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In this paper relatively well-known two—field (mixed) finite element appro-
ximations in the mechanics of eolids are studied. However, in the proposed
approach a significant novelty (in the finite element methods) is introduced
— the treatment of the boundary traction constraints as essential boundary
conditions. Although multifield approximations are in no way limited to the
realm of classical elasticity, to fix 1deas we are considering the linear elastic
domain, where the comparable analytical solutions are available.

1. Introduction

The main difference between the onefield (e.g. the classical, "dispiacement”
type) and the two—field finite element approximations is the treatment of the bo-
undary conditions and the inter—element continuity.

In the case of one—field approximation only the boundary conditions for this
particular field can be treated as essential ones (e.g. in the displacement method
- the displacement boundary conditions). The boundary conditions for the other
fields in play, appear as natural ones.

A fulfillment of the boundary conditions on the element interfaces is a neces-
sary, but not always a sufficient condition for the inter—element continuity. It
should be noted however that, especially for the homogeneous fields, it is easier to
satisfy the latter condition than the former one. Hence, in the known applications
(e.g- [1], [2]), the mechanical inter—element conditions are treated as the natural
ones.

From the computational point of view, it is relatively easy to maintain the
stress continuity, if the stress and the displacement fields are independently in-
terpolated. This approach leads straightforward to the mixed (two-field} finite
element approximation. Obviously, to control the stress continuity, there should
exist a common coordinate system for the part of a body, approximated by the mi-
xed finite elements. It was shown, in [3], that an algebraic system, resulting from
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these interpolations (approximations), can be efficiently solved using the block fac-
torization approach, a slight extension of the natural factor procedure, developed
by Argyris et al. [4]. ‘

Furthermore, if it is needed, in addition to the displacement constraints, to
treat also the stress constraints as essential boundary conditions, it is necessary
to introduce the special coordinate systems, having coordinate surfaces coincident
with the boundary surfaces (and interfaces) of a body. In this special case it is
possible to determine some of the stress tensor components from the boundary
tractions at the point of consideration.

As it can be seen in the paper of Cantin et al. {5], where the stress boundary
conditions were satisfied in an iterative nranner, such an approach can significantly
improve the results, especially at the vicinity of a boundary or when the number
of elements is small.

Although the authors of [1] and [2] were aware of this possibility, as it can be
concluded by the careful reading of these papers, none of them used it practically,
and in both papers the mechanical boundary conditions are treated as the natural
ones.

Hence, the direct treatment of the stress constraints as essential boundary con-
ditions remained an unsolved problem, although it is a legal procedure from the
theory of Galerkin approximations point of view. Also, on the basis of the com-
putational results [5], this approach is a very promising way towards improvement
of the performances of mixed finite elements.

The present paper is devoted to the theoretical and practical aspects of intro-
duction of the mechanical boundary conditions as the essential ones in the two-field
finite element analysis.

2. Field equations of the linear elasticity

Let us consider a complete set of the field equations in the linear elasticity,
where

divt+(f—pa)=0 in B (2.1)
o %(Vu +VaT) =0 in B (2.2)
t—-E-e1=0 in B (2.3)
t-s—-p=10 on 0B (2.4)
s-w=0 on dB, (2.5)

are respectively the equations of moticn, strain—displacement and stress—strain
relationships, boundary traction conditions and geometric boundary conditians.
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In these expressions, t, p, f and a stand for the stress temsor, the mass density,
the vector of the body forces, and acceleration vector, respectively. B describes
an open, bounded domain of the elastic body, while n denotes the unit normal
vector to the boundary 9B; dB; and 9B, stand for the portions of 3B where the
stresses or the displacements are prescibed, respectively. Additionally, p, u, w, e,
E denote the vector of the prescribed boundary tractions, the displacement vector,
the vector of the prescibed displacements, the strain tensor, and the elasticity
tensor, respectively.

