MECHANIKA TEORETYCZNA
1. STOSOWANA ;

Journal of Theoretical

and Applied Mechanics

3, 30, 1992

HOMOGENIZATION OF STRESS EQUATIO_N OF MOTION
[ IN LINEAR ELASTODYNAMICS

RyszarpD WoiNAR
- Institute of Fundamental Teﬂ_lcloga’ml Researek, Warsew

Two methods of homogenization of elastic body with periodic heterogeneity
based on a pure stress formulation of linear elastodynamics (¢f [1 < 4]) are
presented. The methods are closely related to the two representations of
the displacement field in terms of the stress field: the first derived from the
geometrical relations and Hooke’s law and the second obtained by means of
the equation of motion. Both methods lead to the same homogenized form
of the stress equation of motion, and the resulting homogenril;zﬁ coeflicients
are identical to those of a displacement homogenization procedure. Also, a
theorem 15 proved in which it is shown that a mixed initial-boundary value
genl);)lenll for a homogenized medium can be characterized by a mean stress
eld only.

1. Introduction

The homogenization of a heterogenous elastic solid consists in replacing it by
a homogeneous one physical properties of which are to some extent eguivalent to
those of the original solid. Thus within the frame of an initial-boundary value pro-
blem for the nonhomogeneous elastic solid, we replace the original initial-boundary
value problem by a close one in which the elastic body is homogeneous.

An idea of homogenization is based on the extension of a domain of the ho-
mogenized solution in such a way that the solution can be represented by a small
parameter series expansion. In -the context of general equations of mathematical
physics the concept of extension was proposed by Sandri [5], in sixties. Earlier, a
homogenization procedure (based on averaging) was applied to dielectric and ma-
gnetic media composed of separated particles by Lorentz and and to conductors
by Drude; both the authors obtained the electric and magnetic effective material
coefficients which are included in basic text-books on electrodynamics (cf e.g. Suf-
fczyriski [6]). Also, a homogenization procedure in which microscopic properties of
a solid composed of interacting Newtonian particles are repjaced by macroscopic
properties of an elastic continuum was proposed by Zorski [7].
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Eimer [8,9] studied the behaviour of elastic materials with scattered- cracks
and obtained approxxma.te bulk constitutive relations for an elastic material with
random cracks. A number of homogenization procedures for periodic thermoelastic
composites based on a nonstandard analysis were proposed by Wozma.k [10 + 12],
Matysiak [13] and Mazur-Sniady [14].

The homogenization of a nonhomogeneous body can be also accomplished by
using a two-scale asymptotic expansion method. For example, to study wave
propagation in a periodically nonhomogeneous elastic body of period Y ane can
introduce Y-scale of the heterogeneity for material coefficients, and look for a ho-
mogenized wave length of which is much greater then Y. The two-scale method
of homogenization based on the displacement equation of motion was discussed by
Duvaut [15], Bensoussan, Lions and Papanicolaou [16}, Sanchez—Palencia [17], and
Bakhvalov and Panasenko [18]. For periodically nonhomogeneous thermoelastic,
thermodiffusive—elastic, piezoelectro-thermoelastic bodies the two-scale homoge-
nization procedures were proposed by Francfort, Lewiiiski, Telega, Bytner, Gambin
and Galka (cf [19 + 23]). Dual aspects of homogenization are discussed by Telega
[24].

In the present! paper a two-scale homogenization method is used to hamoge-
nize a periodically nonhomogeneous elastic body in which pure stress waves are
observed. By using a complete characterization of linear elastodynamics in terms
of stresses only (cf Ignaczak [1,2]) we show that in contrast with the homogenized
displacement procedure in which a homogenized displacement field #{®) coincides
with the first term of asymptotic expansion of a field ® when the elementary cell
tends to zero {¢ — 0), the homogenized stress field is identical to the mean stress
< o{® > over the cell, where &% is the first term of asymptotic expansion of a
stress field e. s

