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For the elastic/viscoplastic multilayered composite a certain model with mi-
crolocal parameters was proposed. Some solutions for the multilayered plate
and the rotating multilayered disc within the frames of this model were stu-
died.

1. Introduction

The list of papers on modelling of composite materials is extensive. Lots of
them concern elastic composites and as main textboks and monographs we can
mention here those by: R.M.Christensen (5], R-Jones [6], A.Bensoussan, J.L.Lions,
G.Papanicolau [7], Bachvalov, Panasenko [8] or C.T.Sun, J.D.Achenbach, G.Her-
mann [9]. The papers on modelling of nonelastic composite materials constitute
the new trend in the mechanic of compositie; we can mention here those by:
J.Aboudi [19], P.M.Suquet [20], J.J.Marigo, P.Mialon, J.C.Michel, P.Suquet [21],
P.P.Castaneda, J.R.Willis [22], G.P.Tandon, G.J.Weng [23]. In [19] an analyti-
cal approach for the modelling of the thermo—elastoplastic two phase composite
materials is presented. The mathematical theory of plasticity and the process of
homogenization of nonelastic composites are analysed in [20,21]. The overall pro-
perties of nonlinear two phase viscous composites are described in [22]. A simple,
approximate theory is developed in [23] to determine the elastoplastic behaviour of
particle-reinoforced materials. A new method of the modelling of periodic compo-
sites based on some concepts of the nonstandard analysis leading to so homogenized
models with microlocal parameters was proposed in [1) and then developed in the
series of papers [11-17]. Within the framework of this method the model with
microlocal parameters for the elastic/viscoplastic, [18), periodic composites was
proposed in [13].

The aim of this paper is to present and discuss on the basis of [13]
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1. the model with microlocal parameters for the multilayered elastic/viscoplas-
tic periodic thick plates tcgether with the pertinent approximation formulae.

2. selected sdutims for elastic/viscoplastic multilayered periodic thick plates
within the framework of this model.

The considerations are carried on within the small deformation gradient theory.

2. Formulation of the primary problem
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Let at a moment t = ¢y, an elasticviscoplastic muItilayered body in its natural
state occupies the region B in the Euclidean 3-space of points z = (z'),
¢ = 1,2,3. By means of an invertible smooth mapping « : 2 — R? (Fig.1),
such that x(2) = B we introduce in B curvilinear coordinates X € 2. For
the simplicity we assume 2 = IT x (0,h), IT being a regular region in R?. We
shall also use the denotation X = (X', X3), where X’ = (X*,X?). The region
f? is assumed to be composed of thin layers with the interfaces perpendicular
to the z3-axis. The perfect bonding between the layers is assumed. Each layer
under consideration has the constant thickness § and is made of M sublayers with
thicknesses g respectively, E = 1,...,M, § = §; 4 ... + &u, every sublayer being
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made of a certain homogeneous (as related tc B) elastic/viscoplastic material.
Hence the decomposition! (Fig.1) 2 = U2, E = 1,...,M, where 2g N 2r = §
for every E # F, f2g is a part of the body under consideration occupied by the
E—th material.

We assume that the multilayered body is é—periodic (as related to B) i.e. for
every function F.(-) which describes the material properties of the body there is:
Fu(X) = F((X)) = F((X',X3)) = F(,(X', X3 + §)) in the whole domain of
the definition of F,(-). In the sequal functions F.(-) are assumed to be constant
m every x(2g), E = 1,..., M and for every X € Qg their values will be denoted
by FE. E=1,..,M.

Let p(-), o(-), b(+), v(-), t(-) stand for a mass density (related to 2}, a Cauchy
stress tensor, body forces, a velocity and boundary tractions, respectively.

The equations of motion can be assumed in the form of a condition

[ X, tyuiainXydo = [ 22X, tyua(X)dd +
n an
(2.1)
+ / PXB (X, ua(X)do = [ X)o*(X, hua(X)dv, 1€ [t0,1]
an

which has to hold for every regular enough test function u.(-) defined on £2.

