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To the memory of a great scientist and noble man, Professor Witold Nowacki
(1911-1986) may favoured teacher.

In the present paper there is derived a general displacement vector repreeenta-
tion, descnbmg a generalized plane-stress state in the body with constrained
rotations (Grioli-Toupin material), leading to the solution of a biharmonic
equation.

1. Imtroduction

Under the notion of a generalized plane-stress state (GPSS) (cf Love [1],
Pp.471) we understand a state in which at each point of the elastic layer the
stress component o33 vanishes and the layer faces 2 = +h/2 are traction—free.
i.e. 0'3.(::‘9 +h/2) = 0." In the bibliography of the classical symmetric elasticity
theory one can find some particular representations of the displacement vector,
relevant to the GPSS case. A certain representations of the dnsplacement field,
resulting in the bxharmomc equation

VAu(z®) =0 | (1.1)

where v represents the deflection field, were for the first time given by Lévy, 1877
[2], <f also Michell [3] and Love [1). The representation applies to the case of
isotropic and homogeneous plates. The same equation (1.1) describes the case
of transversely non-homogeneous plates provided the original represertation is
appropriately modified cf Sokolowski [4]. Further generalization to the case of
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plates made of transversely isotropic material distributed homogeneously or non-
homogeneously, symmetrically or non—symmetrically in the transverse dlrecnon,
is due to Lekhnitskii [5,6,7]. '

In the micropolar elasticity the state GPSS refers to the case when the com-

ponents of stress and couple stress tensors are’

011 O13 O13 M11 12 jh13
o=|0on on oxn|, B=|pBn pnm M3 (1.2)
o3 om 0 Hs1 pz: O

and on the faces we have
asg(zp,:tg) =4q, p:,.-(zﬂ,:tg-) = 0. (1.3)

In the micropolar description the representations for the displacement and ro-
tation vector fields, concerning the GPSS case, are unknown. However, one should
emphasize here that even in the case of symmetric elasticity the representations
adduced earlier (as we shall prove in the sequel) should not be treated as general
representations.

In the present paper we shall deal with the elastic layer made of the material
with constrained rotatioms. For this case we shall put forward a general repre-
sentation for the displacement vector that leads to the equation (1.1) and that
describes the GPSS state of stress.

The summation convention is adopted. Latin indices have the range 12,3,
Greek indices — take values 1,2 only. A comma denotes partial differentiation.

2. Governing equations of the Grioli-Toupin material

The constitutive relations of the isotropic, homogeneous and centrosymmetric

'In Nowacki’s monograph [8) (p.175) the GPSS is defined diferently. There this state
is expressed in terms of averages

A2
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and the GPSS means that
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media are assumed in the following form [9,10]

. v 1

o5 = 2#[%'.-‘ + iy 4 T (W + “33)5,'.'] - sejin'

- 2v 2 2.1)
pii = 1(Pi + 93) + £(0ij — 95d) = 4l (pis + 15)
where ]
P = E‘i’k“k.j (2.2)
2 7T+t+eE Y—¢€
= = 2.

yye "= T (2.3)

oj; — represents the stress tensor, u;; — stands for the couple stress tensor, ¢;jx is
a Levi—Civitd symbol, §;; is Kronecker delta, u; are displacement and ¢; represent
components of the vector of infinitesimal rotations. The Lamé constant is denoted
by u, v is Poisson ratio. The moduli v, ¢, ! and n describe micropolar properties.

Omitting the body forces one can write the equations of equilibrium as follows

d"j’.‘j =40, 6'.'#6_,';‘ + #j'.‘j =0 (2.4)

whereas the equilibrium equations expressed in terms of displacements can be cast

in the form i

1~-2v
here 2 represents the Laplace operator in R3.

Viu; +

W i+ PV (uF 4~ Vi) = 0 (2.5)

3. Biharmonic representation

Consider an elastic layer of thickness h, freed from loads on the faces
2% = z = £h/2. The solutions to the differential equations (2.5) with homogeneous
boundary conditions (1.3) will be constructed by the semi-inverse technigue.

Let us assume the following representation for the displacement vector.

al2?,2) = H(2)0(2°) 0 + (2)V?0(2P) 4 o
3.1)

us(2?,7) = 9(2)(z) + J(2)V?o(=").
Here t(2), 8(2), g(2), f(z) are unknown functions. They satisfy
(== ale)=s(-2) -

o(2) = 9(~2), 1@ = f(-2).
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Applying (3.1) to (2.5) after substitution we conclude that there exist non-zero
solutions of this system, if the function v(z®) fulfils (1.1). The unknown functions
in z should satisfy a certain complicated set of ordinary differential equations. Its
solution satisfying the boundary conditions (1.3) has the form

8(2) = _(2_—ll)i) (Cg Cl 4’::) I’hCI ShT

24(1 - iy
Yz) = -zC,
9(z)=Cy (3.3)

121123
fz) = 24(1 ) (6~ =) - @- vy
where C;, C; are arbitrary constans. These constans determine the physical me-
aning of the displacement field v(z®). _
After application of (3.3) to (3.1) and then into (2.1), the formulae for u; and
¢; can be written as

(2, 2) = -{zclo(zﬁ),, + [gi(l v)h? #(Ca- cl“h’: )+ |
+I’hC ]v’o(z’),,} (3.4)
u3(z?,2) = Cyo(zf) - 24(1 — [( 121/12) Ci-(2- y)02] V2o(zf)
0ale? 3) = o) [t (@ -1 -3C -
—12(1 - u)c%) + %mc,ﬂ-l]v%(zﬂ)ﬁ} (3.5)
2
w3 =0.