The paper is organized as follows. Section 2 presents a pure stress initial-
boundary value problem of linear nonhcmogeneous anisotropic elastodynamics
with conventional and nonconventional tensorial initial data. In Section 3 the
density p and elastic compliance K are assumed to be periodic functions of the
space variable z period of which depends on a small parameter ¢ > 0. Such
a nonhomogeneous body is then homogenized by the two methods in Sections 4
and 5. In the first method we expand a stress field satisfying Eq (2.1) into an
asymptotic series of powers of ¢; the associated displacement field now plays a
role analogous to that of a potential in the homogenization of a body transmitting
electromagnetic waves (cf [17,25]). In the second method (indirect approach) we
use a definition of the displacement field based on the equation of motion. Such
a displacement is next developed asymptotically in a way similar to the method
of homogenization of the displacement problem of elasticity (cf [15,17]). Both

1The article is an extended version of the paper presented at a meeting of the Polish
Socxety of Theoretical and Applied Mechanics - LédZ Branch, which was held on Dec.19,
1991 in the Lodz Polytechnic. The paper won an award from the organizers of the meeting.
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methods lead to the same homogenized form of the stress equations of motion,
and the resulting homogenized coefficients are identical to those of a displacement
homogenization procedure, (cf [15,17]).

In Section 6 it is shown that a mixed initial boundary value problem for a
homogenized medium can be characterized by the mean stress < > only.

2. Field equations and initial boundary value problem

Let a nonhomogeneous anisotropic linear elastic body, occupying a three di-
mensional region B, be subject to a dynamic motion. Let the body forces be
absent. Then the stress tensor o;; is a solution to the following initial-boundary
value problem (cf Ignaczak, Gurtin [1 + 3]).

Find the field o; = 0yj(2,t) on B x [0,00) that satisfies the equation

(=,t) € B x (0,00)
the initial conditions
oij(2,0) = of(z) &ij(x,0) = 65;(2) z€B (2.2)

and the boundary conditions

pltx L (z,1) = Us(z, 1) on 8By x (0,00)
i ET P
_ (2.1)
oijn; = Fi(z,1) on 0BF x (0,00)

Here p = p(z) and K;jn = K;;ju(z) denote the density and the elastic compliance
of the body, respectively; the upper dot () stands for the time derivative and the
summation convention over repeated indices is implied; moreover, the star {-)
means convolution on the time axis, e.g.

te f(z,1) = /(r = r)f(z, ) dr

where f denotes a function of z and t. The fields a'” -:’ U; and F; are given
functions, while 3BU and 9Bf are complementary suDsefs of tle boundary of
of B. Tke fields o (z) and ¢f.(z) are determiued by the initial displacerncss
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field ui(z,0) = uw?(z) and the initial velocity field ii(z,0) = ©f(z) through the

Fanf ads
relations

7(2) = i) T
oo B (2.4)
ofi(z) = Cx’jkl(ﬂaﬁz(f)
where Cjjw is the elasticity tensor, i.e.
Ciskt Kiimn = bi(m ;) oo B

aud &;; stands for the Kronecker symbol. Moreover, the field Ui(z,t) is represen-
ted by the boundary displacement 1;(%,t) and the initial fields «f(z) and 4(z)
through the relation

Uiz, t) = 4;(2,t) — tal (=) — uP(z) on . OBy x[0,00) (2.5)
Fipally, the density p and the compliance Kj;j; satisfy the inequalities
p>0 Kiuieijor > 0 Vo € Ef z€B (2.6)
Remark 1

The problem (2.1) + (2.6) is equivalent to a conventional mixed initial-
boundary value problem of linear nonhomogeneous anisotropic elastodynamics in
- which an initial state of the body is described by the fields u? and %}, the field
it; is given on By X (0,00) and the traction F; is prescribed on @BF x (0,0c).
The boundary condition (2.3); corresponds therefore to a displacement condition
expressed in terms of stresses (cf Gurtin {3}, £.222).

Remark 2

In the linear elastodynamics a stress tensor is characterized by a single tensorial
equation (Eq (2.1)) while in the case of elastostatics a stress tensor satisfies, apart
from 6 stress eguations of compatibility also 3 equations of equilibrium (9 scalar
equations totally).