Let v(1), v(X)>0, X eURg, E=1,..,M, A(-), k(-) be the viscosity
coefficient,. the elastic modulus tensor, and the yield stress, respectively, at
Xe U 2.

The constitutive relations for the composite as an nonhomogeneous ela-
stic/viscoplastic material with the Huber—Misses—Hencky criterion will be based
on those proposed in [10].

Setting

6(.0)(X, )= D(aw)(k, t)
sB(X,1) = 0B(X, 1) - -;—G"""(X)af{(x, 1) (2.2)

g(X,t) = J%s“ﬁ(x,t)sag(x,t)

we define: the strain rate tensor, the stress deviator and the second invariant of
the stress deviator, respectively.

1Sub- and superscript a, B, 7, 6§ run over 1, 2, 3 and are related to the curvilinear
coordinates X in B with the metric tensor G(X) = VICT( ngc(X ), X € £2. Subscripts
E, F run over 1,..., M and subscript a over 1,. ummation convention ho ds
wit.h respect to a, ﬂ, v, 6 and a. A comma denotes a artml differentation, a vertical line
stands for a covariant differentiation in a metric G(X), X € 2.
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Then the constitutive relations can be assumed in the form (given by [10])
£ap(0)(X,1) = Aapys(X)67(X,1) = Lap(X, 1) (23)
where
if g(X,t) < k(X)

0
o xvt = 2v) X i
£ap(X,1) {777117 Xg‘ ,tk sap(X,t) H o (X,1) 2 K(X)

Eqs (2.1), (2.3) have to be considered together with the following boundary
and initial conditions

(2.4)

o(X,t) = V(X,t) for X €802, and tE€ [to,t]
o(X,t)n(X) = F(X,t) for X €32r and tE€ [to,2y]
o(X,0) = 6o(X) for Xe
v(X,0) = Vo(X) for Xen

where 302 = 302, U3QF. '

The problem of finding functions &(-) and v(-) satisfying egs (2.1), (2.3) under
denotations (2.2) and boundary and initial conditions will be called the primary
problem and denoted by P. ‘

3. Elastic/viscoplastic model with microlocal parameters

As it was shown in [1,12] we can obtain the approximate solution to the problem
P within the framework of the model with microlocal parameters.

To formulate the equations of motion and the constitutive relation for that
model we introduce

1. the basic periodicity layer A = IT x (0, §),

2. the family £ of parallel planes in R3 given by

L={YeR: Y= no),Y =(Y',Y)e R n=10,+£1,42,..} (3.1)

(for every é—periodic composite there exists the decomposition of the periodicity
layer A, A = UAg, E = 1,..,.M, Apn Ap = @ for every E # F, such that
the occupied by the E-th component part of the body under consideration is
Qg = .Qﬂ([:@AE)),

3. the real-valued functions la(:) a = 1,...,M — 1, defined on [0, 6] by means

of
X -Gn)  XP€[G1,Ga)
la(X3) = ;E;%_T(X:, - C«) +4 X3 € [Ca, Ca+1) (3'2)

0 X3 €[0,8] = [Ca1,Cata]
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with . :
(o = Zé; 6g = 0.
1=0
Functions la(-) can be extended from [0, 6] to R by means of H X?) = I{ X3+ né)
for every integer n. Functions la(-) are called the shape functions, [1].
Using the denotations

6
F=mp=2
AL = 1o 5(X°) (3.3)

Y=, 3 _ 1 (X'.X% € g
VQX)_EM””{O(XJ%GQWE
J(X) = det Vi(X)

and applying the way of approach similar to that given in [1,13] from the problem
P we pass to the homogenized problem P which is governed by
— equations of motion

| (X 1) + X (X, ) = HX)i*(X, 1)

{3.4)
S3(X,t) =0, a=1,. . M-1, a=1,2,3, t € [to, ty]
whereA
M
(X, t) = Y npofl(X,1)
E=1
M .
5XX,0) =Y ngogl (X,t)AE, (3.5)
E=1
a=1i,.,.M-1, a=123
— constitutive relations
EE5(X,t) = eap(w)(X, 1) + wEa(a)(X, 1) +
+AE, §(X)oF (X,1) . (3.6)