3. The boundary stress constraints

Let us consider the boundary traction condition (2.4), and rewrite the stress
tensor t in a dyadic form
g, ®g,-m=p (3.1)

where g, denote the base vectors of the cnordinates zP. As it has been noted in the
Introduction, the special common coordinates zP should be chosen in such a way
that the corresponding coordinate surfaces coincide with the boundary surfaces of
a body. For instance, if 20"} = const is the equation of a boundary surface, then

0 if g#r )
gq.ﬂ:{ n(r) if g=r (3.2)
Note that always
lny| >0 (3.3)
because '
n(sy = 19 1n] cos v (3.4)

where 9 denotes the angle measured from the out—of z(")-surface base vector 9
to n. More specifically, if the coordinates z? are the physical ones, i.e. |g)| =1,
we can write that

12 |ng)| > 0. (3.5)

Finally, if 27 are the orthogonal physical (e.g. Cartesian) coordinates
In(,)l =1. (3.6)
Anyhow, from (3.1) it follows that

tp(r)ypn(r) =p



112 M_.BERKOVIC

or, after the elimination of g and multiplication by al) = 1/n(,
t9(r) = pint) for z{7) = const. (3.7)

Hence, if the boundary tractions p? are known, one can easily determine the
corresponding stresses t%(") on the boundary surface z(") = const.

4. Finite element approximations of the field equations
4.1. The equations of equilibrium

For the sake of clarity and simplicity let us consider only the homogeneous part
of the Cauchy's equations (2.1), i.e. the equations of equilibrium

divt=0 in B. , (4.1)

Using the Galerkin procedure, one can seek for the weak solution of (4.1) from
tne scalar product

/ u-divtdV = 0 (4.2)
B

where the displacement vector u stands for a test function. The next step are the
finite element interpolations (approximations) of the vector test functions u, and
the tensor trial functions t

u=PKy, t=5,tb . (4.3)

In these expressions, 4, and t’ denote the nodal values of the vector and
tensor t, respectively. Accordingly, PK and § , express the corresponding values
of the interpolation functions, connecting the displacements and stresses at an
arbitrary point in £ (the body of an element), and the nodal values of these
quantities.

Although in principle, the possibility of use of the tensor interpolations of
type (4.3) has been pointed out a relatively long time ago by Oden [6], scalar
interpolation is still of common use.

Only recently it has been shown by Draskovié [7], that, to maintain the fi-
nite element approximations invariant for the coordinate transformations, tensorial
character of these approximations should be strictly holded.

Obvicusly, if the common coordinates are the Cartesian ones, there is no dif-
ference between the scalar and tensorial approximations. In the case of classical,
displacement type one—field finite element approximation, it is usually sufficient
to use the Cartesian common coordinates, and hence the scalar approximation.
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However, as it has been shown in the Section 3 of this paper, it is, in general
case, necessary to use the curvilinear coordinates to satisfy the boundary traction
conditions as the essential ones. Consequently, the tensorial appraximations are
unavoidable.

Let us note further that, in a dyadic form, the nodal displacements and stresses
can be written as

u - “x ,(K)q tL = tL"g(L)‘ ® g(L)‘ {4.4)

where the indices in parentheses denote the nodalvalues of the base vectors. The
finite element interpolation (approximation) of the stress divergence deserves the
special care. Note tkat, in the interior of an element

divt = VS, tk = 5, g'tF (4.5)
where 5, = 85, /9z".

Hence, the equation (4.2) can be rewritten as

E,(K)q/PKSLr’rtht'(”‘ ® 0,4V = 0.
€ £

However, since this expression should be valid for any value of the nodal di-
splacements, and after the contraction of the base vectors, one can write that

g(K )a / PKS, g7, dVi® =0 (4.6)

(L)s

where 91 K)q and g denote the Euclidean shifters, integration is performed over
the ea.ch element o body £, and the summation is perfomed for all the elements
of a system. Obviously, one can rewrite the coefficients at t“* in a symbolic form
Af_ 9 and hence

AKaglet = g, ‘ (4.7)

4.2. The strain—displacement and the stress—strain relationships

Because the elastic constitutive equations (2.3) are invertible, one can write
that :
e=C.t1, (4.8)

From the comparison of (2.2) and (4.8) it follows that

Ctl= %(v- +vaT). (4.9)
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Because of the symmetry of t, the weak salution of (4.9) can be determined
with the help of a relatively simple expression

/ t-(C -t~} - Va)aV = 0. (4.10)
B

Like the divergence of a temsor, the gradient of a vector requires a special
attention in the finite element interpolation (approximation) of a weak solution

Vs = VPXu, = PKg’u, . (4.11)

Now, the expression (4.10) can be rewritten as

L Zg(z.).y(z)n /SL (Cijklﬂi ey s ®y’SMtM""‘g(mm ® 90y~
e A | '

—P,Kg' @g(K)‘ux')dV =0.

