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The paper deals with a generalized plane stress problem in a Cosserat plate.
There are given representations of the displacement and infinitesimal rotation
fields that reduce the equilibrium problem to a single biharmonic equation
involving a deflection function.

1. Introduction

In the previous paper [1] Author has reported a biharmonic representation
of the displacement vector concerning a generalized plane state of stress (GPSS)
in an elastic layer made of a Grioli-Toupin material. Such a representation of
the displacement vector reduces the problem of bending of an elastic layer to one

biharmonic equation
Viu(z*) = 0 ‘ (1.1)

'Here v(z*) stands for the layer deflection.

Similar representations for the displacement vector and vector of an infinitesi-
mal rotation in the case of GPSS of a Cosserat medium have not been reported in
the hitherto existing literature. In the present paper a generalization of the solu-
tion given in by the Author [1] to the Cosserat medium case will be put forward.

The summation convention is adopted. The Latin indices run over 1,2,3 and
Greek ones — over 1,2. Comma implies partial differentiation.

2. Fundamental equations of the Cosserat medium

Following the notation of Nowacki [2,3] and Palmov [4] one can write down
the constitutive relationships of an isotropic homogeneous and centrosymmetric
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medium in the form

ai; = (B + a)yi; + (1 — @)y + A"y 2.1)

pi = (1 + €)Ki; + (1 — €)Kji + BK* 16,

The stress tensor is denoted by (o;;) and the couple-stress tensor by (xi;); (8i;) is
Kronecker delta; (i;) and (K;;) are components of the deformation tensors. They

are defined by
¥is = uji — ik Ki; = ¢j, (2.2)

(€ijx) represents the Levi-Civita permutation symbol; (u;) are components of the
displacement vector; (¢;) represents components of the vector of infinitesimal rota-
tions. Symbols u, A, a, v, € and 8 stand for the material constants of the Cosserat
medium. The constants x4 and A can be viewed as Lamé moduli. Relations be-
tween the Nowacki-Palmov constants and the constants used by other authors are
set up in Table 1.

14

Table 1
Authors _ Material constants

Nowacki [2] p A o 5 e 8
Palmov [4]
Aéro 3] po | x| 4| T+ r—8 2
Kuvshinskii
Neuber [6] G | & | Ga | 2GI(1 +b) | 2GI2(1 - b) | 4GI%c
Kessel [7] G | &2 | Sq GL? GL%c; | 2G1%c
Koiter [8] G | 2GI3(1 4 n) | 2G2(1 - 1)
Eringen [9,10] |+ % | X | 1K | 1(544) 15 -8) &
Schaefer [11] G | & |Gn L LrEq, LS

Note that the relations between the moduli v, € and Koiter constants /2 and 7
assume the following form, cf Table 1

7= 2GB(1 + 1) = 2ul*(1 4 n)
€ =2GR(1 - 1) = 2ul*(1 — 4)
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and hence we obtain
T+E€ T—€

4 "= e

Futher on we shall omit the body forces. The equilibrium equations assume
the form

2=

(2.3)

O‘j'.,j =0 ei"ka'jk + pj"’j =0 ) (2.4)

The same equations expressed in terms of displacement and rotation fields réad

1+ x)Viu+ (T——}—i; - n)grad dive + 2« rot = 0

(2.5)
(Y +€)V2p+ (B + v — €)grad divg + 2a(rotu — 2¢) = 0
Here v representé Poisson’s ratio. The & constant is given by
a
K= — (2.6
" )

The Laplace operator in B3 has been denoted by V2.

3. Biharmonic representation

Let us consider an elastic layer of thickness h, freed from loads on the faces
z3 = z = +h/2. To find the solution to Eqs (2.5) that fulfils the homogeneous
boundary conditions on the faces

(3.1)

we adopt a semi-inverse method.
Let us represent the components of the displacement vector (u;) and the vector
of infinitesimal rotation (¢;) in the form

ua(xﬁ,z) = t(z)v(zﬁ)_a + s(z)Vzv(zﬁ),a
(3.2)

uz(z?,z) = g(2)v(z®) + f(2)V?u(P)

$a(27,2) = &P (Ry(2)0(2") 5 + Ra(2)V?0(27) )
| (33)