Xe t € [to,ty], E=1,. .M
where

CEs(9)(X. 1) = vE(X)gl, (X, 1) A5,
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0 if gu(X,t)<kg
E X,t - -
€aﬂ( ) 2:11.5 ng ! 3 kESEap(x t) f gu(X,t)2kg

AB (X)) = J(X)AE, 5 31

28X, 1) = 0P (X, 1) - -%Gaﬁ(X)a;'(x,t)

1
ge(X,t) = Esgﬁ(x,t)sgap(x,t)
- boundary and initial conditions

w(X,t) = V(X,1) for X €00, tE€ltot]
ve(X3)op(X,t)n(X) = F(X,t) for X €0R, 1€ [to,]
o5(X,0) = oo(X) for Xen (3.8)
w(X,0) = vo(X) for X € Q.

Formulating the problem P we shall mean the problem of finding so-called
macrovelocities w(-), mlcrolooa.l parameters ¢a(+), ¢ = 1,..,M — 1 and pa.rtial
stresses og(-), E=1,.., M. .

Eqs (3.4) - (3.8) represent so called the model of the periodic body with mi-
crilocal parameters. It has to be emphasized that fields og(-,t), E = 1,...;, M are
defined on 2 for every t € [to,2y]. If the solution to the problem P is known we can
evaluate the solution to the problem P by the following approximation formulae,
(1,13]

va(X,t) ~ wa(X, 1)
£ap(0)(X ) ~ vE(X?)(€ap(w)(X,1) + ¢E5(a)(X, 1)) (3.9)
a*8(X,t) ~ ve(X*)o3’ (X 1)

where the summation convention with respect to £ = 1,...,M holds. In the
case of kinematic boundary conditions it can be shown that there exists the one
and only one solution to the problem P, [13]. As the examples of application
of eqs (3.4) ~ (3.8) we shall investigate below the 2-dimensional strain problem
for the multilayered periodic elastic/viscoplastic infinite plate and the plane stress
problem for multilayered periodic elastic/viscoplastic rotating disc. Both problems
will be analysed as quasi-stationary ones.
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4. Infinite multilayered plate
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Consider an infinite multilayered periodic elastic/viscoplastic plate (Fig.2) with
thickness h. Each layer has a constant thickness § and is composed of two homo-
geneous, isotropic sublayers with thicknesses §; and &3, §; + 82 = §. The material
properties of the sublayers are determined by the material modulae pg, Ag, 7E,
kg, pe, E = 1,2. We shall assume that k; < k3. The plate is laying on the rigid
foundation and its upper plane is located with the known uniformly distributed
loading —~ p(t), which is the function of time only functions. We also assume that
p(-) is the monotone, regular function of an argument ¢, which at a moment t = to
is equal to zero. These conditions lead to the plane strain problem. In this problem
the velocity vector has only one nonzero component v = (0,0, v3).

The shape function (3.2) for the problem under consideration wxll be introduced
in the form:

%13 + 2 z3 € [-61,0)
1(23) = P

i . (4.1)
7,13 +5 z3€(0,6]

for z3 € [-6;,62] and extended to R by means of {(z3) = I(z3 + né) for every
integer.

The equations of motion (3.4), the constitutive relations (3. 6), and the boun-
dary and the initial conditions for the multilayered plate within the framework of
the mode] with microlocal parameters are given by

- equations of motion

Moiy(z3,t) + M20353(z3,t) = 0
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o§3(23,t) = 05%(23,1) (4.2)
z3 € (0,h), t € [to,ty], a=1,23

