MECHANIKA TEORETYCZNA
I STOSOWANA :

Journal of Theoretical

and Applied Mechanics

3, 30, 1992

VIBRATIONS OF A PRESTRESSED TWO-MEMBER.
COMPOUND COLUMN

LecH ToMsKI

Stanisiaw Kukra

Technical University of Czgstochowa

The dynamic bending response of a geometrically non-linear prestressed two~
member compound bearmn with pinned ends is studied. The prestress was pro-
duced by initial lack of fit of the beam members. The problem is formulated
as a variational one, the Hamilton principle being used. The solution was ob-
tained by using the generalized Ritz method. The natural vibration frequency
versus prestress and vibration amplitude are calculated. The orthogonality
condition for the non-linear modes of vibration are also discussed.

1. Introduction

The linear elastic systems do not show the changes of natural vibration fre-
quency regarding prestress and imitial imperfections (cf [1]). Natural vibration
frequencies of geometrically non-linear systems depend both on the value of pre-
stress and the initial imperfections (cf [2 + 6]). '

deformed reference lines
: Koy ,

Fig. 1. Compound beam



626 L.Tomski, S.Kukra

This work concerns the dyna.mics of a geometrically non-linear prestressed
perfect compound beam. Such a system may be presented in the form .of two
coaxial tubes or a tube and a rod (Fig.1) of different flexural and axial rigidities
( E;J; and E;A;, respectively) and different masses per unit length (pid;, ¢ = 1,2)
rigidly connected with each other (both in displacement and rotational sense) (cf
(8,9]). The beam may also be in the form of a planar frame made of a strip
located in the centre of the structure in which the second member is formed by
two identical strips symmetrically located at both sides of the central strip (cf
[10]). In refs. [8 + 10] the divergence instability of such systems was detrermined,
however their dynamics was not analysed.

For solving the problem of vibration of elastic systems characterized by geo-
metrical nonlinearity the moderately large bending theory is usually applied. Ac-
cording to this theory one assumes a non-linear strain—displacement relationship
of a bar in the following form
g - AcHL
T2\ 9z oz

Furthermore, one also assumes that the inertia in the in—plane direction is
expected to be small as compared with the inertia in the transverse direction and
hence it is neglected. The moderately large bending theory is in accord with the
results of actually performed experiments [11,12]. : '

In the works concerning the non-linear vibration of a beam with fixed or elasti-
cally supported ends in the longitudinal direction one applies continuum approach
and finite elements method (cf [13 + 16]). For sclving the vibration of beams
considered as a non-linear elastic continuous system one applies various methods.
The space and time separation of variables is performed and then either one ap-
proximates the shape of the deflected beam or the time factor is assumed to be a
trigonometrics function. The finite difference method, Ritz procedure, the pertur-
bation method and multiple scales are used.

For solving vibration of the compound system as e.g. the compound beam
considered, the method of small parameter or the Ritz method seems to be most
suitable (cf [17] and [16}, respectively). The considered problem is solved by using
the Ritz method. By applying similar procedures as in the book by Leipholz [18]
and work by Szemplifiska-Stupnicka [19] which include the generalization of this
method, the problem stated in this paper will be solved. Generalization of the
Ritz method is based on the fact that the approximate solution in the form of
a truncated series, in which instead of a set of coefficients, the set of functions
of spatial variables is unknown. This concept is also applied by Lewandowski
[16]. It is necessary to state that the methods of solutions of dynamic problems
given above concern the time-independent loads. For the time—dependent loads
the stochastic stability analysis of non-linear columns using the Liapunov direct
method was presented by Tylikowski [20].

£
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2. Mathematical formulation

In this work one analyses the dynamic bending response of the geometrically
non-linear prestressed compound beam (Fig.1).. The compound beam considered
is prestressed due to the initial lack of fit Up = lg; — oz of members. If, before
the members are connected, one of them is too long by an initial lack of fit, Uy,
then, for any shortening Ug;, Ugy of members we have

Ug = Ut — Uy (2.1)
The Hook law states that
Uoi Sal (2.2)
0 = E A, .
The equilibriumn condition of internal forces in the bars yields
Soi = (~1)*15, So= 20
a (2.3)

1 1
r= L(E’E + EzAz)
After the value of prestress is determined, the dynamics of the system is for-
mulated by applying the Hamilton principle (cf [17] chap.4) which in the case of
this system takes the form

