MECHANIKA TEORETYCZNA I STOSOWANA Journal of Theoretical and Applied Mechanics 2, 30, 1992

BIHARMONIC REPRESENTATION OF THE SOLUTION TO EQUILIBRIUM PROBLEM OF A PLATE MADE OF A COSSERAT MATERIAL

GRZEGORZ JEMIELITA

Warsaw University of Technology

The paper deals with a generalized plane stress problem in a Cosserat plate. There are given representations of the displacement and infinitesimal rotation fields that reduce the equilibrium problem to a single biharmonic equation involving a deflection function.

1. Introduction

In the previous paper [1] Author has reported a biharmonic representation of the displacement vector concerning a generalized plane state of stress (GPSS) in an elastic layer made of a Grioli-Toupin material. Such a representation of the displacement vector reduces the problem of bending of an elastic layer to one biharmonic equation

$$\nabla^4 v(x^\alpha) = 0 \tag{1.1}$$

Here $v(x^{\alpha})$ stands for the layer deflection.

Similar representations for the displacement vector and vector of an infinitesimal rotation in the case of GPSS of a Cosserat medium have not been reported in the hitherto existing literature. In the present paper a generalization of the solution given in by the Author [1] to the Cosserat medium case will be put forward.

The summation convention is adopted. The Latin indices run over 1,2,3 and Greek ones – over 1,2. Comma implies partial differentiation.

2. Fundamental equations of the Cosserat medium

Following the notation of Nowacki [2,3] and Palmov [4] one can write down the constitutive relationships of an isotropic homogeneous and centrosymmetric medium in the form

$$\sigma_{ij} = (\mu + \alpha)\gamma_{ij} + (\mu - \alpha)\gamma_{ji} + \lambda \gamma^{k}{}_{k}\delta_{ij}$$

$$\mu_{ij} = (\gamma + \varepsilon)K_{ij} + (\gamma - \varepsilon)K_{ji} + \beta K^{k}{}_{k}\delta_{ij}$$
(2.1)

The stress tensor is denoted by (σ_{ij}) and the couple-stress tensor by (μ_{ij}) ; (δ_{ij}) is Kronecker delta; (γ_{ij}) and (K_{ij}) are components of the deformation tensors. They are defined by

$$\gamma_{ij} = u_{j,i} - \epsilon^k_{ij} \phi_k \qquad K_{ij} = \phi_{j,i} \qquad (2.2)$$

 (ϵ_{ijk}) represents the Levi-Civita permutation symbol; (u_i) are components of the displacement vector; (ϕ_i) represents components of the vector of infinitesimal rotations. Symbols μ , λ , α , γ , ε and β stand for the material constants of the Cosserat medium. The constants μ and λ can be viewed as Lamé moduli. Relations between the Nowacki-Palmov constants and the constants used by other authors are set up in Table 1.

Table 1

Authors	Material constants					
Nowacki [2]	μ	λ	α	γ	ε	β
Palmov [4]	Í			,		
Aéro [5]	μ	λ	Ŷ	$\tau + \theta$	$\tau - \theta$	$2\hat{\eta}$
Kuvshinskii			,	-		,
Neuber [6]	G	$\frac{2\nu G}{1-2\nu}$	Ga	$2Gl^2(1+b)$	$2Gl^2(1-b)$	$4Gl^2c$
Kessel [7]	G	$\frac{2\nu G}{1-2\nu}$	$\frac{G}{2}c_1$	$G ilde{L}^2$	$G ilde{L}^2c_2$	$2G ilde{L}^2c_3$
Koiter [8]	G	$\frac{2\nu G}{1-2\nu}$		$2Gl^2(1+\eta)$	$2Gl^2(1-\eta)$	
Eringen [9,10]	$\tilde{\mu} + \frac{K}{2}$	λ	$\frac{1}{2}K$	$\frac{1}{2}(\tilde{\gamma}+\tilde{\beta})$	$rac{1}{2}(ilde{\gamma}- ilde{eta})$	ã
Schaefer [11]	G	$\frac{2\nu G}{1-2\nu}$	$G\eta_1$	$L^2 \frac{G}{12}$	$L^2rac{G}{12}\eta_2$	$L^2 rac{G}{6} \eta_3$