" Remark 3 -
Applying the double curl operator to Eq (2.1) we get
: e

_Eipqejf,-a'm(ffq,kz&k[) =0 on B x (0,00) (2.7)
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where ¢;jx denotes the 3-dimensional alternztor.
Integrating Eq {2.7) twice with respect to time we find

32

EiPQFjTlm[KQIkl(akl - té’ZI - O’Zl)] =0 on B X [0.00) (2.8)

Therefore, by virtue of (2.4), the tensorial equation (2.1) implies validity of tle
compatibility condition of linear elastodynamics for every (z,t) € B x [0,00) (cf
(3], p-40).

Remark 4

Since the problem (2.1) + (2.6) is equivalent to a convential mixed problem
of linear elastodynamics, there exists only one field oy; satisfying Eqs (2.1) +
(2.6). It was shown by Ignaczak [2] that if of; and 67, are arbitrary second
order symmetric tensor fields which in general do not satisfy the relations {2.4),
and if 8B = 0Bp, then the associated pure stress problem has also the one and
only one solution. Of course, the use of the arbitrary fields of; and &%, means
- that the associated stress problem covers a ciass of stress fields that do not satisty
the compatibility conditions (2.8). Those non—compatible stress formulations are
often called nonconventional formulations of linear elastodynamics.

3. Periodically nonhomogeneous elastic body

The initial-boundary value problem (Egs (2.1) + (2.6)) is parametrized witl
the aid of a small parameter ¢ > 0 in the following way. The fields p(z) and
K;;u(z) are replaced by the fields

et (T
=) 2 o()
zec B (3.1
" & e (Z
I]kl(z) x;lcl(e)
respectively, which are e¥ - periodic, i.e.
pi(z +eY) = p*(z)
Kin(z +eY) = Ki(x)
where Y is a given vector. The vector Y describes an elementary ceil of the body

which is described by
Y =(0,Y1) x (0,Y2) x (0,Y3) (3.2)
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The vector Y = {Y1,Y2,Y3) belongs to the first octant of the y—coordinate frame.
The mean value of a function f(z,y,t) over Y is denoted below by

<Se)>= o [ flzun) dy (33)
)

As far as the remaining data of the initial-boundary value problem (2.1) +
(2.6) are concerned, we assume that they are independent of ¢, e.g. the initial
data of the problem are assumed to be ¢ - independent. Clearly, with such a
parametrization a solution of the parametrized problem also depends on ¢, and
in the sequel it is denoted by of;(z,1).

4. Direct homogenization of the stress equation

According to the 2-scale expansion method of homogenization, we assume that
the field of; can be represented by the series (cf e.g. [15,17])

of;(z,t) = Ze a(k)(z Y. t) 4.1)

where

4.2)

™R

y:

(k)

and the cofficients o;;” are periodic in y, i.e.

P y+Y.0) =020,
The partial derivative 8/8z; of a function - f(2,y,t) with y = z/¢ means that

i) a 18

e — v + 'E-(;’; (4.3)

Substxtutmg the expansion (4.1) into the field equation (2.1) and using Eq (4. 3)
we get

7l (a; + eay,)[“‘(a—z;*;az;)<°‘°’+w“’ +etold 4] +

+(3i +%73%){ , (aik o )(",‘2’+'€U"’+e o +-)}= (g
250,
ws)

= ;jkl(?)(ﬂu) + e&,i}’ + &2 Gy
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where-

-, L
) |
Now, equating coefficients of like powers of ¢ one obtaines the set of equations
-2
€
(10 © 0 (.10 3 s =
: ayJ (P ayk |k) ay ( Jk} (4'5)
e
8 (1 8 oy, O @ o, 0
8:, (p 3y;, "‘) 8y [p (83:), it 5 Oy )]+ (46)
3 0 i} d
= L (0) -1 L IR ¢ ) ) I
8::. (’ ) 33/.[ (8z,, e T 3yk"jk )] =0
0

9 0
2{3,[ (5o + )] # g b (e + )] +

lij 0 0 0
b [ (e + o)) + 7 (e + ot} =
,,Hd,(d) (4.7)

Next, applying the operaior

fots (3 Loy +1 2

I 8z, eay,, Oz, ' €8y,
to both sides of Eq (4.4) and using the compatibility condmons at the initial
moment t=0