Bearing in mind that the equation given above should be valid for any value
of t“*t after performing the contraction of the corresponding base vectors one
obtains, in a symbolical form

Crorema ™™ — BEtu, = 0. (4.12)
In this expression
Cl--ulm- = Z/ Sbg('.l.)ag.(il.)cC-'J'H-q(ku)mg(lu)n SMdV (4‘13)
Kg _ K o K )
Bt = / 5, PKg:, dvg&n. (4.14)
4.3. The matrix equations of a system
The equations (4.12) and (4.7) can be rewritten in a matrix form
Ct—Bu=0
(4.15)
At =0.

Note that, in accordance with (2.4) some boundary displacements, and, due to
(2.4) also some stresses at the boundary of a body, are prescribed. Hen(‘e one can
decompose (4.15) into two parts
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— for the unknown (variable) stresses t, and displacements w,, and
- for the known (prescibed) ones (t, and %, ), to get

EaiMEEEdIMEH

F44INEHI

However, because t, and 4, are the prescibed values, it is sufficient to keep
only first upper-rows in the above block-matrix equations, and (4.16) reduces to

Coty — Booti, = By, — Gty . (4.17)
Auty = —Apt,. (4.18)

Let us consider now the elements of the left—hand side of the equation (4.18)

(4.16)

Athth (X)'I / PKSLrg(L), dvile. (419)

Lat'(v) Ii1)e (#)

The right-hand side of this expression can be rewritten in such a way that

AKsglet - g((g}v / (PXS,g7,,,). VL -
- ((5)" / PXS, g], AVt (4.20)

After the application of the divergence theorem to the first term of the right-
hand side of (4.20), one obtains the relationship

KgyLlst _ Lst
ALl?t(v') Eg((L))q/PK Lg(L)(n,d-Vt(') -

K ot
- ((g)" / PXS,q, AV, (4.21)

Furthermore, using the interpolation rule for the stresses (4.3b), it can be found
from the boundary condtitions (2.4) that the kernel of the boundary integral in
(4.21) can be transformed in a following way

L _ L
5,97, m 1l = gk g, (4.22)
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Note that, by definition, A, in (4.18) connects the unknown nodal displace-
ments %, and unknown nodal stresses t,. However, at the outer part of a boun-
dary, where the displacements are unknown (variable), 96 C OB; the boundary
tractions are known (prescribed), and hence "unknown” boundary tractions p:‘“)
do not exist. In addition, at the interelement boundaries, € C 3&;, the boundary
tractions are in equilibrium, in the accordance with the definition of a two-field
model. Consequently, the first element of the right-hand side of (4.21) can be
written as

zgggga / Kpk gV =0 42
and finally b
ﬁ—ZMﬂ/mew (424)

From the comparison of this expression with (4.14) it follows that

[4%e] =-[BK q']w " (4.25)

Lst Lat

A, = -Bl. (4.26)

Hence the system of equations (4.17), (4.18) is symmetric. It is convenient to
rewrite this system in a block—-matrix form

Co Bw][t]_[-Co Bo [t
[ BT, 0 w | | Ap 0 || %] (2
This result is very important from the practical point of view. The left-hand side
of (4.27) has a symmetric form, typical for the mixed finite element formulations.
Hence, it can be processed with the aid of any solving tool suitable for mixed
systems, or reduced to the displacement-type set of equations (3].

It is useful to note that, in the special case, the entries of A, B and C matrices
respectively, take a relatively simple forms :

ie.