Note that the relations between the moduli γ , ε and Koiter constants l^2 and η assume the following form, cf Table 1

$$\gamma = 2Gl^2(1 + \eta) = 2\mu l^2(1 + \eta)$$

 $\varepsilon = 2Gl^2(1 - \eta) = 2\mu l^2(1 - \eta)$

and hence we obtain

$$l^2 = \frac{\gamma + \varepsilon}{4\mu} \qquad \qquad \eta = \frac{\gamma - \varepsilon}{\gamma + \varepsilon} \tag{2.3}$$

Futher on we shall omit the body forces. The equilibrium equations assume the form

$$\sigma^{ji}_{,j} = 0 \qquad \epsilon^{ijk}\sigma_{jk} + \mu^{ji}_{,j} = 0 \qquad (2.4)$$

The same equations expressed in terms of displacement and rotation fields read

$$(1+\kappa)\tilde{\nabla}^{2}\mathbf{u} + \left(\frac{1}{1-2\nu} - \kappa\right)\operatorname{grad}\operatorname{div}\mathbf{u} + 2\kappa\operatorname{rot}\boldsymbol{\phi} = \mathbf{0}$$

$$(\gamma+\varepsilon)\tilde{\nabla}^{2}\boldsymbol{\phi} + (\beta+\gamma-\varepsilon)\operatorname{grad}\operatorname{div}\boldsymbol{\phi} + 2\alpha(\operatorname{rot}\mathbf{u} - 2\boldsymbol{\phi}) = \mathbf{0}$$
(2.5)

Here ν represents Poisson's ratio. The κ constant is given by

$$\kappa = \frac{\alpha}{\mu} \tag{2.6}$$

The Laplace operator in \mathbb{R}^3 has been denoted by $\tilde{\nabla}^2$.

3. Biharmonic representation

Let us consider an elastic layer of thickness h, freed from loads on the faces $x^3 = z = \pm h/2$. To find the solution to Eqs (2.5) that fulfils the homogeneous boundary conditions on the faces

$$\sigma_{3i}\left(x^{\beta}, \pm \frac{h}{2}\right) = 0$$

$$\mu_{3i}\left(x^{\beta}, \pm \frac{h}{2}\right) = 0$$
(3.1)

we adopt a semi-inverse method.

Let us represent the components of the displacement vector (u_i) and the vector of infinitesimal rotation (ϕ_i) in the form

$$u_{\alpha}(x^{\beta}, z) = t(z)v(x^{\beta})_{,\alpha} + s(z)\nabla^{2}v(x^{\beta})_{,\alpha}$$

$$u_{3}(x^{\beta}, z) = g(z)v(x^{\beta}) + f(z)\nabla^{2}v(x^{\beta})$$
(3.2)

$$\phi_{\alpha}(x^{\gamma}, z) = \epsilon_{\alpha}{}^{\beta} \left(R_1(z) v(x^{\gamma})_{,\beta} + R_2(z) \nabla^2 v(x^{\gamma})_{,\beta} \right)$$

$$\phi_3 = 0$$
(3.3)

where t(z), s(z), g(z), f(z), $R_1(z)$ and $R_2(z)$ are unknown functions which satisfy the following conditions

$$t(z) = -t(-z)$$
 $s(z) = -s(-z)$
 $g(z) = g(-z)$ $f(z) = f(-z)$ (3.4)
 $R_1(-z) = R_1(z)$ $R_2(-z) = R_2(z)$