. EipgE jra (‘% + 'l'a;;") ((z, + - ) [quklo'zl(z 71 0)] =0 (4 8)

comeir (5 + 130) (g + 23 [Kowtti(2.,0)] = 0

we get 2

? 13)(3-10);

Eipqejn(a + anp 'a_z'r' + ;a—y:

2The conditions (4.8) are satisfied, by virtue of (2.4), if the following asymptotic rela-
tions are met

u(’ 1.0) = 0j(2.0) = ofi(2) a8 €—0
(: Y )—*ax;(’ 0)-—01(3) a8 £—90
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{4.9)
[Kq,kl(o‘ + Edc}) & (2J + . )] =0
Considering the coefficients of &* (k= —2,-1,...) in Eq (4.9) yields
S 5
_ { { )

£s‘pq¢-jném\1{q:klo'kl)) =0 (4.10)

el
92 0? . (1\

- , : alt Koot =0 (@1
Eipq&]"[(axrayp * azpayr)( : Hak 9y ayr( 9mkiT Kt /] ' ( )
£0

&2 (©) il & )
coesr 5, (Koniol?) + (5 3 * gty ) (Kowod) + (412)

o (o) =

After integration of Eq (4.5) we get (cf Eq (A8) in Appendix A)

+

3 30(0)

P Ouk
where b; is an unknown function depending on 2 and ¢ only. Integrating both
sides of this equation over the region of elementary cell Y, using the divergence
theorem and periodicity of a‘!f:) with regard to y we find that

= b;(z,t)

bi(z,t) =0 for (z,t) € B x(0,00)
Therefore
39
—E =g for (z,t) € B x(0,0¢) (4.13)
Oy

Substituting this result into (4.6) we get

- o 1 ) 1 )
i[p—l(acf'k) + 30?;;))] 2. [-1(3"# Wi )] =0
oy; 0z, oy oy; oz, Oy -

Clearly, the last equation has the same form as Eq (4.5) if the terms of type
(p“‘aaf,?’ /O0yx) are identified with the expressions of type [p‘l((?off)/azk +
805;’/83/,;)]; therefore, by analogy with (A8) we get

(30’(0) 60(1)

Bz, T Oy Fk-) = Bi(z,1) (2,t) € B x (0,00) (4.14)



HOMOGENIZATION OF STRESS... 253

where B;(z,t) is an unknown function depending on & and ¢ only. Hence, we
obtain © g,
%‘Lk- + e = p(y)Bi(z,1) (4.14)
Averaging both sides of (4.14)" over th-e cell Y and using periodicity of afz,}
with regard to y we find

2 o®5=<p> Bifz,1) (4.15)
Oz

where the cperator < > is defined by Eq (3.3). The last result shows that £5;

: . )
represents an acceleration field corresponding to the average stress field <a§2' o

Next, substituting (4.14) into (4.7) yields

d [ (aa“' +aa‘2’)]+

2 { (9:4:J 81:,, Byj lp Az, Jyx
(4.16)

8 8 (1) 8 (2) o
gl (G G} - el

Averaging this equation over the cell Y, using the divergence theorem and the
(1) (2

periodicity of oy;’ and o’ with regard to y lead to the result
| 9B; (’731\ (0) , .
(a...J + Bz, / <1£.Jk10 > {4.17;

Hence, and according to Eq (4.15) we get

lr 0° ()
2[63:_,-8:1,( v v

0 - v
<0'(k) >] =< p>< K;jk10£?)> (4.18}

Now, we use the relation (B8) derived. in Appendix B
<0(0)> Cukl (K};(WO’(O)> (4.19:‘

where CH i;is denotes the homogenized elasticity tensor

. Bxmii ‘
Cla =<Cijii + Chimn ;;"’ > (4.20)

in which Ympq satisfies the equation

0 OXm ; :
(quq + C:Jmn gy pq) =0 on Y (4.21/
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and the appropriate bounda.ry conaitions on Y. -
Assuming that C# i3k is invertible, and denoting its inverse by ng_b from

{4.19) we obtain
<I{"]‘H¢TH >= I\’ijkl <U£1)-> (4-22)