— constitutive relations

EE5(23,1) = basbpa (w3(73,1) + PE(a)(7a, 1)) +

+AEs 508 (z3,1) (4.3)
E= 112’1 I3 € (ovh)
where
' _1)E+
e = T (e
(4.4)

i 0 i gp(zat) < kg
\fap(zs,t) ) { 7_1£7-gEga;3(’::3,;5kE_3Eaﬁ(33, t) if | 9E(z3,t) > kg
- the boundary and initial conditions
w(z',0,t) = 0 for t € [to,ts], 2’ € R’

o (2’ h,t) = —p(t for t € [to,ty], z'€ R}, E=1,2
!

o%(2',h,t) = 0 for t€[toty], 2 €R?, E=1,2, a=12
w(z’,23,0) =0 for (2/,z%) € R? x (0,h) (4.5)\
o(z',25,0)=0 for (2,2%) € R? x(0,h), E=1,2

o2 (2',23,0) = 0 for (z', %) e R?* x (0,-h), E=12 a=1,2

The approximation formulae (3.8) will take the form
va(z3,1) ~ w(z3,t)
£33(03)(x3,1) ~ 11(23) (€33(w)(®3,1) + Phy(9)(23,1)) +

+va(23) (33(w)(23, 1) + Pha(9)(33, 1)) (4.6)
0% (23,1) ~ "1(-’33)"';#(23,‘) + Vz(za)agp(l‘s,t)-
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Introducing the denotations

M A=A = A
= mpn + e A= mA+mA2
. __ M1, M2 AN
= — 4+ — A= —+ — 4.7
™ m .7
2
«= 2 4 5 LD
20+ A

we obtain the follwomg solution for the model with microlocal parameters in the
elastic state

o 1+ DD
Azt = = ot M)
w(zs, ) = “AD2 (48)
coie o a(y g COE DR
03%(z3,t) = —Ap(1+ P AT ! for a=1,2
0’%3(33’0 = _P(t)'
The second invariants of the stress deviators will take the form
gE(z31t) = —3\/-—2_|0'%2(23, t) - 6?(23, t)l = (4‘9)
_ 2p() (=17 2[u] + Ay 1
= 5 ( - )R

The form of the soluiion for the elastic state implies that stresses and inva-
riants of their deviators are the time dependend functions only. They are also the
monotonic functions of time. _

Since invariants of the stress deviators are time dependent only the monotonic
functions, then for t = ¢; and z3 € (0,k) we can obtain the one from following
three relations

1° gi(zs,t1) =k and 92(z3,t1) < kg
2° gi(z3, 1) < ky and ga(z3,t1) = ka
3 gi(zs,t1)=k and g2(z3,t1 = ka.

For the sake of simplicity in the sequal we shall discuss only the first of these
relations (it can be shown by the direct calculations that this solution holds for
[A] = 0 and [u] # 0). Let g1(z3,t1) = k1 and go(z3,t1) < k; where

-1 3k1~

)
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The solution in the form of (4.8) for the model with microlocal parameters
holds up to a moment ¢ = ¢;. For any moment ¢ > t; the solution to the system
of equations of motion (4.2) and constitituve relations (4.3) is more complicated.
Namely, for t > t; we are not able to present the form of solution to the system
of egs (4.2), (4.3) with the boundary conditions (4.5) in the explicit form. We can
find it at every moment tp 41, tm41 > t1 using the step by step procedure i.e. if
we know the value of function and its time derivative at a moment ¢ = ¢,, we are
able to present the value of this function at a moment ¢ = ¢,,4; by the known
approximation formulae

f(tms1) = f(ta) + f(tm)Atr (4.11)

where Atm =tnt+1 — tme

In the first step we know the solution at a moment ¢ = t; (0g(z3,t1), w(z3,11),
g(z3,t1)) for the model with microlocal parameters. We are able to find the stress
rates at the moment ¢ = t; from the constitutive relations (4.3)

At a moment t = ;. we abtain

Exs(23,11) = 0, E=12  af=123 (4.12)

and

CDF2L+ D) gy
ne

’

o5 (23,t1) = —Ag(1+

24+2 7 K
op(z3,t1) = .-P(‘x)
w(zs,t) = -”'(L)’i " (413)
_ ]+ 2[p] +[A].
q(z:;,t) h 2#+X P(t )

From these relations and the approximation formulae (4.10) we obtain

o (z3,t2) = ( (= flll)E 2[2':1 : E\'\]) () + :(t;)Atl
a=1,2 (4.14)
0'?(23, t2) = —-P(tg).