On inserting (3.2) and (3.3) into the set of equations (2.5) one concludes that there exist non-trivial solutions to this system, provided the function $v(x^{\alpha})$ satisfies Eq (1.1) and the unknown functions in z satisfy the following system of ordinary differential equations

$$g'' = 0$$

$$(1 + \kappa)g + \frac{2(1 - \nu)}{1 - 2\nu}f'' + \left(\frac{1}{1 - 2\nu} - \kappa\right)t' - 2\kappa R_1 = 0$$

$$(1 + \kappa)t'' + \left(\frac{1}{1 - 2\nu} - \kappa\right)g' + 2\kappa R_1' = 0$$

$$(1 + \kappa)s'' + \frac{2(1 - \nu)}{1 - 2\nu}t + \left(\frac{1}{1 - 2\nu} - \kappa\right)f' + 2\kappa R_2' = 0$$

$$R_1'' - (1 + \kappa)k^2R_1 + \frac{1}{2}(1 + \kappa)k^2\left(g - t'\right) = 0$$

$$R_1 + R_2'' - (1 + \kappa)k^2R_2 - \frac{1}{2}(1 + \kappa)k^2\left(s' - f\right) = 0$$

$$(3.5)$$

where $(\cdot)' = \frac{d(\cdot)}{dz}$ and the k constant is defined by

$$k^2 = \frac{N^2}{l^2} \qquad \qquad N^2 = \frac{\kappa}{1+\kappa} \tag{3.6}$$

The coefficient N is nondimensional with the value lying within the interval [0,1].

The solution to the system (3.5) which satisfies the boundary conditions (3.1) can be cast in the following form

$$t(z) = -zC_{1}$$

$$s(z) = -\frac{(2-\nu)h^{2}}{24(1-\nu)}z\left(C_{2} - C_{1}\frac{4z^{2}}{h^{2}}\right) - l^{2}hC_{1}\frac{\sinh kz}{\sinh \frac{kh}{2}}$$

$$g(z) = R_{1}(z) = C_{1}$$

$$f(z) = -\frac{h^{2}}{24(1-\nu)}\left[6\left(1 - \frac{2\nu z^{2}}{h^{2}}\right)C_{1} - (2-\nu)C_{2}\right]$$

$$R_{2}(z) = -\frac{h^{2}}{24(1-\nu)}\left(3C_{1} - (2-\nu)C_{2} + 12(1-\nu)\frac{z^{2}}{h^{2}}C_{1} - \frac{12(1-\nu)\cosh kz}{kh\sinh \frac{kh}{2}}C_{1}\right)$$

The constants C_1 and C_2 determine the physical meaning of $v(x^{\alpha})$. Without any loss of generality the constant C_1 can be fixed as equal to unity, cf [1].

Let as substitute (3.7) into (3.2) and (3.3) and assume $C_1 = 1$. Then one arrives at the following representation for displacement and rotation fields

$$u_{\alpha}(x^{\beta}, z) = -\left\{zv(x^{\beta})_{,\alpha} + \left[\frac{(2-\nu)h^{2}}{24(1-\nu)}z\left(C_{2} - \frac{4z^{2}}{h^{2}}\right) + \right. \\ \left. + l^{2}h\frac{\sinh kz}{\sinh \frac{kh}{2}}\right]\nabla^{2}v(x^{\beta})_{,\alpha}\right\}$$

$$u_{3}(x^{\beta}, z) = v(x^{\beta}) - \frac{h^{2}}{24(1-\nu)}\left[6\left(1 - \frac{2\nu z^{2}}{h^{2}}\right) - (2-\nu)C_{2}\right]\nabla^{2}v(x^{\beta})$$
(3.8)

$$\phi_{\alpha}(x^{\gamma}, z) = \epsilon_{\alpha}{}^{\beta} \left[v(x^{\gamma})_{,\alpha} + \frac{h^{2}}{24(1-\nu)} \left((2-\nu)C_{2} - 3 - 12(1-\nu) \frac{z^{2}}{h^{2}} + \frac{12(1-\nu)\cosh kz}{kh \sinh \frac{kh}{2}} \right) \nabla^{2} v(x^{\gamma})_{,\alpha} \right]$$

$$\phi_{3} = 0$$
(3.9)