AKX = / PK§18, dv (4.28)
£
BKi_ ¥ / S,68PKav (4.29)
¢ €
Crusinn = X [ $1Cormn S1edV (4:30)
‘€

where 67 is a Kronecker delta—symbol.
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8. An illustrative example

The purpose of the present, very simple, hand-manageable but still meaningful
finite element example, is to show how the proposed procedure works, in order to
clarify the theoretical considerations, and to give some idea of the solution to the
practical problems.

The exercise to be considered here is the cantilever beam (Fig.1.), under the
shear loading triangularly distributed. Total loading of the beam is equal to the
resultant force Q.
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|
!

Fig. 1.

5.1. Coordinate systems and interpolation functions

Due to the symmetry of the system under consideration, only a half of it, say the
element JLM N, can be considered. Its parametric coordinates £, 1 incidentally
do overlap the common Cartesian coordinates z = z1, y = z3. However, when
z = |, y = h then the parametric nondimensional coordinates take the values
& =1, p = 1, respectively. In accordance with the theory exposed in this paper,
the derivatives of the interpolation functions should be taken with respect to the
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common coordinates, i.e.

K
px - OPF 8¢

_9PK on
= 5 PK = et (5.1)

dy

In this particular example, we will use the same, kind of bilinear, interpolation
{unctions for both the stresses and the displacements. In addition to the apparent
simplicity of this choice, it is, in accordance with [8] and [9], which do guarantee
the uniqueness of the mixed finite element solutions. Let us consider now the
values of the interpolation functions and their derivatives, corresponding to the
nodes, J, L, M and N, respectively -

P = (1- )1~ ) P =-132 P =-13L

PL=6(1—7]) Pll'=1—-ij P}':-i (52)
PM = ¢q p,M=;Z PM = '
PN =(1-6)m PN=21 py=12¢

5.2. Boundary conditions

In addition to the interpolation functions and their derivatives, the next group
of the necessary input data consists of the prescribed nodal displacements and
stresses, determined from the boundary conditions and tabulated as follows

Table 1. Nodal displacements and stresses

node displacement stress
uy ug i 2 22
J 0 0 0 k)
L 0 Uy, 0 @Q/hec O
M fu, u,=uy,]| 0 0 0
N 0 0 tN1 g ¢

According to the Table 1 it is evident that the number of the nodal variables,
due to the boundary conditions, symmetry of the body, and the skew symmetry
of its loading, reduces to only four, i.e. to the dispalcements u,, and u,,,, and the
stresses t712 and t"!!. Hence, the system to be solved, (4.27), is of the size 4 X 4.
One can easily construct submatrices of the system, on the basis of the expressions
(3.28-{4.2). Note also that ¢ in Teble 1 denote the thickness of a beam.
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5.3. On the symmetry of a system

However, it is also possible to use the system (4.17) and (4.18), appearing
to be asymmetric. For the better understanding of the symmetry properties of
the equations under consideration, let us perform the manual calculations of the
entries of A,, and B,, in (4.17) and (4.18).

Az 9 ‘
B3 B)Y} B
— M M —
Avy = A.nzl Ami B, = o BM' g (5.3)
Aglz 0 N1

According to these expressions it is evident that overall topology of A,, and
the transpose of B,, are identical, i.e. these matrices have the nonzero terms,
connecting in both cases the same nodes, at the same positions. The next step is
to replace now the symbolic notions for the terms in (5.3) by their values. Then

L —(-nPe 0
o= [ [| -a-0} -r¢ | dean (54
00 -n(1 - n)¢ 0

7(1-§)

where V' = lhc is the volume of the element JLM N. Now, it should be noted that
the corresponding terms in (5.4) and (5.5) are entirely different. However, after
the integration is performed, these terms become identical (to a sign), and (4.26)
is satisfied, as it should be expected on the basis of the theoretical considerations
in Section 4.3. So :

11
w=%0//[(1»17)’(1—6) (1 -0} - ) ’l(l“")(l f)]dfdn (5.5)

2 0
__Y I _YVi2 41
A"""Tﬁ- i g B"”"ml[o 2 0| (5-6)

In a similar way one can calculate other matrices of the system (4.17), (4.18),
(or (4.27)). In the calculation of the elasticity matrices, the plane stress is assumed.
Finally, a system to be solved reads

2(1+u) o 3 l/h 12 v [20142)
?E —'I N | Q 18 0

"[”] [""J "3’*_"“”[3]
TT /h 2 00 ." 7 _21/h

(5.7)
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5.4. The results and discussion

Due to the simplicity of the problem model, it is possible to find closed form
of solutions of (5.7), and to compare the results with the existing ones.