$3=0
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where #(2), 5(2), g(2), f(3), R1(z) and R3(z) are unknown functions which satlsfy
the following conditions

t(z) = —t(—2) 8(z) = —s(—2)
9(2) = g(-2) f(z) = f(-2) (3.4)
Ra(~2) = Ba(2) Ra(~2) = Bal2)

On inserting (3.2) and (3.3) into the set of equations (2.5) one concludes that there
exist non—trivial solutions to this system, provided the function v(z®) satisfies Eq
(1.1) and the unknown functions in z satisfy the following system, of ordinary
differential equations

9" =0
(14 x)g+ ( ")f”+( —- — k)t — 2Ry =0
(1+n)t”+( 12 ~ k)¢ + 2R =0
1 4
(1+x)s" + f_ )t+( 12V—n)f’+2nR;=0 (3.5)

RY - (14 K)k*Ry + 5(1 + K)k? (g - t’) =0

Ryt BY — (14 R Ry~ o(1 4 mR(s' = 1) =0
where (-) = %}) and the k constant is defined by

k2=— 2: i
12 N 14+«

(3.6)

The coefficient N is nondimensional w1th the value lying within the interval
[0,1).

The solution to the system (3.5) which satisfies the boundary conditions (3.1)
can be cast in the following form

t(z) = —2Cy

0=SE(er o) ol

9(2) = &y (z) 57)
fiz)= 24(1 [6( e —7)C1 - (2-v)Cy]

Relz) = Wf__T)(?’CI (2= v)Cy +12(1 - v)Z ;:c 12(;;52;‘;* k)
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The constants C; and C2 determine the physical meaning of v(z®). Without any
loss of generality the constant Cy can be fixed as equal to unity, cf [1].

Let as substitute (3.7) into (3.2) and (3.3) and assume C; = 1. Then one
arrives at the following representation for displacement and rotation fields

ua(zP,2) = —{zv(zﬁ),a+ [24(1 V)h) (Cz 4" )+

]Vzv(xﬁ),a} (3.8)

ug(2?, z) = v(2P) - 2_4(T"—V) [6 (1 g;:—z—) -(2- V)Cz] V2u(zP)

hkz
2h sin
+ nh

h? 22
ba(z",2) = €a° [v(x'y),a + m((2 ~V)C2~3-12(1~v)75 +
12(1 — v) cosh kz)Vzv(z'y) a] (3.9)

khsinh "2—"
$3=10

On using formulae (2.1), (2.2), (3.8) and (3.9) one obtains expressions defining the
stress-and couple-stress components

0ap(z7,2) = — z((l -~ Vs + VV2v6o,p +
2 - v)h?
+[—( v) 2(C - 4:2 J+a- )Phs‘“h kZ]Vzv(z )8}
(3.10)
B oN_ uh? B é{ : k2 coshkz) o 5
Oa3(2”,2) = 4(1_1/)-[(1 h2)+8(1—u)m]v v(z”),a
: h cosh kz h? 22
b 3. 2_ o At k- N
Hon(,2) = 4ules”{ e i by B~ 21— ) (3+120-0)5
—(2- V)Cz) Vzv,,o,} + 4#121760,7{1),75 + (3.11)
h coshkz h? 22 2
e e 5y (341201 - v)55 - (2= ¥)C2) | VPo,s}
uh? l 422
0’3a(xﬁ,z) = —:1—('—1"_—1/)(1&— —h?)Vzv'o, (3.12)

o33(z%,2) =0 pas(z®,2) =0 3.13
‘ )
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z sinhkz
paa = =2pl?hel” (25 - —
( h Slllh 5

)Vzv,p ,
(3.14)
Ha3 = NH3a

It is readily seen that if the function v fulfils the Eq (1.1), then all differential
equations (2.4), (2.5) and boundary conditions (3.1) are satisfied. In their general
form (3.8) + (3.14) these equations have not been up till now reported in the
literature.

The C; constant can be chosen so as to assign a clear physical meaning to the
function v(z?).