On using formulae (2.1), (2.2), (3.8) and (3.9) one obtains expressions defining the stress and couple-stress components

$$\sigma_{\alpha\beta}(x^{\gamma}, z) = -\frac{2\mu}{1 - \nu} \left\{ z \left((1 - \nu)v_{,\alpha\beta} + \nu \nabla^{2}v \delta_{\alpha\beta} + \frac{(2 - \nu)h^{2}}{24} z \left(C_{2} - \frac{4z^{2}}{h^{2}} \right) + (1 - \nu)l^{2}h \frac{\sinh kz}{\sinh \frac{kh}{2}} \right] \nabla^{2}v(x^{\gamma})_{,\alpha\beta} \right\}$$

$$\sigma_{\alpha\beta}(x^{\beta}, z) = -\frac{\mu h^{2}}{4(1 - \nu)} \left[\left(1 - \frac{4z^{2}}{h^{2}} \right) + 8(1 - \nu) \frac{kl^{2}\cosh kz}{h\sinh \frac{kh}{2}} \right] \nabla^{2}v(x^{\beta})_{,\alpha}$$
(3.10)

$$\mu_{\alpha\beta}(x^{\delta}, z) = 4\mu l^{2} \epsilon_{\beta}{}^{\gamma} \Big\{ v_{,\gamma\alpha} + \Big[\frac{h}{2k} \frac{\cosh kz}{\sinh \frac{kh}{2}} - \frac{h^{2}}{24(1-\nu)} \Big(3 + 12(1-\nu) \frac{z^{2}}{h^{2}} - \frac{h^{2}}{h^{2}} - (2-\nu)C_{2} \Big) \Big] \nabla^{2} v_{,\gamma\alpha} \Big\} + 4\mu l^{2} \eta \epsilon_{\alpha}{}^{\gamma} \Big\{ v_{,\gamma\beta} + \Big[\frac{h}{2k} \frac{\cosh kz}{\sinh \frac{kh}{2}} - \frac{h^{2}}{24(1-\nu)} \Big(3 + 12(1-\nu) \frac{z^{2}}{h^{2}} - (2-\nu)C_{2} \Big) \Big] \nabla^{2} v_{,\gamma\beta} \Big\}$$

$$(3.11)$$

$$\sigma_{3a}(x^{\beta}, z) = -\frac{\mu h^2}{4(1-\nu)} \left(1 - \frac{4z^2}{h^2}\right) \nabla^2 v_{,\alpha}$$
 (3.12)

$$\sigma_{33}(x^{\alpha}, z) = 0$$
 $\mu_{33}(x^{\alpha}, z) = 0$ (3.13)

$$\mu_{3\alpha} = -2\mu l^2 h \epsilon_{\alpha}{}^{\beta} \left(2\frac{z}{h} - \frac{\sinh kz}{\sinh \frac{kh}{2}} \right) \nabla^2 v_{,\beta}$$

$$\mu_{\alpha\beta} = \eta \mu_{3\alpha}$$
(3.14)

It is readily seen that if the function v fulfils the Eq (1.1), then all differential equations (2.4), (2.5) and boundary conditions (3.1) are satisfied. In their general form $(3.8) \div (3.14)$ these equations have not been up till now reported in the literature.

The C_2 constant can be chosen so as to assign a clear physical meaning to the function $v(x^{\alpha})$.

