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The paper deals with statics of plates made of the Cosserat material with
constrained rotations. Several relations are derived which can serve as a basis
for experiments aimed at determining micropolar moduli of the material.

1. Introduction

An experimental verification of validity of the micropolar theory of elasticity
meets with obstacles of technical nature [1,2]. However, one can indicate under
which circumstances the influence of the extra micropolar constans comes up, thus
changing the material respanse qualitatively. These extra effects can be observed
in the following tests: determination of the stress concentration factors in a plate
(under in-plane loading) with an opening or with a rigid inclusion [1,3,4]; wave
- propagation test [5-7); determination of the torsional stiffness of 2 bar and bending
rigidity of a plate [8,9], etc.

Therefore, the experimental tests for determining the micropolar constants
should be performed with the help of such samples in which these exira effects
could be observable and measurable.

In the case of discrete systems for which a micropolar description is adopted a
method of determination of effective elastic constants is described in monograph
[10]. Several examples are given in papers [1,10-14]. For continuous media the
micropolar corstants have been found by scrutiry of: stress concentration along
the holes and inclusions {15-17], bending of beams and plates [17-20], torsion
and bending of bars [19-24], vibrations and the velocity of wave propagation [22,
25-27].

In most experiments the samples were made of aluminium alloys, low—carbon
steel, dense polyurethane foam and also human compact bones. Unfortunately, in
majority of cases, the experimental results were vague. Only in few cases some
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micropolar constants were satisfactorily evaluated [18,19,23-26]. In my opinion,
‘the most interesting results were found in papers [15], [24] and [26].

With the help of photoelasticity method, Shirayev [15] examined the stress
concentration along an opening and a rigid inclusion. His results turn out to
compare favourably with theoretical predictions of Mindlin [3] and Banks and
Sokolowski [4]. Basing on the work of W.Nowacki and W.K.Nowacki [7], Gauthier
and Jahsman [26] examined the velocity of propagation of waves in a plate and
thus determined some of the micropolar moduli. Lakes [24] investigating specimens
made of dense polyurethane foam and syntactic foam, determined the six Cosserat
elastic constants.

Nonetheless there is a need of further searching for the solutions of the micro-
polar elasticity equations which are characterized by the following features: the
unknown quantities should be essentially affected by the micropolar constants,
these unknown quantities should be measurable.

In the present paper, using the solutions obtained in paper [28], we derive some
interrelations that can be helpful in setting an experiment for finding the extra
constants of the medium with constrained rotations.

2. Bending moments in a micropolar plate made of the
Grioli-Toupin material

The components of the vector field of the plate in bénding with homogeneous
boundary conditions on the faces

o3i(2°, 42 )

(2.1)
poi (2,25) = 0
can be represented in the form, cf [28] |
u,(:" )= —{zv(zp),,,+ [gi(l v)h? (Cz - £) +
+l’h§l]:—§,7‘z]V7v(:"),,,} (2.2)

u3(z8,2) = vo(z%) - )[s( W ) (2 - ¥)Cy| V?u(2”)
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(2.3)

Here C; is an arbitrary constant, h represents plate thickness, { is a material
constant of length dimension and v is Poisson ratio. The function v(z*) stands

for the plate deflection. This function satisfies the biharmonic equation

Vio(z*) = 0.

(2.4)

The constant C; is chosen in such a way that the v(z?) field gets a simple

physical meaning. For instance, for C; = 3 we have
ay _ oy i a _’E
v(z%) = w(z%) = u;;(z ,:£2)
and v is a deflection of the faces. If C; = 6/(2 — v) we obtain
o o df o
v(z%) = w(z®) = u3(z®,0)
hence v is a mid-plane deflection.
Let us define the integral quantities
h/2
Mop(z™) = [ (200p +e57mor iz
—h/2

hf2

* Quld”) = f Gaadz

—hf2

(2.5)

where 0,5 and u,p3 are components of the stress tensor and couple stress tensor.
The formulae for stresses and couple stresses are reported in [28]. M,z are bending
moments and Q, represent transverse forces of the micropolar plate made of the
material with constrained rotations. Performing integration in eq (2.5) (cf egs

(3.6)—(3.10) of [28]) one finds

4

Mpo = -D{1-»)[(1+ 24%)::,&, +t 1

r)
Vivés, — 247

c,"cp‘v,s.,] +
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+ h? [u(sc, -3)+12(1 - v)hscth ]Vzoﬁa
- B [( -v-(2- v)Cg)(V’v,pa - qe,up‘v vgy) + (2.6)

12
+ 2401 - u)qh—,e,neﬁ“v%,h]}

Qal(z?) = - D Vv, (2.7)

where D represents a bending stiffness of the xmcropola.r plate. This stiffness is
given by the following formula

ph®
6(1 - v) 6(1

The Lamé constant is denoted by u, the constants 7v, €, 1 being new elastic
constants of the material with constrained rotations. The interrelations between
the constants [, 7 and v, € are

D= +h(y+e)= (1 + 24(1",_ ")12). (2.8)

Iz - T+¢ 9= b it
b +.£
ha 7 (2.9)
7 =2u*(1+ 1) e =2ul(1 - 7).
Computing the fields w(z®), w(z®) from eq (2.2); one finds a relation
a = f O 'th 2
w(z”) — w(z )-_S(I—V)V v. (2.10)
Using eq (2.6) and considering (2.4) one can note that the invariant
M = M°B§,5 is defined by the following formula
3
_ agaf =_;l.h (1+v) 121 - v) \ g
M= M5 = L0 =0 (1 Yoo h,)v 0. (2.11)

On eliminating V?v from egs (2.10), (2.11) we arrive at the equality

24(; D) (wz) - (=) (212)

where E = 2(1 + v)u is a Young modulus. Similarly, the transverse forces can be
written as follows .

Qu(=?) = dph 21+ wﬁ) ()~ 8=) _ . (2.13)

. 2Eh
M(z%) = My + M = 3 (1+€
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It is readily seen that the sum of principal moments Mjy; and M3 in each
point of the plate mid—plane is proportional to the difference of these deflections!.
The above relation is valid for all plates loaded along the lateral edge surface only
(the body forces are omitted) anc such that the through thickness distribution of
tractions on this surface coincides with the formulae (3.6)—(3.10) of paper [28].

Assumling that in each point we know the values of M and @, and we can
measure the quantites w, ¥, w4, W,. Then, with the help of eqs (2.12) and (2.13)
we can determine both micropolar constants 4 and ¢ or ! and 1 (see eq (2.9)). For
instance, the value of M is known for a circular plate of radius R and thickness
h, immovably supported along

(r=R, z= :t%) (us(R,:t%) =0, u,(R,ig) =0)

loaded on the edge with moments of intensity M = const. In such a plate -
M, =M,=M, M =2M, Q=0

and from eq (2.12) one can obtain

Eh
u = 2 (14 2010 (o) - i),
Similarly, in a clamped, cantilever strip loaded by a transverse force P we can
easily compute the M invariant and we know the transverse force Qy = P.

However, an essential problem remains: how to measure the difference be-
tween deflections (w(:r:"’) - 121(::")) as well as its derivatives in the course of real
experiments.
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Streszczenie
W pracy wyprowadzono pewne zaleznoéci wystepujace w plytach wykonanych z ma-
terialu ze zwiazanymi obrotami. Zaleznosa te moﬁa by¢ podstawa do przeprowadzenia

doéwiadczen w celu wyznaczenia stalych sprezystych ciala mikropolarnego.
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