1. For C, = 3 the v(z®) function represents deflection of the layer faces
gy (o R
w(z®) = u;;(:r: ,iz)

2. for Cy = 2—E7 this function stands for the mid-plane deflection

w(z*) £ u3(z°,0)

3. at Cy = 6—v this function represents a common mean value
b ] P

. /2
w (z%) a i / u3(z%, z)dz
—h/2
4 3(10 - v . .
. at C3 = F5——+" we obtain a weighted mean value (cf [1])
3 h/2 2
~ o ay dof el . _z_ a
w(z%) = Sh .{ (1 4h2)u3(z ,2)dz
—-h/2

Thus the representations for displacements, stresses and stress resultants can
be expressed in terms of different scalar functions (1, w, w, 1, etc.) standing for
the deflection of the layer.

Let us compute the quantity ¢ = Jrots. On using (3.8) we obtain

© k2 12(1 ~ v)2?
Y —¢ B ¥ _ . - N S S il
¢a(27,2) = & [v(z7),5 + T (2-v)C2-3 Tt
12%(1 — v)k coshkz\ _,
hom B JV2u(27) 4] (3.15)

p3=0
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" It is readily seen that the components of the averaged - rotation vector (¢o) do
not coincide with the components of the infinitesimal vector (¢q).

4. Passages to the limits

The following passage to a limit transforms the displacement vector repre-
sentation for the Cosserat layer to the representation for the layer made of the
Grioli-Toupin (G-T) material [6,12,13]

(GPSS in the G-T material) = Jim (GPSS for the Cosserat material)

Passing in (3.6) with & to mﬁmty one finds

Nt=1 K= (4.1)

Substituting equality (4.1) into (3.8) and (3.9) one obtains

ug(z,2) = —{zv(zﬁ),a + [m")i; (Cz - 4—’:;) +

2, 8inh ¥
+l h's]—n}i—%—r] Vzv(a:ﬁ),a} (4.2)

ua(.zﬁ,z) = v(zP) - 27(1}1—2_'—/—5 [(6 - E’;i) (2- V)Cg]V2v(zﬁ)

$a(27,2) = 9a(2",2) = & {0(2") 0 + [T({‘;V—)((z ~¥)Cy— 3~

cosh

~12(1 - V)%:)+-;-lh ]Vzv(a:") } (4.3)

p3=10

The representation given above concerns the displacement field in a medium with
constrained rotations [1]. Under the assumptions (4.1) the stresses given by (3.10)
+ (8.14) describe the GPSS in the plate made of a Grioli-Toupin material (cf [1]).

Similar representations for the Hookean material can be arrived at by passing
to zero with / in the formulae (3.8) + (3.14) or (4.2). Such representations for
displacements and stresses turn out to coincide with those found previously (cf
[1]). The couple-stresses become zero and the infinitesimal rotation ¢ becomes
equal to the averaged rotation ¢.

Let us compute the limits of the expressions (3.8) + (3.14) for & — 0, i.e. at
N = 0. In the micropolar elasticity this case is viewed as a pathological one [14].
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If N = 0, in many problems of micropolar elasticity the solutions do not tend
to classical elasticity solutions. In the problem considered here we just face this
situation. Obtained via passing to zero with N the expressions for the stresses
satisfy the equilibrium equations (2.4); (provided that Eq (1.1) is satisfied) but
the couple-stresses .5 become indeterminate and the equilibrium equations (2.4)
turn out to be violated. This is a consequence of the fact that at N = 0 the
components ¢, tend to infinity.

Finally let us note that in the GPSS considered the classical (i.e. symmetric)
elasticity solution [1] can be obtained if one assumes I — 0 (k — o) in Eqs (3.8)

+ (3.14).
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Reprezentacja biharmoniczna w rozwiazywaniu probleméw réwnowagi plyty
wykonanej z materialu Cosseratéw

Streszczenie

W pracy wyznaczono przedstawienie wektora przemieszczenia i infinitezymalnego
obrotu, opisujace uogdlniony plaski stan naprezenia w plycie Cosseratéw. Przedstawiona
reprezentacja wektora przemieszczenia prowadzi do rozwiazania réwnania biharmonicz-
nego na funkcje przedstawiajaca ugiecie.

Praca wplynela do Redakcjt dnia 20 grudnia 1991 roku