In the k-th step, ¥ > 2 — we can determine the stress rates by the known
stresses and the unknown velocities at a moment ¢ = #; from the constitutive
relations (4.3). Then using of the equation of motion (4.2) and after satisfying the
boundary conditions we.can find the velocities at a moment ¢t = ;. Substituting
these vellocities at the moment ¢ = ¢; into the constitutive relations (4.3) we can
find the stress rates at a moment t = {;.
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If at any moment ¢ = t;, t; < ¢ < tk, g1(z3, ) > ky and g2(z3,t) < kz, in the
t-th step we obtain at a moment t = t;

Eap(z3,te) = Eap(te) # 0

(23, th) = E5(tk) = 0.

(4.15)

Introducing the denotation

a(te) = {-P(teym(28 + X) + (203 + M) -
@i+ 28 + M () + )]} (416)

- 3 2 A -
-[772(2;42 +A2)(24 + ’\)(l + ',;2'[([;];—_'_[,\]))] 1

the stress rates and velocities at a moment ¢t = #; are given by the formulae

67 (73, 1) = ~2m1&00(tk) + M1 [a(tk)(l - —2-[(1;]—':_[%) +
(2#1 + M )éa(te) + Ml€hi (%) + En(t)]
(28 + M)m
—€h(tx) — Eats) — Ea(t)]
03%(2z3,t) = A2 [a(tk)( (zl#l:]_*_'*-’\[)’\]
_2(p1 + M )Eds(te) + Ml () + fzz(tk)] «=1.2
m(26 + ) ’
0% (23,tk) = —p(t), E=1,2 : (4.17)
w(za,-t;,) = a(tk)zs
_ —(2[p] + [ADea(te) + (262 + Al)fsa(tk) + M[€h(te) + %2(%)]
g(z3, tx) = Y

From the relations (4.17) and the approximation formulae (4.12) it follows: that
for a moment t = x4,

k

05 (23, tk1) = 0F (73, 01) + ) 657 (23, )AL
=1 (4.18)

0B (23, tk41) = —H(tksr), a=1,2

where A =t — .
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The representation for the approximate solution (4.17) and (4.18) holds up to
the moment t = t,, at which ¢,(z3,ts) > k1 and g2(z3,tm) > ka.
At any moment t = t, > t,, we obtain

E35(z3,t) = E35(ta) # 0.

(4.19)

Introducing the denotation
Bin) ={ — Plta) (28 + 3) + (2012 + X)[w1 + M)E3s(ta) +
+Méh(ta) + fzz(tn)] — (2p2 + A2)E35(tn) —

=o€y (tn) + EB(t)] } [ma(202 + A2)(25 + ) - (4.20)
12 Alyq-1 '
1+ ——["M—])]
™ 244+ A
we can show that in the n—th step (at 2 moment t = £,) the stress rates and the
velocities are given by

&%a(z;,,t,,) = —2uptE (t.)+ ’\E{ﬂ(t,.)(l + (=1)B+1 2[p] + [A]) +

NE 20+ A
L ENE @+ M) (ta) + Ml (ta) + Eha(t)] |
nE 20 4 A
( -1)% —(2u: + Az)fsa(tn) Aol€li (ta) + Ea(tn)]
nE 24+ A
—Elzl(tn) - szz(tn) - &fs(tn)}v E= 1727 a = 1a2
oS (za,tn) = —p(tn), E=1,2 (4.21)

w(z3,tn) = B(ta)zs
g(23,tn) = —(2[p] + [ADB(tn) + (2m1 + M )E3a(ta) +
+A1[E11(tn) + E32(tn)] - (2p2 + A2)E%(ta) -

=Xall1(ta) + Ea(ta)](22 + 1)1

From the relations (4.21) and the approximation formulae (4.10) we obtain for any
moment iy | Im

m-1

(za,tmn) =~ 0§ (23,11) + E 0™ (3, tk)Ati +
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n
+ 3 68%(zs,t)AL, a=1,2, E=12  (4.22)

sa=m

05 (23, tng1) = —p(tns1)-

This procedure has to be continued up to the finite final moment. Thus we
have found the solution for the model with microlocal parameters at any moment
t, t € {[to,t1)st2y--tmy-sts}. These results together with the approximation
formulae (4.6) give us the form of the solution for the primary problem P for the
infinite multilayered periodic plate under consideration.

