωt) into the right-hand side of Eqs. (3.12), gives

u′ = −Aω sin(ωt) = y y′ = A cos(ωt)[A2εω2 cos2(ωt)− 1] (3.13)

It is possible to carry out the following Fourier series expansion

A cos(ωt)[A2εω2 cos2(ωt)− 1] = α1 cos(ωt) + . . .

α1 =
4

π

π/2
∫

0

A cos2 θ[A2εω2 cos2(θ)− 1] dθ = A(3A
2ω2ε− 4)
4

(3.14)

Substituting Eqs. (3.14) into Eq. (3.13)2, yields

y′ =
A(3A2ω2ε− 4)

4
cos(ωt) + . . . (3.15)
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Integration of Eq. (3.15) leads to

y =

∫

(A(3A2ω2ε− 4)
4

cos(ωt)+. . .
)

dt =
A(3A2ω2ε− 4)

4ω
sin(ωt)+. . . (3.16)

Comparing Eqs. (3.13)1 and (3.16), gives

ω =
2√

3εA2 + 4
T = π

√

3εA2 + 4 (3.17)

Equation (3.17)1 gives the same frequency as the one resulting from the ap-
plication of the harmonic balance method to Eq. (3.10). It is also exactly the
same as that obtained by the artificial parameter Linstedt-Poincare method
(Ramos, 2009).

4. Cubic-quintic Duffing equations

Now, we consider the nonlinear cubic-quintic Duffing equations. From Eq.
(1.1), we have

x′′ = −αx− βx3 − γx5 (4.1)

Equation (4.1) is equivalent to the two-dimensional system

x′ = y y′ = −αx− βx3 − γx5 (4.2)

Substituting u = A cos(ωt) into the right-hand side of Eqs. (4.2), gives

x′ = −Aω sin(ωt) = y
y′ = −A cos(ωt)[α+ βA2 cos2(ωt) + γA4 cos4(ωt)

(4.3)

Expanding the above in the Fourier series, we have

−A cos(ωt)[α+ βA2 cos2(ωt) + γA4 cos4(ωt)] = α1 cos(ωt) + . . .

α1 =
4

π

π/2
∫

0

A cos2 θ[α+ βA2 cos2 θ + γA4 cos4 θ] dθ

= 4A
(α

4
+
3βA2

16
+
5γA4

32

)

(4.4)
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Substituting Eqs. (4.4) into Eq. (4.3)2, yields

y′ = 4A
(α

4
+
3βA2

16
+
5γA4

32

)

cos(ωt) + . . . (4.5)

Integrating Eq. (4.4)2, yields

y =

∫

[

4A
(α

4
+
3βA2

16
+
5γA4

32

)

cos(ωt) + . . .
]

dt

=
4A

ω

(α

4
+
3βA2

16
+
5γA4

32

)

sin(ωt) + . . .

(4.6)

Comparing Eqs. (4.3)1 and (4.6), gives

ω =

√

16α + 12A2β + 10γA4

4
T =

8π
√

16α + 12A2β + 10γA4
(4.7)

The exact frequency ωex for the cubic-quintic Duffing oscillator is (Wu et al.,
2003)

ωe(A) = πk1

(

2

π/2
∫

0

1
√

1 + k2 sin
2 t+ k3 sin

4 t
dt

)−1

(4.8)

where

k1 =

√

α+
βA2

2
+
γA4

3
k2 =

3βA2 + 2γA4

6α+ 3βA2 + 2γA4

k3 =
2γA4

6α+ 3βA2 + 2γA4

The above result from Eq. (4.7)1 is in good agreement with the result
obtained by the exact solution as given in Eq. (4.8). Comparisons between the
IPM and exact solutions for the cubic-quintic Duffing system are illustrated
in Fig. 1 and Table 2.

5. Motion of a rocking rigid rod

In this Section, we present an example of motion of a rigid rod rocking back
and forth on a circular surface without slipping as presented in Eq. (1.2)

u′′ = −3
4
u2u′′ − 3

4
uu′
2 − 3gu cos u

l
(5.1)



Motion of a rigid rod rocking back... 223

Fig. 1. Comparison between IPM and the exact solution for cubic-quintic Duffing
oscillator (Eq. (1.1)); (a) α = 1, β = 10, γ = 100, A = 0.1, (b) α = 1, β = 1, γ = 1,

A = 1.0

Table 2. Comparison between IPM and exact solution for cubic-quintic Duf-
fing oscillator

A
α = β = γ = 1 α = 1, β = 10, γ = 100

ω ωex B ω ωex B
0.1 1.00377 1.00377 0.0 1.03983 1.03970 0.01250
0.5 1.10750 1.10654 0.06757 2.60408 2.52469 3.14468
1 1.54110 1.52359 1.14926 8.42615 8.01005 5.19472
5 20.2577 19.1815 5.61061 198.119 187.199 5.83318
10 79.5361 75.1774 5.79795 791.044 747.323 5.85038
50 1976.90 1867.57 5.85413 19764.71 18671.34 5.85587
100 7906.17 7468.83 5.85553 79057.42 74683.91 5.85602
500 197642.83 186709.04 5.85606 1976424.01 1867085.99 5.85608
1000 790569.89 746834.69 5.85608 7905694.62 7468342.49 5.85608