6 = / / fLdsdt=0 - (2.4)

where £ is the Lagrangian density of the system The Lagrangian density in our
case may be presented as follows

*°W; oU; oW; - -0U; OW;
L= E{T ) (azz o’ az) V'a(s""’ﬁz—’a_z)}

where T;, V™,1 = 1,2, m = 1,2,3, denote the densities of the kinetic and potential
energy, respectjvely For the system considered these densities are expressed by
formulae

) V(%

oW;
T: = 2P'A'(at)
v L
: (32) (2.5)
1
V"2=§ [ 2( )]

= -l JO)T
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The Hamilton’s principle (2.4). after considering (2.5) and integrating by parts, ‘
can be transformed into the form '

i 0 &, v 3, ov3
st 58
0

2

Mn

i=1; Ot \OW.y/ 022 \OWing/ = 0z \OW;,
1
9 ¢ V2y 8 (VP
5 aw )]W" + [az(au,,) + az(aU” )|8U: pddt +
f om |
0/ el d%+ / {- aW"u6W,,,+ (2.6)
LR WO . L. S Vg | oV
oz o) ~ g~ i)™ - Lo + ap) ool =

where variations 6W,-, 6U; and their derivatives with respect to the coordinate
z are independent of each other. The conditions of vanishing the variations at
t = t; and t = t; must be utilized

§Wilz,ty) = 6Wi(z,12) = 0 i=1,2 @2.7)

3. Solution of the problem

The displacements W;(z,t) and U;(z,t) being searched for and the force S;(t)
resulting from bending the bar ¢, as being the approxxmate solution of the problem
are assumed in the form

Wi(z,t) = awi(z) coswt : Ui(z,t) = a’u;(z) cos® wt (3.1)

Si(t) = §; cos® wt (3.2)

where w;(z) is 2 unknown eigenfunction of lateral beam vibration and « is the
amplitude of constant value depending on the initial conditions. The geometrical
and continuity conditions of our problem for the functions w;(z) and wu;(z) are
the following

Ou )
w‘l:-_-o g w‘l::L Als % L 661;2 } g
(3.3)
w g =, =0 | =,
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By.'using_ the concept of the generalized Ritz method [18] 'weqhave
§Wi(z,t) = adw;(z) coswt
(3.4)
6U;(z,t) = a®bui(z) cos® wt

After substituting Eq (2.5) and Eqs (3.1), (3.2) and (3.4) into Eq (2.6) and then
integrating this equation within the limits ¢; = 0, t; = 2/ and making use of
boundary conditions (3.3) one obtains the ordinary differential equations for the
unknown w;i(z), ui(z) and the associated (natural) boundary conditions '

EJwl + Stul - piAww; = 0 i=1,2
| (3.5)
Euilul + 2(wd)?] = 0 i=1,2
' 2
- Eyywy + EyJowy =0 for z=0 and z=1L
. (3.6)
1, 1
EyAs s +5(0))?] + Eadafu + S(wi)?] = 0
for z=0,L
" where
S: = S5 + %5',
(3.7

Eidi[wt + 5(w?] = -5,

By integrating both sides of Eq (3.7) within the limits 0, L and considering con-
ditions (3.3); the following relationship

2 L
a*ui(L) = _ES__ —-;- o/ (w))?de (3.9)

 is obtained. On the basis of conditions (3.3)2 and (3.7) we have

L

§= g- / ([CARCALE (3.9)
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The solution of Eq (3.5)1 satisfying conditions (3.6) is in the form
oL ﬂ
wi(z) = (wg+w)va [smh——smﬂ.(z —) — sin —— sinh a;(z — —)]
(3.10)

a;l L BiL :
+ (wp —wi)ve [CQSh -5 cos fB;(z ~ 5) — o8 —5~ cosh a;(z — -5)]
where one assumes
wh = wi(0) = wy(0)

_ (311)
wy = wy(L) = WQ(L)

7:1— [ﬂ.LSlnh-——cosé__._a‘Lc h ﬂtz

Ta= [B,Lcosh Lsm—ﬂ'2—L+ ;L si h— Et___}
'?‘23.1 [-5: + /52 + w2 EJipii |
B= 2EJ [S +/52 + 4PETipidi ]|

Substituting solution (3.10) into conditions (3.6); leads toa ‘characteristic equation
for vibration frequency’ w.
Then, one considers two cases
a) Symmetric modes of vibration, where w] = —wy,.
 The characteristic equation is then in the form