B. Rotating multilayered circular disc

Consider the multilayered circular disc with thickness h and radii a and b
(Fig.3). The disc is rotating with the angular velocity w(t), where w(-) is a mono-
tone, regular function of argument ¢ (and w(0) = 0). Each layer has a thickness §
and is composed of two homogeneous isotropic sublayers with thicknesses é; and
82, 6 + 62 = 6. The material properties of the sublayers are determined by the
functions u(z), A(z), 7(z), k(z) which are constant in every sublayer, taking va-
lues of pg, Mg, 7E, kE, E = 1,2, respectively. We shall also assume that ky < k.
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The lateral surfaces of the rotating circular disc are loaded by the shear stresses

0"*(a,0,2,t) = -c-(-')i o"*(b,0,z,t) = E‘i)i The upper and lower boundary planes
(for z = '2') are loaded with the shear stresses o™*(r,0, :l: 1) = :i:—(-g- where
¢(-) is a monotone regular function of argument t € [to,2s] and ¢(to) = 0. These
conditions lead to the two dimensional plane strain problem and o**(r,z,t) = 0.
The shape function (3.2) for this problem will be introduced in the form

—%-{-g zE[—Jl,O)

-?,%+% z€[0,6]

I(z) = (5.1)

for z € [-61,42] and extended to R by means of I(z) = (2 + né) for every integer
n € N. Within the framework of the model with microlocal parameters the equa-
tion of motion (3.3), the constitutive relations (3.5) and the boundary and initial
conditions (3.7) for the multilayered rotating circular disc under consideration are
given in the form

- equation of motion

rr U]
T _(r,z,t):fa (r,z,t) +fldz(t)1' =0

2 :
(5 t) +15(n 2,0 + 2T (r 2, ) + Rty = 0
T
7%(r, 2, 1) -0
r

T (hnt)+ri(n 2+

1_’7'-_1(,_’ z,t) +

a1.(ry2,t) = 03%(r, 2, ) - (5:2)
af‘(r, z,t) = a{(r,z,t)
a1*(ry2,t) = 03%(r,2,t) = 0 -
where .
°8(r,2,8) = mot?(r,2,1) + m03(r,2,1) (53)

— constitutive relations

6 (rz,1) = 2pglw,, (nt) - EF(r 2,1 + A (w., (n1) +
20D 4 (o) 50) - 5 20) -

- {:;(rzt) £5(r,2,1))
58(r2t) = (ma, (r,1) - 2200

(1)
15

f;,:’(r z,t))

og(r,z,t) = p.E(w,,(r z,t)+ q,(r t)- €5 (r,z t))
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oF (r,2,1)

2/-"E(u,r(r’t) £ (rvz’t))+’\E(wr,r(rvt)+

+ M +Eaa(v2)(r 2,1) — € (rr2,2) =

— £ (r,z,0) - EF(n2,)
nat) = pe((-DPH —auln) - B 1)
r2,t) = (2pE + AE)Es(0:)(r,2,t) — EF (r, 2, 1) +
+ Ag(wn, (nt) + M — EF(ry2,1) -