Clearly, we have®
t]mnC = Cgmnxgu!k = 65(151'1:) (4'23)
Finally, substituting Eq (4.22) into right-hand side of Eq (4.18) yields

<o) > +- oD >] =<p> Kl <o) >

2 [az,-az 82,0z,

(4.24)
on B x(0,00)

To this equation the following initial and beundary conditions are adjoined
<> (2,0) = of(z) <> (2,0)=6%z)  omB (4.25)

<p>lts 3% <ag‘;’) >= Ui(z;t) on 9By x (0,00) (426)

4.26
<o > n; = F(z,1) on 9BF x (0,00)

The problem of finding an average stress field < o;; > satisfying Eqs (4.24)

+ (4.26) will be called a stress xmtxa.l—boundary value problem of homogenized

elastodynamics.

Remark

Homogenization procedure developed in this section can be also applied to the
homogenization of the stress equations of elastostatics (Eqs (B1) and (B2) occur
also in a statical problem).

5. Indirect homogenization of the stress equation

Assume that the fields oi;(z,t), u’(z) and 7(z) in the formulation (2.1) +
(2.6).are given, and define the function

,90;
R %

3The reiations (4.23) are similar to those of the classical elasticity (cf Walpole [26] and
Mehrabadi and Cowin [27]).

= udz,t) =1 ( Z22) + ul(z) + til(z) (5.1)
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where
duf  0f .
(ax_, + '5;) = Kijklail (5.2)
611-" auP . .
-2-(-(9—.’13—; + ax':) = Kijklail (5.3)

(compare the initial conditions (2.2) and (2.4)).

Clearly, Eq (5.1) determines a displacement field obtained from the equation of
motion by double integration with regard to time. Therefore, differentiating (5.1)
twice with regard to time we get

aalk .
azk p (5‘4)
By virtue of Egs (2.1) and (5.4) we obtain
Oii; | Ouyy .
(c‘)z, + 6:c.-) = Kb (5.5)

Integrating Eq (5.5) twice with regard to time and using (5.2) + (5.3) we get

1 /0u; a'u_,' .
5 (axj Bz—.) = Kijuon (5.6)
or a
(/)
oij = Cijkl'—“‘ax’: (5.7)

Substituting Eq (5.7) into Eq (5.4) we arrive at the displacement equation of
motion P

oo (Conger) =oic (538)

In the following we show how to apply Eq (5.8) for obtaining the homogenized
stress problem Eqs (4.24) <+ (4.26). We expand u; in the asymptotic series, {cf

e.g. [15]) &
2 ol = E e"uf")(z,y,t) : (5.9)
k=0
Substituting Eq (5.9) into Eq (5.8) and following the procedure given in Section
4, we get

g 1o 14
(3—::, + an,-) [Cukl(:l)( Tl ;5—&) .
(5.10)

(a0 + eul? 4 24 4 . )] oG 4+ ea 4+ 23 4 )
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Considering the coefficent £* (k = —2,-1,..) in Eq (5.10) yields
(1) £ *

20 (c a‘m) 0 (s11)

Eq(Sll),theposnhndeﬁmtenssd’ C,,yald&epmuﬁch-hyu-im
on JY imply that tmcalnotdqpmdm', _

o = e, 1) (312).
Using this result we have L
(ii) e
F
LicalD + 38 - )
This equation s satisfied by the fanction
s+ mule) 1)
where Xir, satishies equation (cf Eq (421})
L . Oy o
75, (Com+ G 5=) =0 GI35)
-amd wy is an arhitrary fanction of x (amd eventuallly of ).

(&) £°
2 foa(BE + 2] .,Eﬁca«("{” +"E")ﬂ -
Averaging Eq (5.16) over the cell ¥ gives |
3:’— (Cﬂ(w a"f»)>=-<ﬂn>i“"’ G
Hence, wing Eqs (5.12) and (5.14) we abtain

i‘_‘((‘:j_‘-."’cgjp—) ﬂ) =<p> il (E1B)

ATE . em
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where (cf (4.20))

Cgu =<C;ju + C'.J_-‘Qxi_ > (5.20) ’

Ovn

On the other hand, replacing in Eq (5.7) oy by ofj, (f Eq (4.1)), and u; by
%, (d Eq (5.9)); and equating the coefficients of ¢ on both sides we find that