1. For $C_2=3$ the $v(x^{\alpha})$ function represents deflection of the layer faces

$$\hat{w}(x^{\alpha}) \stackrel{\mathrm{df}}{=} u_3\left(x^{\alpha}, \pm \frac{h}{2}\right)$$

2. for $C_2 = \frac{6}{2-\mu}$ this function stands for the mid-plane deflection

$$w(x^{\alpha}) \stackrel{\mathrm{df}}{=} u_3(x^{\alpha}, 0)$$

3. at $C_2 = \frac{6-\nu}{2-\nu}$ this function represents a common mean value

$$\stackrel{*}{w}(x^{\alpha}) \stackrel{\mathrm{df}}{=} \frac{1}{h} \int_{-h/2}^{h/2} u_3(x^{\alpha}, z) dz$$

4. at $C_2 = \frac{3(10 - \nu)}{5(2 - \nu)}$ we obtain a weighted mean value (cf [1])

$$\tilde{w}(x^{\alpha}) \stackrel{\mathrm{df}}{=} \frac{3}{2h} \int_{-h/2}^{h/2} \left(1 - 4\frac{z^2}{h^2}\right) u_3(x^{\alpha}, z) dz$$

Thus the representations for displacements, stresses and stress resultants can be expressed in terms of different scalar functions $(\hat{w}, w, \overset{*}{w}, \tilde{w}, \text{ etc.})$ standing for the deflection of the layer.

Let us compute the quantity $\phi = \frac{1}{2} \text{rot} u$. On using (3.8) we obtain

$$\varphi_{\alpha}(x^{\gamma}, z) = \epsilon_{\alpha}{}^{\beta} \left[v(x^{\gamma})_{,\beta} + \frac{h^{2}}{24(1-\nu)} \left((2-\nu)C_{2} - 3 - \frac{12(1-\nu)z^{2}}{h^{2}} + \frac{12l^{2}(1-\nu)k\cosh kz}{h\sinh \frac{kh}{2}} \right) \nabla^{2}v(x^{\gamma})_{,\beta} \right]$$
(3.15)

It is readily seen that the components of the averaged – rotation vector (φ_{α}) do not coincide with the components of the infinitesimal vector (ϕ_{α}) .

4. Passages to the limits

The following passage to a limit transforms the displacement vector representation for the Cosserat layer to the representation for the layer made of the Grioli-Toupin (G-T) material [6,12,13]

(GPSS in the G-T material) = $\lim_{\kappa \to \infty}$ (GPSS for the Cosserat material) Passing in (3.6) with κ to infinity one finds

$$N^2 = 1 k^2 = \frac{1}{l^2} (4.1)$$

Substituting equality (4.1) into (3.8) and (3.9) one obtains

$$u_{\alpha}(x^{\beta}, z) = -\left\{zv(x^{\beta})_{,\alpha} + \left[\frac{(2-\nu)h^{2}}{24(1-\nu)}z\left(C_{2} - \frac{4z^{2}}{h^{2}}\right) + \frac{1^{2}h\frac{\sinh\frac{z}{l}}{\sinh\frac{h}{2l}}\right]\nabla^{2}v(x^{\beta})_{,\alpha}\right\}$$

$$u_{3}(x^{\beta}, z) = v(x^{\beta}) - \frac{h^{2}}{24(1-\nu)}\left[\left(6 - \frac{12\nu z^{2}}{h^{2}}\right) - (2-\nu)C_{2}\right]\nabla^{2}v(x^{\beta})$$

$$(4.2)$$

$$\phi_{\alpha}(x^{\gamma}, z) = \varphi_{\alpha}(x^{\gamma}, z) = \epsilon_{\alpha}^{\beta} \left\{ v(x^{\gamma})_{,\alpha} + \left[\frac{h^2}{24(1-\nu)} \left((2-\nu)C_2 - 3 - 12(1-\nu)\frac{z^2}{h^2} \right) + \frac{1}{2} lh \frac{\cosh\frac{z}{l}}{\sinh\frac{h}{2l}} \right] \nabla^2 v(x^{\gamma})_{,\alpha} \right\}$$

$$\varphi_3 = 0$$

$$(4.3)$$

The representation given above concerns the displacement field in a medium with constrained rotations [1]. Under the assumptions (4.1) the stresses given by (3.10) \div (3.14) describe the GPSS in the plate made of a Grioli-Toupin material (cf [1]).