With the help of the egs. (2. 1), (3.4) and (3.5) we arrive at the formulae for
stresses an couple stresses

%‘.‘y {Clz((l ~V)vag + vV’v3ap) +
412)

+ [(2 ~- v)h?

(G- ) +(1- )I’Ch ]v’v(zﬁ),.ﬂ} (3.6)

oule?, ) =~ [(1-57) #5010 R IARCOR
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pap(z’,2) = Idzfﬁq{cl”na + [ CIM_Z- -

3.7)
2 :
—#—)(3(& + %:2—(1 - V)Cl - (2 - v)Cg)]V’v,.,.}
03a(z,2) = — ("" )cl( 4::)V2v,. (3.8)
ox3(z%,2) =0 3.9)
Hs3(z%,2) =
z sh%
p3a = —2ulhCre,P (2- - —})v’u P ,
hooshy (3.10)
Ha3 = Ni3a.

One can easy check that if v satisfies (1.1) then all differential equations (2.5)
and boundary conditions (1.3) are fulfilled. In its general form (3.4) + (3.10) these
equations have not been reported in the hitherto existing literature.

Thus the constants C) and C; remain arbitrary. We shall choose them so as to
assign a clear physical meaning to the function v(z®). One can easy prove, that
without any loss of generality, the constant C) can be assumed as equal to 1.

In the flexural plate theories the following functions descnbmg a plate deflec-
tion are used

1. deflection of plate faces w(z?)

w(z®) ¥ ua(z",:tg) ' (3.11)

2. deflection of the mid-plane w(z?)

w(z®) g u3(z*,0) (3.12)
3. simple average w (z°)
A2
o (=) & % / u3(z®, z)dz (3.13)

"y
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4. weighted average w(z”)
/2 .
2
(z%) & % /, (1 - 473)us(=", 2)dz. . (3.14)
-h/2

All these deflections have simple mathematical interpretations. The deflections
w and ¥ are first terms of the expansion of u3 into appropriate power series. We
shall prove that the averages w and % are first terms of the expansion of u3 into
Legendre polynomials. To’this end let us expand u3 (for the bending state) into
Legendre palynomials

-.

us = Y filQui(z) (3.15)
1=0,2,...
ug .-=;m g;—((Qw,-(z") . | (3.16)
where
22 1 (-
(=—h—7 fnzm! (do )v f0=1, fl=(
H=3B¢-1), B=360-3,  fo= 565 -3¢ +3)

fs= %((636‘ - 70¢% + 15). (3.17)

Using the orthogonality property of the Legendre polynomials in the interval
-1 < ¢ <1 one finds

1

L A
v = / usd( =w, wy = g / (1 - ¢)uzd( = . (3.18)
[

0

Thus the averages  and % are first terms of the expansions of uz into Legendre
polynomials (3.15), (3.16). '

Using (3.5); and the definitions (3.11) + (3.14) we obtain subsequently the
following values of the C;, C2 constants

1. for function w - C; =1, C3=3,

2. for function w - C; =1, C,= -2_% ,

3. for functionw - Cy =1, C3= g:—: ,

4. for function w - Cr =1, Cp=3=4.

It is readily seen that depending on the definition of the deflection the formulae
for displacements, stresses and stress resultants assume dissimilar forms.
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4. Biharmonic representation of GPSS in the plate made of the
Hookean material

To obtain the displacements and stresses in the plate made of the classical
Hookean material one should pass to zero with I. On computing limits of the
expressions (3.4) + (3.9) we arrive at

_ (2~ v)h? i
ua(zp’z) = —z [C]‘U(zp),a + 24(_1—_11)(02 Cl )V v(zﬁ),a] (41)

12v22)

us(:cﬁ,z) = C1v(zP) - 24(1——1/)[( -

C1 = (2- ¥)Ca| V?u(z?)

Oap(z7,2) = — 21‘yz{Cl ((1 —V)as + uV’vé‘,ﬁ) +
+ [(2'2—;’)"2(02 o )] V2u(z") 00 } (4.2)
N = )c,( ‘;’2 )%,

033:0.

The equations (4.1), (4.2) have been cast here in a general form which up till
now have not been given in the literature.

It is Lévy who in 1877, as the first, found the particular form of the solution
(4.1), (4.2). His solution refers to the case C; = 1, C2 = , f [2] (pp 32-33).
Under this choice of C, the function v(z®) stands for the deﬂectxon of the mid-
plane. The method of Lévy was based on the power series expansion in 23 = z.

The solution of Lévy, the whole one or a part (only formulae for stresses), were
arrived at with the help of various methods in papers [3], [11+24] subsequently.
In 1900 Michell (3] obtained formulae for stresses or!y with the help of a different,
vomplicated method. Love [1] (p.473), basing on the Michell’s results, reported
all formulae for displacements, stresses and stress resultants in terms of the mid-
plane deflection. At different choices of C;, Cz one can obtain solutions of the
followmg authors Dougall [25] - for Cy = 4(1 - v), C3 = _32(1:"_:4)_’ Neuber [26] at

C = -2- Cy; = 10 ; Lur’e [27] at C = -——(}_;2”)-, Cz = 0; Donnell [28] at C; = §;,
Cz = 3432 Jemielita [21] at C; =1, C; = 3.

A Y
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Streszczenie

W pracy wyznaczono ogélne przedstawienie wektora przemieszczenia, opisujace nogol
piony plaski stan naprezenia w ciele ze zwiazanymi obrotami (material Grioli~Toupina),
prowadzace do rozwiazania réwnania biharmonicznego.
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