@) (1
© _ Ou, Ou,
% = lJH( + =" 3w ) (5.21)
or according to Eq (5.14) that
Fxmary Ou .
(Cukl + C:Jm ) 83] (5.22}
Next taking the average of Eq (5.22) and using Eq (5.20) we get
0)
<o) >=ch, =t 9uy (5.23)
Bz :
Hence
9 (o) au(.o)
2 ;z +—5) = k<o) (5.24)
where (cf Eq (4.23))
" = (CH)1 (5.25)
The relations (5.19) and (5.23) imply that
o >=<p> i (5.26)

. 3::,

Hence operating on Eq (5.26) with the symmetric gradient operé.tor and using Eq
(5.24) yields the stress equation of motion of a homogenized medium (cf Eq (4.24))

v

2.0z <a§k) ) =<p> K,,,,, <ak,)> (5.27)

R

2(3:1:J

Adjoining the initial and boundary conditions (4.25) <+ (4.26) to Eq (5.27) leads
to the stress formulation (4.24) + (4.26). '
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6. Stress characterization of a homogenized mixed xmtml—boundary
value problem

Using the results of Seciion 5 we are to prove the following counterpart of a
classical theorem of elastodynamics (cf Gurtin [3], Theorem 4, p.222).

‘Theorem®
Let < 0’-((-)) > be a time —~ dependent admissible mean stress field on B x [0,00)

and suppose that <a( ) > is continuous on Bx[0,00). Then <ag? )> correspends
to a solution of the rmxed problem of homogenized elastodynamics if and only if

<°'((u3> h) <p> ngl <5';3) >=10 oo B x(0,00)
<ol | _ =dk(2) <oP>|_=o%(s) o B
s < aff) > ;=< p> (i - uf - tal) on @By x (0,00)
<"g)) >n;=F on  9Bf x (0,00)
where
=fE) =)
uf = uf(z) i = ij(z)
i; = i;(z,t) F; = Fi(z,1)

are given functions of indicated arguments.

Proof
Assume that < ag’) > satisfies the above relations, and define

e® = KA, <ol

and
uSO) =<p>‘1 Leg a§.?) > +u'('0)[¢—o + t(i"('O) L—o}
where
© | _ P
u('»)) Kl]kl <Uk1 i \“f ) . ™~ uf:)
(0) Y ( ) (0 .
i) =0 K'JH <O > {t=0 (uf )|t=0 = u?‘)

“Throughout this section index conventions are used; eg.  Ayj), denote symmetric
part of A,‘", ie. A(.‘") = %(A,‘" + AJ',') and A,‘jJ‘ = 6A,'J'/32j.
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or
()] — )I =
<o) > |,y = Clnid] o = 7%
. (0) (O) .
<aij > |¢= = tJH kl = 0{,’

Then it is easy to prove that

ff) = u}?}f) on BXx[0,)

and

u(‘_’) = &(,0) on 9By x [0,)

Therefore it follows that [u(o),eg)),< g ) >] represents a solution to the mixed

homogenized problem. Conversely, if [u(o) eff), < a(o) >] is a solution to the mixed

homogenized problem then the relations given in the theorem hold.
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Fas(@,32,35) = wshas(2,12) + (2, 32) (AS)s

fi2(2, 31, 2) = nhi2(2,32) + qr2(2, 32) (A5)
and : |

fi3(z, 0, 13) = yskwa(=, 1) + na(z, ) (AS5)s

fi2(z, 31, 92) = yakra(z, 1) + m12(2, 1) (A5)e

where the meaning of the new unknowa functions is evident.
Comparing (A5); with (A5)3 we get

¥2923(2, ¥3) + p23(2, ¥3) = y2has(Z, ¥3) + q23(2, 1)