ωex – Ramos (2009); B = |(ωex − ω)/ωex|

Equation (5.1) is equivalent to the two-dimensional system

u′ = y y′ = −3
4
u2y′ − 3

4
uy2 − 3gu cos u

l
(5.2)

Substituting u = A cos(ωt) into the right-hand side of Eqs. (5.2), gives

x′ = −Aω sin(ωt) = y

y′ = − 3
4l
A cos(ωt)[−2A2ω2l cos2(ωt) +A2ω2l + 4g cos(A cos(ωt))]

(5.3)
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with the application of Fourier series expansion, we have

− 3
4l
A cos(ωt)[−2A2ω2l cos2(ωt) +A2ω2l + 4g cos(A cos(ωt))]

= α1 cos(ωt) + . . .

α1 =
4

π

π/2
∫

0

− 3
4l
A cos2 θ[−2A2ω2l cos2 θ +A2ω2l + 4g cos(A cos(θ))] dθ

=
3

8l
[A3ω2l − 16gAJ(0, A) + 16gJ(1, A)]

(5.4)

where J – Bessel function.

Substituting Eqs. (5.4) into Eq. (5.3)2, yields

y′ =
3

8l
[A3ω2l − 16gAJ(0, A) + 16gJ(1, A)] cos(ωt) + . . . (5.5)

Integrating Eq. (5.5), yields

y =

∫

( 3

8l
[A3ω2l − 16gAJ(0, A) + 16gJ(1, A)] cos(ωt) + . . .

)

dt

=
3

8ωl
[A3ω2l − 16gAJ(0, A) + 16glJ(1, A)] sin(ωt) + . . .

(5.6)

Comparing Eqs. (5.2)2 and (5.5), gives

ω =

√

48[lA(3A2 + 8)g(AJ(0, A) − J(1, A))]
lA(3A2 + 8)

T =
2πlA(3A2 + 8)

√

48[lA(3A2 + 8)g(AJ(0, A) − J(1, A))]

(5.7)

The exact period Tex for Eq. (1.2) is (Wu et al., 2003)

Tex = 4

√

l

3g

π/2
∫

0

√

(4 + 3β2 sin2 ϕ)β2 cos2 ϕ

8[β sin β + cos β − β sinϕ sin(β sinϕ)− cos(β sinϕ)] dϕ

(5.8)

For comparison, the approximate period computed by Eq. (5.7)2, and the
exact period Tex obtained by Eq. (5.8) are given in Fig. 2 and Table 3.
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Fig. 2. Comparison between IPM and the exact solution for motion of the rocking
rigid rod (Eq. (1.2)); (a) g = l = 1, A = 0.10π, (b) g = l = 1, A = 0.20π,

(c) g = l = 1, A = 0.30π

Table 2. Comparison between IPM and exact solution for motion of the roc-
king rigid rod, when g = l = 1

β T Tex |(Tex − T )/Tex|
0.05π 3.66129 3.66109 0.0054
0.10π 3.76394 3.76397 0.0008
0.15π 3.94064 3.94086 0.0056
0.20π 4.20116 4.20292 0.04187
0.25π 4.56246 4.56948 0.15363
0.30π 5.05355 5.07728 0.46738
0.35π 5.72584 5.79770 1.23946
0.40π 6.67785 6.89564 3.1584
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6. Conclusions

In this paper, the IPM has been implemented in order to analyze the equation
of motion associated with a rocking rigid rod as well as cubic-quintic Duffing
oscillators. We conclude from the obtained results that the IPM is an effi-
cient method for finding periodic solutions for non-linear oscillatory systems.
All the examples show that the presented results are in excellent agreement
with those obtained by the exact solution. The general conclusion is that the
IPM provides an easy and direct procedure for determining approximations of
periodic solutions to Eqs. (1.1) and (1.2).
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Ruch pręta toczącego się wahadłowo po płaszczyźnie oraz oscylatora

Duffinga piątego stopnia

Streszczenie

W pracy omówiono pierwszorzędową aproksymację zachowania się sztywnego prę-
ta toczącego się bez poślizgu ruchem wahadłowym po kołowej powierzchni za pomocą
iteracyjnej metody perturbacyjnej (IPM). Tę samą metodę zastosowano także do ana-
lizy dynamiki oscylatora Duffinga piątego stopnia. Porównanie otrzymanych wyników
z rozwiązaniem dokładnym doprowadziło do istotnych wniosków. Wykazano przede
wszystkim wysoką efektywność metody IPM przy jej jednoczesnej prostocie i wygo-
dzie w stosowaniu do nieliniowych równań ruchu. Autorzy podkreślają duże walory
aplikacyjne metody IPM w praktyce inżynierskiej.
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