Yi2biz + €122brz =0 (3.12)
and the solution w; is expressed by the formula

- wi(z) = wpvia [cosh —2£ cos fi(z — —) — cos E—'- cosh ai(z — g)] (3.13)

b) Antisymmetric modes of vibration, where w] = wy,.
The characteristic equation and solution w; are the following

Yubii + ey21by = 0 - (3.14)
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I T T N R X
w;(z) = w67|2 [Slllh —2'— sin ﬂ,(z - 5) — sin T sinh a,(z_ - -2—)] (3.15)

where
- E3J,
EJy
by = (a? + ﬂ?)sinh g,'_L_ sin ﬂ‘—;i
ﬂiL
2

biz = (a? + B?) cosh T

The coefficient 1w} in solutions (3.13) and (3.15) is determined from the nor-

malizing condition )
sl (D) ()] =1 . (319)

One takes the normalization for z = L/4 due to the possibility of determining an
antisymmetric shape of vibration. The average displacement value guarantees the
symmetry of solutions for both beams of a compound column.

4. Orthogonality condition

Let us assume that Wi,(z,t) and Wy(z,t) (i = 1,2) are two different known
~ solutions with corresponding axial forces S, and Si, amplitudes a, and ag,
frequencies w, and w;, and modes of vibration w;, and w;. The orthogonality
condition will have the following form

(w "wk)Z[PtAa/wmwnkdx"' —(Sk = n)/wmdzw‘kdz] =0 (4.1)
=1

This condition is satisfied for symmetric modes of vibrations w, and wj, and
also for antisymmetric modes wj,, w}, if the forces corresponding to them fulfill
the relationship

S2(an) = Si(ax) for symmetric modes
Sp(an) = Si(ax) for antisymmetric modes.

However, fulfilling condition (4.1) for symmetric modes and antisymmetric modes
~wj, and w§, respectively, results directly from the properties of even and odd.
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respectively parity of the functions win(z + L/2) and wik(z + L/2) determined
by formulae (3.13) and (3.15). This leads to the following equality

L L d2
/w,-’nwfkdz =/w, o2 'kd:c 0
0 0

5. Numerical results

B0 402 03 sy

Fig. 2. Frequency ratio (first frequency — ; second frequency - - - ) versas prestressing
force Sp for different physical data of the compound column as listed in Table 1

Fig.2 presents the variation of the two first non-linear frequency ratios (wi/@x)
versus prestressing force Sg (5o > 0 and Sy < 0-denote compressive and streching
forces, respectively), @ is the frequency of natural vibration of a beam for So = 0
and other data are the same as those in exammple ”0” (Table 1). The largest
variations of natural vibration frequencies occur for asymmetrical distribution of
flexural rigidities of both beams of a compound column.

Table 1. Physical and geometrical data of the compound beam

| | ' A
B No. | P IS B

0 1 1 1
1 6 1ot o 1
2 | 1/5 | 1 1

L=4m, EiJy 4+ E3J, = 1.2 MNm?
EyA; + E3A2 = 10.0 GN :
1 p1A1 + p2A2 =350 kgm™! e =0.002
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‘Fig. 3. First frequency ratio versus prestressing force Sy for different flexural rigidity
ratios (E]J}/Esz_), where E\J, + E3J, = 1.2 MNmz, a=0.002m

Fig.3 illustrates the change of the first natural frequency versus the internal
force Sp for different flexural rigidities. One assumes here that E; = 1 - 101!
N/m?, E; = 2-10'' N/m?, p; = 3000 kg/m?>, p2 = 8000 kg/m?3, and the cross
section value A; is estabilished treating beam ”1” as a rod and beam "2 as a
tube. The tube is fixed on the rod with radial clearance. The value of the sum
of flexural rigidities is constant: EyJ; + E2J; = 1.2 MNm?. Depending on the
asymmetry of distributions of the flexural rigidities, there are certain values of the
internal forces .So when the natural frequency of the system lowers to zero. Fig4
illustrates the effect of the amplitude a on the value of the ratio w;/we1, where
- ~wo1 is the frequency of natural vibrations of the column for the amplitude a — 0.
The curves 1(a — c¢) were calculated for Sg = 3.0:10° N and the curves 2(a — ¢)
for So=3.5-105 N. ;

The results of the calculation concerning variations of frequency ratio versus
the value of prestressing force Sp for various values of amplitude a are gathered
in Fig.5 (the ratio of flexural rigidities EyJ;/E3J2 = 1/5). The boundary curve
F(S801,S802,0 = 0) = 0, for which the natural frequencies are equal to zero is
presented in Fig.6. The shape of the column loaded according to this curve can
be either recitilinear or curvilinear (compare [8]).