Hence
923(2, ¥3) = ax(2)y3
haa(z,12) = ex(=)y2
P23(%. ¥3) = q23(2,v2) = by(z)
or
923(2, y3) = es(2) 923(z, 12) = e1{2)32
has(z, ¥2) = di(2) P23(2, y3) = di(2)ys
Thus '
J23 = a1(2)y2ys + bi(2) . (A6),
or
faz = er(z)yz + di(2)ys (AS6),
“In a similar way, by comparing (A5); with (A5)s, we get
Sz = ax(2)yn1ya + ba(2) (A6)s
or
iz = e2(2)y + da(2)ys (A6)q
while a comparison of (A5)4 with (A5)g yields
Nz = aa(2)ny: + bs(z) ; (A6)s
or

© 2 = es(@)n + dy(2)n (A6)s
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From periodicity of ag:) with fega.rd to y and from Egs (A6);+ (A6)s we
conclude that

a;=¢=d;=0 t=1,2,3 (A?)
Thus Egs (A3) take the form
_185 . 48
p ?‘;L—b(“’t) i=1,23 (A8)
Appendix B

Egs (4.10) and (4.13) can be rewritten in the form

em,eﬁ,a—‘%—egﬂ) =0 " (B1)
B%(C"-’-Hfg)) =0 (B2)

where
e = Kijuol) <= of) = Cijure)

Since the mean value <e(°) > is independent of ¥, Eq (B1) can be rewritten as

( 0 <E‘°’>) =0

51?051"

Henoe by virtue of the compatibility theorem (cf Gurtin [3], p-40) there exists
a vector field ¢; dependent on y, such that :

<D= (g?f—-i-a‘;) ' (B3)

Due to periodicity of E( ) with regard to g, the field ¢); is also a periodic function
' Now, let us introduce a function Xirs = Xirs(¥) which is gy ~ periodic, sym-
metric in the indices r and s; and satisfies the equation

d (c.. il & :
B'y‘;(curs e ClJH U ) =0 (B4)

Combining the formula
(0) >=< Cx;klsz) >

with (B3), integrating by parts and using y - periodicity of ¢; and Cjjx, we get
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0 aC;; .
<a‘ ' >= <C.Jk,><e,‘d)> <—3§_llﬂ<pk> (BS5)-

Rearrangement of the indices in (B4) yields

5%‘(01:{:‘_5 + Chimn 8g;¢j ) =0
Hence 3
< Bg;’l”sop— -< [a (Cmmax 2)] e >

Integrating by parts and using the periodicity of the functions involved, we get

< '_a'yl’_‘Pk >= — < Xmij W Cklmn%(Ek) > (BG)
On the other hand, from (B2) and (B3) we have

s foan{<> 432 o

or
a . 3(,0,“ 30);1” (O)
0 (Cklmn 6y,.) -——-ayk <e>
or
: (Cklm 6901‘) O 0 >
Ovn " Oy . 7
Using the last relation, we reduce Eq (B6) to the form
8Ciji 0Cpn o
< 6;1 PR>= — < Xmij n”’ ><e@>
or
<—51-L<p >= - <Cmnwax"“ ><e§,3)> (B7)

when integration by parts, and periodicity of xm: and Crmnpg are taken into
account. Finally, substituting (B7) into (B5) we find that

0
<o) >=<Cij><Q > + < Comia g;" ><efd>
n
or a
<a(°)> <C,u + Conti—5— g;"’ ><5§3) >
T ar

<ad>= iy <> (B8)
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where C#, sk stands for the homogenized tensor of elasticity

C,-’}k, =< Ci;u1 + Crunki ™

Homogenizacja napregzeniowego réwnania ruchu liniowsj elastodynamiki

Streszczenie

Przedstawiono dwa sposoby homogenizacji osrodka sprezystego z okresowa niejedno-
rodnoscia w oparciu o czysto naprezeniowe rownanie ruchu osrodka, por. [1 + 4]. Wiaig
si¢ one z wystepujaca w elastodynamice mozliwoécia wyrazenia wektorowego pola prze-
mieszczenia przez tensorowe pole naprezenia na dwa sposoby: albo przez zwiazki geome-
tryczne i prawo Hooke’a albo przez prawo ruchu. Oba sposoby prowadzg do tej samej
postaci réwnar ruchu osrodka zhomogenizowanego. Pokazano ponadto, ze mieszany pro-
blem poczatkowo-brzegowy dla osrodka zhomogenizowanege moie by¢ scharakteryzowany
tylko poprzez naprezemie srednie.
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