- fg(r,z,t))=0, E=1,2

h]%

op

n?t

where

0 if .qE(rv Zt) < kE

B —
& (r’z’t)'{ 22— RE 9800, 20) i gp(r,2,0) 2 ks

with the boundary conditions in the form
h h

w,(a_,z,t):w,(b,z,t):O for ZET—; Z tE[to,t]]
h h

we(a,z,t) = we(b, z,t) =0 for z € [—— 2D t € [to,ty]

rz c(t)z h h

= 482 -=,= t
o (a,z,t) . for z€ [ — o) tE [to,ts)
t)z
O‘H(b,z,t) = .c(_)_ for =z € [— ';, ;], t € [to,t!]
h

od(r,+ : f) = c(t) for z€[ab), t€ [tosts]
a%-’(r,:!:g,t) =0 for ze€[a,b], te€l[to,t]

and the initial condition's in the homogeneous form.
The approximation formulae (3.7) will take the form

v,(7,2,t) ~ w,(r,1t)
09(rvzvt) ~ wO(r9t)
eap(v)(r, 2t,) ~ 11(2)[eap(w)(r, 2,2) + @p(a)(r, 2, t)]) +

+a()eap(w)(r,2,8) + P2a(@)(r2t)], @B =1,2

a°P(r,2,t) ~ 11(2)03P (1, 2,8) + 1a(2)05P (1, 2,1), @, 8 =1,2,3.
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(5.4)

(5.5)

(5.6)

(5.7)
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Introducing the denotations

i#] = 1 — p2 Al = A=A

B = mpr+ mus A=mA+mAs

[4EM+ﬁ :\E-/\—l-i-& (5.8)
) N T /7]

_ 2mMm | 2phem
T22u1+ A 2pat+ A

we obtain the following solution for the model with microlocal parameters in the

elastic state

wr(r 1) = D(t) + Ay - lﬁué:_‘)d;(:z)rs _ 2(2‘&1+ /\)é(t)lnr

we(r,t) = %(—rl + E(t)r - pw—s(:‘)i |

g-(r,t) = -ﬁc_@j

wirnt) =0 (5.9)
oE (0 = (- B+ 0 - S - )

2UEME 1a2(t)r2 c(t) c(t)
_EBEAE (op(4) - = - Inr— o
+2#E+)‘E( (1) 22ﬂ+a 2K+ a T “(2;t+a))
D(t) pwi(t)r? c(t)inr
89 _
9 (r21) = 2up ( +H() - 8 2/1 +a 202a+ a\)
2BEAE pi(t)r?  t) c(t)
_BEJE - = - Inr—
TSy (2H(‘) 8 2ita 2ita 2(2p+a))
oF(r,z,t) = 1)z

r
ré -

og(r,z,t) = I‘E(—

o%(r,z,t) =0

where D(t), H(t), E(t), F(t) can be found from the boundary and the initial

conditions (5.6).
From the form of the solution for the model with microlocal parameters in the

elastic state it is easy to find that

B;(Q lp (t)r)

)

s if the rotating circular disc is made of the two materials with the same value
of 4 we shall not get any microlocal effects,
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o if ¢(t) = 0 for t € [to,ly] the distribution of stresses does not depend on z,

and we do not get any miccrolocal effects too.

The squares of the second invariants of the stress deviators take the form

2 2 2 rr
glzg(r, z,t) = s(ag(r, z,t) — ag.;a(r,z,t)) + saE (ry2,t) -
2

o¥(r,z,0)+2(0F(r20) + (aE(r2,1) (5.10)

After substituting into (5.10) the RHS of (5.9) we obtain very complicated
formula which depends on three arguments r, z and ¢. The solution for the model
with microlocal parameters holds up to a moment ¢ = ¢; . Ffor that moment there
exists a point (rg,zo) for which g?(rg,z0,81) = k1 or g2(r0, 20, t1) = k,. For any
moment ¢, t > ¢; we are not able to find the explicite form of solution. We have
to apply the step by step procedure which was described in the first example.
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Streszczenie

Dla periodycznego wielowarstwowego sprezysto/lepkoplastycznego kompozytu zapro-
ponowano réwnania modelu z parametrami mikrolokalnymi. Podano rozwiazania w ra-
mach tego modelu dla wielowarstwowej plyty oraz dla wielowarstwowej wirujacej tarczy.

Praca wplynela do Redakcji dnia 23 maja 1989 roku