Similar representations for the Hookean material can be arrived at by passing to zero with l in the formulae $(3.8) \div (3.14)$ or (4.2). Such representations for displacements and stresses turn out to coincide with those found previously (cf [1]). The couple-stresses become zero and the infinitesimal rotation ϕ becomes equal to the averaged rotation φ .

Let us compute the limits of the expressions $(3.8) \div (3.14)$ for $\alpha \to 0$, i.e. at N = 0. In the micropolar elasticity this case is viewed as a pathological one [14].

If N=0, in many problems of micropolar elasticity the solutions do not tend to classical elasticity solutions. In the problem considered here we just face this situation. Obtained via passing to zero with N the expressions for the stresses satisfy the equilibrium equations $(2.4)_1$ (provided that Eq (1.1) is satisfied) but the couple-stresses $\mu_{\alpha\beta}$ become indeterminate and the equilibrium equations (2.4) turn out to be violated. This is a consequence of the fact that at N=0 the components ϕ_{α} tend to infinity.

Finally let us note that in the GPSS considered the classical (i.e. symmetric) elasticity solution [1] can be obtained if one assumes $l \to 0$ ($k \to \infty$) in Eqs (3.8) \div (3.14).

References

- 1. JEMIELITA G, Biharmonic representation in the analysis of plates made of the Grioli-Toupin material, Mech. Teoret.i Stos., 30, 1, 1992
- 2. NOWACKI W, Theory of nonsymmetrical elasticity, (in Polish), Warszawa, PWN 1981
- 3. NOWACKI W, Theory of elasticity, (in Polish), Warszawa, PWN 1970
- PALMOV V.A. Fundamental equations of the non-symmetric elasticity theory, (in Russian), Prikladnaya Matematika i Mekhanika, 28, 3, 1964, 401-408
- AÉRO É.L., KUVSHINSKIĬ E.V., Continuum theory of asymmetric elasticity. With regard to of "internal rotation", (in Russian), Fizika Tverdogo Tela, 5, 1963, 2591-2598
- 6. NEUBER H, On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua, In: Applied Mechanics, Proc. 11-th Int.Congress Appl.Mech., München 1964, 153-158
- 7. KESSEL S, Lineare elastizitätstheorie des anisotropen Cosserat-Kontinuums, Abh. Braunschv. Wiss. Gesselschaft, 16, 1964, 1-22
- 8. KOITER W.T, Couple stresses in the theory of elasticity I-II, Proc.Kon.Ned.Akad. Wet., Ser.B, 67, 1, 1964, 17-44
- ERINGEN A.C, Linear theory of micropolar elasticity, J.Math.Mech., 15, 6, 1966, 909-923
- ERINGEN A.C, Theory of micropolar elasticity, In: Fracture. An Advanced Treatise. vol II Mathematical Fundamentals, ed.H.Liebowitz, New York, London, Academic Press 1968, 621-699
- 11. Schaefer H, Das Cosserat Kontinuum, ZAMM 47, 8, 1967, 485-498
- 12. MINDLIN R.D, Stress functions for a Cosserat continuum, Int.J.Sol.Struct., 1, 3, 1965, 265-271
- 13. Cowin S, An incorrect inequality in micropolar elasticity theory, ZAMP 21, 3, 1970, 494-497
- LAKES R.S, A pathological situation in micropolar elasticity, J.Appl.Mech., 52, 1, 1985, 234-235

Reprezentacja biharmoniczna w rozwiązywaniu problemów równowagi płyty wykonanej z materiału Cosseratów

Streszczenie

W pracy wyznaczono przedstawienie wektora przemieszczenia i infinitezymalnego obrotu, opisujące uogólniony płaski stan naprężenia w płycie Cosseratów. Przedstawiona reprezentacja wektora przemieszczenia prowadzi do rozwiązania równania biharmonicznego na funkcję przedstawiającą ugięcie.

Praca wpłynęła do Redakcji dnia 20 grudnia 1991 roku