Let us consider the behaviour of the column with flexural rigidity ratio
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Fig. 4. Changes of first freqﬁency ratio vs. vibration amplitude (Sp =3-10 N — and
Sp =3.5-10 N - - - ) for different flexural rigidity ratio, where E;J; + E3J> = 1.2 MNm?
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Fig. 5. Changes of first frequency ratios versus internal force S and prestressing force
So for EyJi/E2Ja =1/58and EyJy + EaJ; = 1.2 MNm? and arbitrary amplitude a -
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'Fig. 6. Relationship among internal forces So; and S for which natural frequency is
e ‘equal to zero
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Fig. 7. Changes of Byo = SoL?/E;J; versus flexural rigidity ratio E3J2/E;J;
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EyJy/Eadp = 1/5 for the amplitude @ = .02 m (curve 3, Fig.5). The system is
prestressed with the force Sp = Soc. This column, in the initial instant ¢ = 0, has
got the natural frequency marked by the point A. The internal longitudinal forces
are marked by the point A in the Fig.6. When the column reaches the internal
forces defined by the point C on the bouadary curve (Fig.6), its natural frequen-
cies vanish (w = 0) and the column takes the rectilinear shape. The loading of
the system with the prestressing force So > Soc (point B, Fig.6) causes the
curvilinear state of equilibrium at the point C (Fig.6). ‘

Fig.7 skows the variation of (%, = SoL?/E)J; for various flexural rigidities
E}J;. For E;J; — 0 the first columm behaves as the single column and loses
stability for 8%, = II°. When E3J; — oo the column ”1” loses stability for
3%, = 4AII* as the cantilever column does.

6. Conclusion

The study indicates that prestressing of the geometrically non-linear structure
has an effect on its vibrations. The prestressing force changes the natural frequ-
ency. The asymmetry of distributions of the flexural rigidities (as constant sum
of this quantities) also affects the values of the natural vibration frequencies. For
the discussed compound column there occurs the divergence instability (w = 0)
as a result of prestressing without application of an additional external load.
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Appendix: List of general symbols
A =  cross-section area
a — amplitude of vibration
E; —  modulus of elasticity
t=1,2 - number of beam
of; - moment of inertia
los - initial length
— number of vibration mode
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Soi

Si(t)
Si

Sa’ Sa
YRR

U,'(:c,t)
ui(z)
Uo

Ugi
W;(I,t)
wi(z)
Wiy Wiy

Pi
Wi

wWok
Wi

Przedmiotem pracy jest dynamiczna odpowiedz ukladu geometrycznie nieliniowego,
ktory stanowi dwuczlonowa belka swobodnie podparta, wstepnie sprezona.
wywolane jest przez poczatkowa réznice dlugosci poszczegdlnych pretéw. Podano waria-
cyjne sformulowanie problemu i zastosowano zasade Hammltona. Rozwiazanie otrzymano
przez zastosowanie uogélnionej metody Ritza. Wyznaczono czestosci drgan i wartosci sil
wewnetrznych w zaleznosci od sprezenia 1 amplitndy drgan. Przeprowadzono dyskusje

L.Towmskl, S.KUKLA

~ length of the structure

prestressing axial force of i-th beam

(S0 = (~1)**+150)

internal axial force due to flexural deflection of i-th beam
value of the force S;(t) for t =0

force defined in equation (3.9) _

force § for symmetric and antisymmetric mode of vibrations
density of kinetic energy '

time

axial displacement

amplitude of axial displacement

initial lack of fit of beams

initial axial displacement (at z = L) -

denisity of potential energy of the system, m-th component
lateral deflection

mode of vibrations _ ,
symmetrical and antisymmetrical modes of vibrations

axial coordinate

mass denisity

natural frequency of k-th mode of vibrations

natural frequency

natural frequency of vibration for a.mp!ifude a—0
natural frequency of vibration of system ”0” (Table 1) for
So=0 : ’

Drgania wstepnie sprezonej columny dwupretowej

Streszczenie

warunku ortogonalnosci dla nieliniowych postaci drgan.
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