The shear at the root of the beam
From the third equation of a system, it directly follows that t/1? = Q/hc, i.e.
the shear stress is homogeneous along the beam, as it should be expected.

The direct stress at the extreme fiber

From the fourth equation it follows that V1) = —3Ql/2h%c, exactly as in ETB
(Engineering Bending Theory). No wonder, because the interpolation functions
for stresses are linear, as in ETB.

The displacement at the tip of beam
Applying the second and first equations in (5.7), one finds that

1 /N3 Qy, . rh?
Uy, = ﬁ(;‘—) ?[1+4(1+V)(7 )]. (5.8)
At this point, it is useful to disccuss (5.8) in comparison with some well-
known expressions. Let us cite the ETB, Gurney [10] and Rankine ~ Grashoff [11]
solutions, respectively

v, = %(%)3% (5.9)
L2 :

v, = 2%(;) Q[1+2(1+u)( )l (5.10)

0, = %(é) %[1+3(1+v)(—‘- )] (5.11)

From the comparison between these eexpressions, it follows that the bending
part in (5.8) is equal to  of the corresponding one in (5.9) - (5.11). However, one
should bear in mind that equations (5.8) - (5.11) do represent the displacement at
tip of the beam, and that the finite element interpolation (approximation) of the
beam displacements is linear for (5.8). Evidently, a linear approximation having
a %— of the tip displacement of the cubic elastic, can be considered as a reasonable
linear fit to the latter one.

It is also interesting to compare the shear terms (the second term in the brac-
kets) in (5.8), (5.10) and (5.11). Note that the magnitude of the shear term in
15.8) lies between of these in (5.9) and (5.10), respectively, i.e. 1 < } < 3
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8. Conclusions

It has been demonstrated that practically desirable, and theoretically intere-
sting, treatment of the boundary traction conditions in a two-field model as the
essential ones, is a feasible goal, from the point of view both of the finite element
theory and the computational practice. In arder to verify this assertion, three
main tasks were performed in the present paper.

First of all, it has been proved that, by the suitable choice of local cu.amon
coordinates, it is possible to establish one-to—one correspondence between the
boundary tractions and the stress coordinates. Hence, the latter can be determined
if the former are prescibed.

Secondly the resulting system of equations is subdivided to the known (presci-
bed) and the uknown (variable) stresses and displacements. This decomposition
problem, although failry straightforward, is not so simple as in the classical displa-
cement formulation.

Thirdly, it has been shown that the resulting system of equations is symmetric.
This highly desirable property, although obvious in the classical finite element
analysis, is far from being self-evident in the present formulation. In the sequel, it
can be concluded that, for the solution of the present problem, the existing solving
tool for the mixed finite element equations can be used.

Finally, the example analysed confirmes the predicted behaviour of a system,
and indicates that resonable results can be expected even in the case of a very
crude mesh.
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Streszczenie

W artykule rozpatrywane sg stosunkowo dobrze znane metody przyblized dwupolo-
wymi (mieszanymi) elementami skonczonymi w zastosowaniu do mechaniki cials staiego.
Zaproponowano jednak pewna znaczaca modyfikacje metody elementéw skonczonyeh —
silowe wiczy powierzchniowe traktowane sa jako podstawowe warunki brzegowe. Apro-
ksymacja wielopolowa w zakresie sprezystosci nie ma zadnych ograniczen, jednak w celu
sprawdzenia koncepcji autor rozpatruje zakres liniowe) sprezystoéci, dla ktorego dostepne
88 porownywalne rozwiazania analityczne.
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